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Summary

The introduction of state-space models mekes possible
to attack multidimensional data proc SYS Lvm
theoretic point of view. The paper
zation of two-dimensionsl digital fi
The structural properties of these
reviewed and the stability criterion
roundoff error bounds.

1. Introcuction

The analysis of remotely sensed data requires a mas-
sive use of digital multidimensional data processing for

images filtering. It is not our purpose here of getting

into details concerning the various fields of applica-

tions of these techniques., but we will rather taks into
account some formal structure progerties of multidimen-
sional filtering, and primarily the recursivensss, with
the aim of introducing state space models . {2-D sys-

_temsqﬁal

The way a 2-0 system operates, corresponds te the re-
cursion performed by two-dimensional filters in that the
one-step filter updating can be derived by a one-step
state updating of a 2-0 systemr. The amount- of computa
tion at each step strongly depends on the dimension of
the state in the dynamical model and this makes worth
while to look for state space realizations with minimal
dimension.
ring process. When we operate with state space models
the stability requirements are transferred to the cyna-
mics of the state.

When two-dimensional filtering process is done by a
digital machine, the dynamics of roundoff error propaga
tion is described by a 2-0 system.

The accuracy of the computetion depencs on the error
accumulation and it is possible to estimate it by deri-
ving error bounds. As we shall show in the last section
of this paper these boui are ly obtained when the
digital machine 19 an asymptotically stable 2-0 system.

2, Input-Output Recursiveness ang State Equations

In this section we are concerned with a concise expo
sition of state space reslization of two-dimensional i1
ters2,5,6,9, This requires an exiomatic description of
their behaviour in terms cf input and output functions
and input-output maps.

The sets of input and output functions o; a two-dimen

g Ix K

.sional digital filter are subclaesses of i being

a generic field. These functions are ‘Eg;bsgnted as for
mal power series in two indeterminates zq and z3. To c@i
racterize the set of these functions assume in #x 7 the
product of orderings and introduce the notions of "past”
and "future" of a point (h,k) Zx Z.

We shall call "past" of (h,k) the set of polints (i,])
such that 1g&h, j<k, (1,3) # (h,k! and "future" of (h,K
the set of paints (1,3} with hgi

We say that a function ue ki
the intersection of the support of
point in Zx ¥ is a finite set. The
shall assume as nissible inputs to

-l—f—!—l 2} \\.D"?’

ssupported by CNR-GNAS.

Stability is a highly desirable property of the filte

dova, Italy

past-finite functicns in szz.

With this in mind we de'inite a linear, stationary,
digital filter in input-ouiput form, as a map
F:U~KE%T yhich satisfies the following axioms:

(i)  linearity
(i1) stationary:

F[zi‘zgu] 3 Z?Z;Fful, Vh.k€Z, ued

(111) causality:
the support of F(1) belongs to the future of (0,0).

We can directly check that ImFC% and that the impul-
se response F(1) constitutes the transfer function of
the filter, for we have (in formal power series nota-
tion):

Flu) = F(1)u wue A

In this way the input-output representations of two-
-dimensional filters are in one-tc-one correspondence
with the formal power series in z4 and z; with zero con
stant term, called "causal formal power series” and de-
noted by Kg[[z1.23]]-

This result gencralizes the well known connecticn e-
xisting betwesen input-output representations of one-di-
mensional systems and formal power series in one inde-
terminate.

The realization of ons-dimensional systems is done
by introducing a time vector function x{+), called the
state of the system, which has a separation property
with respect to the past, in the sense that the knowled
ge of this vector at any instant t is sufficient to eva
luate the output at 1>t. It is a very important result
of one-dimensional realizsation theory that the state vec
tor is finite dimensional if and only if the power se-
ries characterizing the input-output map is rational.

In this cas~ one obtains a state updating egquacion of
the following form:

x(ktl) = Ax(k) + B u(K)
ylk) = €x(Kk)

with A, B, C matrices of suitable dimensions.

When one deals with two-dimensional filters it is no
longer possible to attach a vector having a separa.ion
property to every point (h,k) in #x Z in such a way that
the knowledge of this vector and of the input in the fu
ture of {(h,k) makes possible to compute the ocutput in -
the future of (h,k). Clearly this fact is intrinsic to
the structure of partial ordering of ¥x Z, since & sepa
ration property should interest an infinite set of pc-#
ints.

However every point in the plane Zx Z can be assccia
ted with a “local state” vector which is uniguely deter
mired by its past and whose evolulion in its future is
rovﬂr ad by a difference-equation of the following ty-
pe®

%(h+1,k+1) = A1x[h*1.k) *A?x(h,k*1] 'Biu(h+1,R)+

(1] L ¢ Bulh,ke)
y(h, k) = Cxlh,K)



where Aqsh5.89.B5, C are matrices of suitable

dimen-
sions. !
ince we deal with difference sgustions, we need a

set of initial date for solving (1),
Let consider in Z2x 2 the sets ¥, called "separation
sets”, which are bullt in such a way that the knowled-
‘ge of all local states in € and of the input in the fu
ture of any point belonging to € (future of € ) is ne-
cessary and sufficient to compute the output in the fu
-ture of € . Some simple examples of separation setsare
CBiven in fig. 1.
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If we'start with zero local states an a separatlon

‘set ¥, the input-output map we obtein from (1) satis
| fies axioms (i) - (iii). So, we say that the "2-D sy-
stem” Z = (A AL B ‘“Z’C] given by eguations (1) cen

‘be interpreted as a realization of a two-dimensional
filter. The transfer function of the 2-0 system (1) is
given in terms of A, ,A »B8,,8,,C by ClI-A,z ~ﬂ27ﬁ} i
[B 2,48,z ) which is cxeuriy & rational tunction.

Hence 8 two-dimensional filter is realized by a 2-0
system only if it is characterized by a rational tran-
sfer function. Actually the converse holds too as sta-
ted by the following propositionZs2

Preposikjgﬂ. let sEeKA [{21,LZJ] characterize a two-di-
mensional filter. Then the filter is realizable by o

2-D system if and only if s is rational.

w

3. Zero State Eguivalent Realization

| In multidimensional digital data processing the pro
‘blems related to the amount of data to be simultancou-
sly handled are much more severe than in one-dimensio-
nal case. The introduction of a local state structure
allows the problem to be set up recursively so that the
amount of data processing at each stop considerably re
duces. In any case since this amount of computation
strictly depends on the dimension.of local state spacse,
we are led to look for realizations rdulng minimal Uz‘
mensicn. As usually by dimension of a realization we
mean the dimansion of its local state cpace.

Any two-dimensional filter characterized by a ratio

:c]

nal transfer function is realized by inf
2-D systoms. Two 2-D systerms Ly and I,
Eﬂu1~L1[ :nt if they realize the same 11 t BI.
set of 2-D systems is partitioned in equivalence

ses (with respect to zero-state equivelence]} in one

fiLLly many

1\
m

the
cla

~to-one correspondence with the set of filters with ra<o
nal transfer functions.
It ds interesting to mention some relevant properti-

es shared by these classes5.5.8;

(a) the equivalence class containing the n-dimensional

2-0 system £ = (A .A ,B,.B..,C) includes the set of
? 1772
"similar" 2-D sys E .
(', 1t e L T 80T, Te BRinL K1) |
1T 5Ts 1 51 5 .

b] each equivalence class includes locally reachable, lo-
cally ohservable and locally reachabie and cb§3?:;~
ble realizations. Local reachability and local obser
vability tests for a n-dimensional 2-D system

E = (A,.A,,B,.B,.C) consist 1in checking the full rank
of the following matrices

' |
~R= [B BZ A B A182+AZB1 AZBZ. A

. B -1 ] i j-1 s
.8 :(A,] [§%) A2]51+[A1|_u HZJBZ.“ T i I =s 5]

"reachability matrix"

i
and E
E ] L
CAq :
CAy
0=1 , 1+ j<n, "observability matrix”
Cf.‘\%m'}:‘\zj - :
) -
Matrices A1ruJSA2 are inductively defined as: i
r 0, _.r 0 s _ .5 ;
A1 w A2 = A1. A1 L AZ = AZ i
i S r-1 s E s
Ay w A, = ."\,IU”\,I w AZ} ¥ AZ(A1 u Azl.r,sg_ﬁ

in each class the set of locally rsachable and local
ly observable realizaticns includes the set of mini-
mal realizations.

Some aspects of equivalence classes analysis have
been clarified and some results vet appeared in the 1li-
terature® 8, others are still under investigation. The
following remarks summarize the present situation:

1. locally re

which

There exist algorithms for computing
ble and locally observable realizations
zero state equivalent to a given one 19,

acha
are

Two locally reachable and locally observable real i-
zations do not necessarily have the same di mension€
This-gives that in general the set inclusion conzi-
dered in (c) 1is proper, i.e. locally reachabls and
observable realizations are not necessarily mini-
mal.

.The dimension of minimal realiza t*ons of a given
filter %an be reduced when conslidering an overfield
Kokb It is still open the problem of finding
efficlent algorithms for obtaining minimal realiza
tions.

4, Rtanility and Roundoff Error Proparaticen

The notion of asymptotic stability of a 2-0 system
is related to the behaviour of local state free evolu-
tiens determined by initial local states on a separa-
tion set¥ ., when the distance fror 1n~\v1'y
From now cn K =R and H-H denote dean norm

on X f}ﬁn.



Let refer for ty to'a separotion

s'mplig' set as  in
fig. 1a, denote by %% = {x(h,k)}:h+k=1i} and PFvumﬂf{ ”'
= sun\lej n.nlf . \n,hayg*he following definition:
neZ

L r.nlly stabledf

im ]—j ‘[— 0.

i-rom
Obviously the internal unJ‘lltJ of I depends only
on the pair [A1,A2] and the following Proposi tlnrnj*’2
gilves an algebraic criterion for asymptotic stability.

Definition 1. A 2-D system L iu asy

assuming u=0, for every 7.

Propo;:tlcn 1. A 2-D
ptotically Jtablp if

system I =
and only if

[A1,A2,81.32.C} is asym
the polynomial

det(I-z,Aq-z, ofz) is  devoid of zeres in the closed po
lydisc:
92 {(z,,2,) tx E:iz1[£_1, |22{:1q}_

External (or input-output) stabilitv is defined as
bounded-input bounded-output (BIEBO) stability es follows.
be BIBO stable if

supEy[h,k]
h+k>0

sgid to
be zero,

Dpflnltlon 2. A 2-D system is
assuming all local states on &,

it is  sup|ul (h,k)|.
h+k>0

It has been prnved13:14-ﬂ5 that a two dimensional
filter is BIBOD stable if and only if its transfer func-
tion is regular in the clcsed polydisc & . Thus, by Pro
position 1, any asymptotically stable 2-D system is BIED
stable. The converse does not hold in general. Some nre
liminery results on what kind of properties one might
add to BIGO stability to get gsymptotical stability ha-
ve been published recently®: 12,

Definition 1 of asymptotic stability and the related
criterion have been hystorically intreduced having in
mind a particular separation set. Actually asymptotic

“stability definition is easily extended to a generic se
paration set. 3

bounded if

Definition 3. Let¥ ba & generic separation set and as-

sume u=0. A 2-D system I is asymptotically stable with

respect to @ if for any set of initial states on € with
csup [ix(h, K| < and any £> 0, there exists a positi-

s #: il . : F— -

ve integer M such thst | <& whan the distance
of (i,3) from % is greater than M (d(i,j),€)>m1).

One could expect that Definition 3 would lead to cif
ferent kinds of asymptotical stebility depending on the
separation set%. On the contrary it has been shown
that the changes in the shape of separation set have no
effect in the definition cof asymptotic stabiltty. This
makes unnecessary to bother with the structure of se-
paration sets, and garantess that the stability crite-
rion given by Preoposition 1 holds independently of the
separation set we deal with and constitutes a test of
general valicity.

When the filtering process is gerformpd by & digital
machine, the finite word length of registers produces
modifications of state equations and introduces multi-
plication roundoff errors.
~ Whenever the computation is required over a large
interval, the question wust be considered as to how com-
_putational errors introduced at sach point in the calou
-lation will propagate.

_We shall confine here to analyze roundoff error pro-
pagation by means of stability results we have just re-
called. :

Let make the following assuwptions:

= the entries of matrices Aq,A;,8,.62,C and the input:
values ulh,k) are initially given as chine numbers,
hence not affected by roundoff errors.

ma

which

af‘.‘:’

hine vectors
cted by

denote mac
(not affe

- overbarred vectors x(h, k)
correspond to the actwal x(h,k)
‘roundoff errorl.

the components of the
K]+ A,-X(h K+1) + Bqu
“machine num ers,

i Since products are 1ﬂvjlged.
following vector x(h+1) = Agx(h+1,
i(he1, k) +62n(h,h~1} in gener

al are not

-

2]

rof the 2-D system (1) with input function = (R I
.te ey is bounded, if we assume zero (or bounded) initi~
'al roundoff
‘system (4) is asymptotically stable.

so introduce the roundoff error vector eg
e lhe, k1] = % (h+1,k+1) =" x (h+1,Kk+1)

18

The dynamics of roundoff errors accumulation $0-
verned by updating equaticns having the structure of
the 2-D system which realizes the filter. In fact call
¥o{h, k) the state vector of the 2-0 system cumputed by

an ideal machine [nat affected by any. roundoff error)

cand denote by eflh.k) the difference X(h,k) ~ xo(h, k).

We therefore have:

e[h*T,K+1]=3A1B[h+1,k]+ Aze(h,K*1} +ed[hi1,k+1]

Equation (2] can be viewed as a (modified version)
Sin
errors, the error e is also bounded if the
We can easily obtain an upper bound for the roundoff
error e in the following way. Let the polynomial
det(I-Ayz4-Asz3) be non zero in the closed polydisc:

Z.={lz;.z,)etx E:Iz1|§_r,[22[§_r}, r>1.
< 3 - i 3 3 |
So in #p the serles £j3(A; w Ay)zizy normally conver-

ges -Anz4) ?.

to (I-A4z
1nequa11tle~15 the (p,g) - enlry of the

1

By Cauchy’s

matrix A11UJJA2 is bounded as follows:

Jw

f<—J—- max | ((I-e 1rA = )

At ) 1 2
U§p1§2W

[
- p.q

Djpzfgﬁ

Consequently

i 3 2 _ i j 2
1A wr A l° = 2 q;mﬂ w Azlp‘q|
4 = ke jm1 Jo
ir_2[41‘:37 Ep!q max I[(I“E I‘Aq‘e 2

Dipqizﬂ

D§p2§23

and calling

jw 1/2

Jw

1 2z -1 2

[Ep'q max ((I-e rA1 e rAzl ]p,ql J
.O§@1§2ﬂ

L =

Dgnggn

we have

HA imjﬂﬂi

l*j

The accumulatad rDundeF error in (h,k} is

elh,k) = Iy ;(A, L% A2] eg (h-i,k-3) when (i,3) roas
ovVer some flnLtE sub set of MX N depending on the
structure of the initial separation set. Then an error
bound is given by:

Cd

| L 3a | suplle Ee
leth. k)l < E At Azlﬂ suplle Jl< suplle L 3
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