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Doubly-Indexed Dynamical Systems:
State-Space Models and Structural Properties

E. Fornasini and G. Marchesini*
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Abstract. Doubly-indexed dynamical systems provide a state space realiza-
tion of two-dimensional filters which includes previous state models. Alge-
braic criteria for testing structural properties (reachability, observability,
internal stability) are introduced.

1. Introduction

State space representations of two-dimensional filters are a recent field of
investigation; yet there are quite a few contributions [3, 6—12, 16-20, 24].

At first sight these contributions look hard to compare since they are based
on state space models having different structures.

If we consider these differences from the realization point of view, it turns
out that the state space models we find in the literature realize transfer function
classes of different sizes. The recursiveness of the state equations implies the
rationality of the transfer function; nevertheless the realization of a generic
(strictly causal) rational transfer function cannot be achieved by every model.
For instance, the model proposed by Attasi [3] realizes only the subclass of
recognizable transfer functions (also called “separable filters”).

As proved in [6, 9], the state space models introduced by Roesser [20] and
by Fornasini-Marchesini [6, 7, 9] realize the whole class of causal rational
functions in two indeterminates. We will show that if we consider any model so
far presented in the literature, this can be embedded in the Fornasini-Marchesini
model [9] extended to include all causal (not only strictly causal) transfer
functions. Moreover it is interesting to notice that the embedding of the Roesser
model preserves the dimension of the local state space, whereas the reverse
embedding requires in general increasing the dimension of the local state space.
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Recently Kung-Lévy-Morf-Kailath [16, 17] considered the Roesser model as
a starting point for extending Rosenbrock’s theory of coprimeness [21] to 2-D
systems. This approach led to the concepts of modal-controllability and modal-
observability and to defining as minimal realizations those which are both
modal-controllable and modal-observable. This theory looks very interesting
from an algebraic standpoint but unfortunately so far it does not reach a
consistent conclusion. Actually the existence of realizations which are both
modal-controllable and modal-observable has been only conjectured by Kung-
Lévy-Morf-Kailath on the basis of low order examples.

Since the comparison between available state space models indicates that
the model introduced by the authors is the most general, we shall focus our
attention to analyze its structural properties.

We shall first extend from [7] and [9] the concepts of local reachability and
observability and their properties. Then the definition of internal stability will be
naturally introduced and we shall develop a stability criterion and connections
between internal and external stability.

2. State Space Models

A detailed discussion of the realization theory for two dimensional filters has
been presented in [6, 7]. So, in this section we shall introduce directly a state
space model without deriving it from the definition of the state via Nerode
equivalence classes.

We shall first list some notations:

K arbitrary field

K][z,,z,] ring of polynomials in two indeterminates over the field K
K[[z,,2,]] ring of formal power series in two indeterminates over the field K
K[(z,,2,)] subring of rational power series

K,[(z,,2,)] ideal generated by z, and z, in K[(z},2,)]-

A generic element in K[[z),2,]] will be denoted by

- bk ok
s =3, . (s,2825 ) 2123

where (s,2z§z5) € K is the coefficient of the monomial z[z5.
Let us introduce the following definition.

Definition. A doubly-indexed linear, stationary, finite-dimensional, dynamical
system (DIDS) E=(A4,,45 B,,B,,C) is defined by the first order partial dif-
ference equation

x(h+Lk+1) = A x(h+1Lk) + Apx(hk+ 1) + Byu(h+1,k) + Byu(h,k+1)
(1
y(h,k) = Cx(h,k)

where u(h, k), the input value at (h, k) and y(h,k), the output value at (h,k), are



Doubly-Indexed Dynamical Systems 61

in Kand h,k€Z, A,€K™", BEK™ !, CeK"™™" i=1,2 and x€X=K" (local
state space).

Let % be a partially ordered set. A cross-cut C C?P is a set of incomparable
points such that if i€ exactly one of the following is true [19]:

(a) i€l

(b) i>jforsome;jEC

(¢) i<jforsome el

The partition induced on & by a cross-cut C evidentiates three disjoint sets
of points. We shall call present, future, and past with respect to © the sets of
points satisfying (a), (b), (c) respectively.

In ZXZ partially ordered by the product of the orderings, the cross-cut
through the point (i,j) €7 X Z is uniquely determined as the set

{(i+m,j—m), merl)} = Ca
Introduce the following notation.

X, = {x(hk): x(hk)EX,(hKk)EC,)

Given a cross-cut C, CZXZ (see Fig. 1), the solution of equation (1) in the

Zr
q"pr
X (0,r)
P
(o,r)
——e—2
-
future

q
¢

Fig. 1.
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future is uniquely determined by %X, and by the input values on C, and on the
future set with respect to C,.
Let %X, =0. The following rational power series:

= CU—A121_Azzz)ii(Blzl"'Bzzz) (2)

represents the output function of = corresponding to the input function u=
Eh,ku(h,k)z{’zzk =

The series sy is called transfer function of Z.

Let X start from %, =0, then the output function y corresponding to an
input u is given by

y = ssu

Definition. A DIDS X is a zero-state realization of a series s € K[[z,z,]] if
s=sy. The dimension of the realization is the dimension of the local state space
X.

Then the following proposition holds:

Proposition 1. Let s € K[[z,,2,]]. Then there exists a DIDS which is a zero-state
realization of s if and only if s€ K[(z,,2,)].

Proof. The necessity is a trivial consequence of (2).

Conversely let s € Ky[(z,,2,)]. This means that s=n(z,,z;)p"~ (zi,zz) np&
K[z,,2,], n(0,0)=0 and p(0,0)=1. Consider two polynomials » and = in the ring
K<{¢,,¢) of noncommutative polynomials such that their commutative images
are n and p respectively.

The commutative image of the noncommutative series 0 =»7 " is the series
s. Since o is recognizable [5], there exist an integer N and matrices 4,,4,€
KV>*N Be K¥*1!and C € K"V such that

=

g = C(I_Algl_Algz)le = Cz{)k(Alél'f'Azgz)kB = CEI;C(A1€1+A252)"B

= C(I-A\§—4:6) ](Blgl + Bo§,)
where we put B,=A4 B, B,=A,B.
Since the projection map from the algebra of noncommutative power series

K{{(§,,&>) onto K[[z,,z,]] is an algebra homomorphism, the series s can be
expressed as

s=C(I—Az,~Ay2,) " (B,z,+ B,z,)
Then the DIDS £=(A4,,4,, B,, B,, C) is a zero-state realization of s. O

Remark. See [9] for an explicit construction of 4,,4,, B, B,,C.
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We shall now prove that the models investigated by Roesser [11, 12, 20],
Kung-Lévy-Morf-Kailath [16], Fornasini-Marchesini [6, 7] and, a fortiori, Attasi

[3] can be embedded in (1).
In fact, consider first the model introduced in [6, 7]:

T(h+Lk+1)= A x(h+1,k) + A5 (hk+1) + Ajx(h, k) + Bu(h,k)
y(h,k) = Cx(hk) 3)

The model of Attasi is a special case of (3) when A_0= —AmlA_2= —A,A,.
An embedding of (3) in (1) is accomplished assuming in (1) as local state the

following vector:

x(hk)
x(hk) =| x(h,k—1)
u(h,k—1)

so that model (3) can be rewritten in form (1) with

A, 0 0 A, A, B
Ai=\7 0o o) 2|0 o0 o0
0 0 0 0 0 0
[0 0
B, =|0|, B,=|0|, C=[C 0 o]
1 0

Roesser’s model can be described as follows:

h A4, A h B
X (h+1:k) — A[ A2 X (h,k) e Al H(h,k)
x*h k4 1) Ay 4y || x*(hk) By

S— o~ —
A B
A A h(h k)

wiy=[¢ &1]%0 4

y(h,k) [ 1 J{x”(h,k)} (4)
¢

where x” is called the horizontal state and x° the vertical state.
It is clear that assuming in (1) the vector

(k) = [ x"(h,k)}

x°(h, k)
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as local state space, model (4) can be recast in form (1) with

Jo o _[4, A4,
A‘_[As AJ’ Az_{o 0]

9], BZ=[BI} c=[& &]

B, =
: B, 0

It is interesting to notice that in Roesser’s model the local state is the direct
sum of the horizontal and vertical states, so that the embedding above does not
require any increasing of dimension. Conversely, embedding (1) in (4) cannot be
accomplished in general without increasing the dimension of the state space.

In fact for this embedding we need a preliminary increase of dimension to
be able to put matrices A;, B; and C of (1) in the partitioned form (5).

Example. Consider the rational function (z,+z,)(1—2z,—z,)”'. A realization
in form (1) is £=(1,1,1,1,1). Clearly the dimension of a realization in Roesser’s
form 1s at least two.

The idea of splitting the local state space X in horizontal and vertical
components, which leads to Roesser’s model, implies that the structure of the
updating equations is not invariant under similarity transformations in X.
Clearly equations (1) keep their structure under such transformations.

3. Structural Properties of State Space Representations

Reachability and observability notions for DIDS have been introduced in [6, 9,
20]. We shall now adjust them to model (1) for obtaining reachability and
observability criteria.

We say that a local state X € X is reachable from zero initial states if there
exists an input u € K[[z,,z,]] and integers i >0, j >0 such that x(i,j)= X, when X
starts from %X, identically zero.

Since the DIDS we consider are stationary, we introduce the following
definitions:

Definition . A state x€X is reachable if x=((I—A,z,—Az,)”'(Byz;—
Byz,)u,1) for some ue K[ z;',z; ']
The reachable local state space 1s

X® = {x:x=((1mAEzl—Azzz)fl(B]zl+Bzz2)u,l),uEK[zl‘l,z{l]}
The realization = is L-reachable if X=X~X.

We introduce the following matrices M; € K"*":
M, = ((I-A,2,— Ayz2,) "\, z{zf).

(e, Moyg=1, My=A,, My,=Ay, Myy=A}, M| =A Ay +AA4,,...).
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Then the columns of the infinite matrix
Re =[BIB2MIOBlM10B2+MOIBI"'Mi—l,jBl+Mx,jleZ“']

span X R. Consequently system I is L-reachable if & is full rank.
Also the notion of indistinguishable states is extended to this system.

Definition. A state x € X is indistinguishable from the state 0€ X if
C(I—A;z,—A,z,) 'x =0
The indistinguishable local state space X' is defined as:
X' ={x:x€X,C(I-A2,— Ayz,)” 'x=0}

The subspace X/ coincides with the null space of the matrix:

C
CM,,

8§ = CM,,
CM,,

The realization = is L-observable if X'={0}C X, i.e. if € is full rank.

The rank evaluation of € and %} can be reduced to compute the rank of
two finite dimensional submatrices, by using the following extension of the
Cayley-Hamilton theorem.

Proposition 2. Let (I—A,z,—Ayz))”'=2,;M;z|z). Then the My with i+j>n
are linear combinations of the M; with i+j<n, i.e.

span(M,,i,jEZ) = span(Mj,i,j'>0,i+J'€n— 1)

i
The proof is a straightforward consequence of the identity:
EUMUz{z{det(zflz{lf—A122_1—14221—1)

' = z; 'z Adj(2) 2 T = Az = Ay

An immediate application of Proposition 2 is the result that the rank of R
coincides with the rank of the nX 3(n+2)(n—1) submatrix of R,

A = [ B, BleoBleoBz+M01Bl-'-Mo,n—sz]
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Analogously the rank of O, is the rank of its 3(n+ 1)n X n submatrix:

C
CM,,

O = CMy,

CMO,H—I

Let £=(A4,,4,,B,,B,,C) be a realization of a rational series s and assume
that ¥ is not L-reachable. An L-reachable realization having as state space the
reachable state space X * of =, can be obtained following a procedure analogous
to that outlined in [9,10]. In a similar way it is possible to derive an L-observ-
able realization whose dimension is the rank of 0.

In [16, 17], Kung-Lévy-Morf-Kailath considered the controllability prob-
lems of Roesser’s model through the extension of the coprimeness property to
matrices with entries in K[z,,z,].

The transfer function of Roesser’s state space description has the following
structure:

~

;71— A, _f‘fz

=] ~
A A B
SR =[C]C2] B‘; (6)

which is a particular form of (2), as we can see comparing (5) and (6).
The system matrix appearing in (6) shows the peculiar property of being
partitioned in block-matrices each containing either z, or z, separately.
Kung-Lévy-Morf-Kailath were motivated by this fact to define the system
(4) to be modal-controllable and modal-observable if the matrix pairs

70 A
z; ]
0 z; T

are left-coprime and right-coprime respectively.
The analysis of modal-controllability and modal-observability can be based
on the following interesting coprimeness criterion [Kung-Lévy-Morf-Kailath]:
Let M(z,,z,) and N(z,,z,) be polynomial matrices of size nXn and mXxn
with entries in K[z,,z,]. Then M(z,,z,) and N(z,,z,) are right-coprime if and
only if

770

—/f,ﬁ and 6’,
0 A

N(fl’gz)

for any generic point ({,,{,) of any algebraic curve generated by the irreducible
factors of detM(z,,z,).

In this framework, the interesting problem to be solved relies in establishing
whether realizations both modal-controllable and modal-observable do exist.

rank{ M(fl’gz)} =n
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This kind of realization would be rather interesting since the dimension of
the local state space would be minimal with respect to Roesser’s model. Of
course, since Roesser’s models are a subclass of models (1), a modal-controllable
and modal-observable Roesser’s realization of a transfer function is not in
general minimal in the class of realization (1). However, Kung-Lévy-Morf-
Kailath failed to prove the existence of such realizations.

4. Stability

The stability problem for two-dimensional filters in input-output form has been
investigated by several authors [1, 2, 4, 14, 15, 23]. Attasi [3] was considering the
stability of realizations of separable two-dimensional filters, i.e. DIDS having
transfer functions with structure C(J—A,z; ") "(I—A,z; )™'B and A4,4,=
A,A,. Obviously, the factorized form of the system matrix in the product
(I—A,z,)"'(I— A,z,) " reduces the stability problem to the stability analysis of
A, and A, separately. _

In this section we shall deal with the stability of DIDS represented by model
(1).

From now on we assume that K=R and the euclidean norm in X=R".
Moreover we introduce

16, 1| = lisup]|| x(r—n,n)|
nef

We therefore have the following definition.

Definition. Let = be described by equations (1). The system X is asymptotically
stable if assuming u=0 and ||, finite ||X;||—>0 as i—+ co.

As is well known, the asymptotic stability analysis of discrete time linear
systems reduces to investigating the position of the zeros of the characteristic
polynomial of the one-step state transition matrix A.

The asymptotic stability of a DIDS 2=(A4,,4,, B, B,,C) is related to the
algebraic curve defined in C X C by the equation

as stated in the following Proposition.

Proposition 3. Let = be as in (1). Then = is asymptotically stable if and only if
the polynomial det(I— Az, — A,z,) is not zero in the closed polydisc:

w = {(szz)ECXCIIZAg L |z5| <1}

Proof.  Sufficiency. Let det(I—z,A,— z,4,)70 in &, and call ¥ the algebraic
curve defined by det(I — A,z,— 4,2,)=0. Since ¥ and &, are closed, V' NP, =
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implies that there exists e >0 such that the polydisc

Pive = {(252,) ECXC:zy| < 1+¢, |25 < 1 + ¢}

does not intersect V.
Then the rational matrix (I— 4,2z, — A,z,) can be inverted in %, and its
McLaurin series expansion, given by

(I—d2, _Azzz)_l = zyszfzé (7)

converges normally in the interior of %, , [13].
[t follows that the series Z;|| M, || converges. Consequently 2, ,_, || M| —0
as r—o0, [22]. This implies the asymptotic stability of =. For, assume ||%|| finite

and pick in X, r >0, any local state x(m,r— m), then

Ix(mr—m) =| 3 M,,-x(m—f,r—m—j)“

i+j=r
< 2 (IMllIx(m—ir—m=7)]| < [|% ? [ Ml
it+j=r t+j=r

Necessity. Assume T be asymptotically stable. Then for any x € X, M;;x—0 as
i+j>oco. This fact and

1Ml < 2l Mye]
1
(with {e,}] the standard basis in X =R") imply

lim [| M| < +1jm 2k lIMyel =0
i — o0 1

i+ j—oo0

By Abel’'s Lemma, the series XM, z{z{ converges in the interior of %;. Then
(I— A,z,— A,z,) is invertible in the interior of ;.

The proof will be completed by showing that det(/ —A4,z,— A,z,)70 on the
boundary p%P, of . For, let (a,,a,) belong to p?, and assume that

det(/—A,a,— Aya,) =0

Hence there exists a nonzero vector v €C" which satisfies v=A4 a,0+ 4,a,0. It
is not restrictive to assume that |a,|=1, so that it makes sense to consider

No={xX, _,) with

=0 if n <0
X _ I -2 .
mon| =qa, "afv+aa; "ays ifn>0,a€C
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Assume now that = e/* and write a, = e /* and v=r+,w. Then the state values
on (k,0), k=0,1,2,... are given by the sequence

x(k,0) = 2rcos(ko+y) — 2wsin(ko+v¢), k=0,1,2,....

and it is always possible to select a phase ¢ which makes the sequence not
infinitesimal as k goes to infinity. O

As far as stability criteria are concerned, the result presented in Proposition
3 makes those tests elaborated for input-output stability [1, 2, 4, 14, 15, 23]
suitable for asymptotic stability analysis. In fact for a two-dimensional filter,
with transfer function p(z,,z,)/q(z,,z,), ¢(0,0)=1, to be input-output stable it is
necessary and sufficient that ¢(z,,z,) not be zero in ¥,.

Coprimeness properties are relevant in analyzing the relations between
input-output stability and asymptotic stability of DIDS. For this, it is important
to note [16] that if Z=(A4,4, B, B, C) is a realization of a transfer function
p(z,,2,)/ g(z,,z,) with p and q relatively prime and

(i) (C,I—-Ajz,—A,z,) are left-coprime
and
(i) (I—A,zy—A,z,,B,z,+ B,z,) are right-coprime,

then det(/ — Az, — A,z,) = q(z,,2,).

Realizations satisfying (i) and (ii) will be called coprime.

For DIDS, input-output stability and internal stability are related as shown
in the following Corollary:

Corollary. Let ¥=(A,,A4,,B,,B,,C). Then we have the following implications:

T asymptotically stable — Z input-output stable

Z asymptotically stable « ¥ input-output stable + X coprime

In the Appendix we shall show that any transfer function p(z,,2,)/¢(z,,z,)
admits coprime realizations, so it is always possible to construct asymptotically
stable realizations starting from stable transfer functions.

Appendix

A coprime realization £=(A4,,4,, B|, B,,C) of the transfer function

p(z12) _ bz +bgz+ - +by,zy
glzyge) V¥ opoptagzsd= +agzl
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By direct inspection we can see that the realization above satisfies

det(/—A,z,— A,z,) = q(zy,2,)

This identity tells us that the realization I is coprime. In fact if, for instance,
C and (I —A,z,— A,z,) were not left-coprime, a square matrix S with entries in

K[z),2,] and deg, (detS)>0 or deg, (detS)>0 would exist such that

cC=VSs
(]“AlzliA222) = TS

Thus
q(z1,2,) = det(I— Az, — A,z,) = det T'det S
and

p(Z;,Zz)

= C(I—A,z,—A,z,) "(B,z,+ B,z
q(zl,zz) ( 1<1 2«2 ( 1<1 22)

Il

VSS ~'T~Y(B,z,+ B,z,) = VadjT(B,z,+ B,z,)

|
detT

This would imply that det.S is a common factor of p and g, contradicting the
assumption of the relative primeness of p and 4.
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