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On the Relevance of Noncommutative Power
Series in Spatial Filters Realization

- ETTORE FORNASINI

Abstract—Several properties of noncommutative rational power series
are relevant in realizing spatial filters. After a brief survey of previous
results, this paper presents an extension of Ho’s algorithm, which provides
a representation technique for noncommutative rational power series, and
outlines the solution to the problem of the partial representation.

Spatial filters, as input/output maps, and doubly indexed dynamical
systems are then considered, and a characterization of realizable filters is
derived.

Finally an algorithm is constructed, which provides all the minimal
realizations of a prescribed filter by exploiting the generalized Ho’s
algorithm,

INTRODUCTION

HE CONSTRUCTION of state-space models of lin-

ear spatial filters on the basis of input-output data
constitutes a typical realization problem in the system-the-
oretic sense.

This area of research has been developed for the most
part in the last few years [1]-{5] and has proved to be a
nontrivial generalization of standard realization theory. A
number of aspects have already been investigated. These
include the concept of Nerode equivalence for in-
put /output maps of spatial filters, the relations between
rationality of impulse response and finite dimensional
realization, the definition and the properties of reachabil-
ity and observability in the local state space, and the
problem of obtaining explicit realization algorithms.

The deeper complexity that filters exhibit is reflected in
some facts which have no counterpart in standard linear
systems, i.e., minimality of realizations does not follow
from reachability and observability, and minimal dimen-
sion for a prescribed impulse response depends on which
field we embed the coefficients.

It seems that the first steps to solve these problems by
using noncommutative power series were undertaken in
[2], mainly with regard to minimization procedures. Here,
this kind of approach is further developed. Several previ-
ously obtained results are restated in a new context, and a
procedure is introduced providing all minimal realiza-
tions. Since this algorithm is based on the solution of a
finite set of algebraic nonlinear equations, the dependence
of minimal dimension on the ground field will be clarified.

This paper can be divided in two parts. The first part
(Sections I-1V) is devoted to analyzing the structure of
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noncommutative rational power series. The main result is
an extension of Ho’s algorithm to noncommutative power
series.

The second part (Sections V and VI) is concerned with
the problem of the realization of filters—viewed as in-
put/output maps. Section V is devoted to the relevant
definitions and to some consequences, while Section VI
contains the realization algorithm.

1. NONCOMMUTATIVE RATIONAL POWER SERIES

The introduction of noncommutative formal power
series in system theory was first done by M. Fliess [6]. He
recognized their relevance in the analysis of bilinear sys-
tems and successively [7] of larger classes of nonlinear
systems. Much of the material in this section is available
in the current literature [8]-{10], so that unnecessary
proofs will be omitted.

For notational convenience power series in two inde-
terminates are considered. It is clear how one might
generalize to power series in 3,4- - - indeterminates.

Given the set Z={£,,&,}, called the alphabet, the free
monoid =* with base = is defined as follows. The ele-
ments of =*, called the words, are the n-tuples

w=(g,6,8,),  N»0 (1.1)

of elements of =. The integer N is the length of w and is

denoted by |w|.

fu=(,.§, - .§,)is another element of =*, the prod-
uct wu is defined by concatenation, i.e.,

Wu=($,»1,$,-1,' s ’gizv;%l’gjz’- Sty .fM)'

In this way Z* is a monoid with 1=( ) (the only O-tuple)
as unit element.

We agree to write £ instead of the I-tuple (§). In this
way (1.1) may be written as '

wzgflgfz' a E‘}v

if N>0.

Let K be a field. A noncommutative formal power
series with coefficients in K and indeterminates &, and £,
is an expression such as

o= 2 (o,w)w,

wez*

(o,w)EK.

Hence ¢ is just a function o:Z*—K:wis(o,w) with
codomain the field K and with domain the free monoid
=* The sum and the product of two series o, T are defined
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by the formulas

ot+r= D, ((o,w)+(*r,w))w

weEE*

or=

weEEI"

MEU ((o,u)(r,v))w.

uc=w

Under this sum and product, the set of all noncom-
mutative formal power series with coefficients in K and
indeterminates £, and £, is a noncommutative ring, and
will be written as K{(§,,£,)). Denote by K<{{,£) the
subring of noncommutative polynomials: it consists of all
series in K{(£,,£,>)> which have finite support. The integer
N is a formal degree of the polynomial m e K&, &) if
|w|> N implies (m,w)=0. The smallest such number N is
called the degree of =.

A subring R C K{{§,,&,>) is said to be rationally closed
if ¢ € R and o invertible in K{(¢,,£,)) imply 6 "' ER.

Definition 1.1: The ring K{(§,,{,)> of rational noncom-
mutative power series is the minimal rationally closed
subring of K{({,,£,>) which contains K<§,£,).

Definition 1.1 is very abstract and gives a poor feeling
of what rationality means when we deal with noncom-
mutative power series. Actually we would like to get some
more concrete information about the structure of this
class of series. :

As we shall show, every series o in K{(£,,£,)) is identifi-
able by the assignment of a finite number of parame-
ters—in fact its coefficients result from ring operations
(i.e. sums and products) on a finite set of matrices which
completely characterizes o.

In order to describe in a precise and compact way how
the coefficients of o can be generated, we briefly recall
some basic definitions.

Let G and H be two (multiplicative) monoids, and let
p:G—H be a map of G into H. p is called a (monoid)
homomorphism [11] if

p(g182)=p(g1)e(82)
for all g, and g, in G, and

p(lg)=14.

Definition 1.2: Let =* be the free monoid with base
=={§,,£,}. A representation of Z* into the multiplicative
monoid of K¥*¥ (i, into the set of N X N matrices,
equipped with the usual multiplication) is a monoid ho-
momorphism

PrEX KN XN oy swe,

Remark: The image of a word w under the map p is
denoted by w’. This notation is alternative to the usual
one p(w). We emphasize that w” is not a power!

Theorem 1.1: Let o be in K{{{,,£&,>). Then the follow-
ing facts are equivalent [8]:

D o K(ELE).

i) There exists a positive integer N, a representation »
of Z* on the multiplicative monoid K~ *¥

PIEFSKY N wisw?
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and a matrix P € KV *¥ such that

(o,w)=trace (Pw"), VweE*

iif) There exists a positive integer M, a representation
u of Z* on the multiplicative monoid K**, and two
matrices C € KM B € K™ > such that

(o,w)=Cw"B, YweI*

The representation is completely known when the
matrices 4, =£f" and A,=£} are assigned. Assume that
and &, commute with 4, and 4,; then o can be written as

(1.2)

With a slight abuse of language, a 4-tuple (4,,4,,B,C)
is called a representation of ¢ if (1.2) holds. The dimen-
sion of the matrices 4, and A4, is the dimension of the
representation.

Clearly, if 0 admits a representation, it admits infinitely
many, and there exists at least one which has a smaller
dimension than the others. Thus it makes sense to look for
minimal representations. In Section III an algorithm is
presented for obtaining a minimal representation of a
given rational series a.

Note that if (4,,4,, B,C) is a representation for o, s0 is
(T~'4,T,T~'4,T,T ~'B,CT) for any nonsingular T. Evi-
dently, this constitutes a recipe for constructing several
(infinitely many if K is infinite) minimal representations
given one minimal representation. The natural question
arises as to whether we can construct all minimal repre-
sentations by this technique. The answer is yes, as in
standard linear theory, and the proof rests on the follow-
ing lemma.

Lemma 1.1: Let o belong to K{({,&)), and let
(§f,¢4, B, C) be a minimal representation of dimension M.
Then the matrices

oo
0=C 3 (A& +4,¢,)"B.
k=0

Ry=[B ¢éB B wEB e ]WM

F o
Céf

0, =| 4 (13)

L Cwt Jdiw|< M
have full rank.
Proof: First we prove that
rank R,, =rank R,,, =rank Q,,,,=---. (1.4)

Let w=§ & ---& bea word of length M. If the col-
umns
B! Si}:B! &;’:‘S;‘:‘Bf = 9£it_]£i;_2 mE gg‘:B (1'5)

are linearly independent, they give a basis of K™. Other-
wise, in list (1.5), £#¢ - &'B depends on the preceding

T

columns for some T'< M and
(gi_rg;_r_l. - 5,»,)“B=%B+‘11§'f3+ 5% 1
tari(§, &,

F=17"T-2

.gil)#B
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g, ap_ €K If w denotes the word §.6., " g
one gets

whB = oqu"B+ a;(wé)'B+ - - - +ap_ (W - éﬁ)“B.

In both cases w”B belongs to the space spanned by the
columns of R,,. Hence rank R,, =rank &,,,,.

An obvious inductive argument completes the proof of
(1.4). _ N

Suppose now rank ®,, =M < M. Then the columns of
A, span a proper subspace RcCK™. By (1.4), R is
invariant under the transformation semigroup induced by
the matrices w*. Let (e, e, - - ,e,,) be a basis of K™, such
that (e), e, -, ez) is a basis of R, and let T € GI(M,K)

Proof: Define matrices 04} and 0@ as in Lemma 1.1.
Then the matrix

T=(0909) 0@ oy
carries one representation into the other (" denotes trans-
pose).
This can be shown in a completely similar manner, as in
standard linear case [12]. Therefore, the rest of the proof
will be omitted. O

II. HANKEL MATRICES

Let o=3% cz.(o,w)w be in K((£,,£,)). Consider the
(infinite) matrix

(01)  (0.8)  (0.8) (0.£2)  (0,48)  (0.88) (0,522)...}
(@8) (0ff) (0tf) (o)) (o)  (0.88at)

O™ (08) (088 (08)  (0bd) (o.bt) o)
(08) (o)  (oi&) -

be the change matrix from the standard basis in X to the
basis (ej, e, * * ,e5).

With respect to the basis (e, e, - -,e,) a matrix of
reduced form

corresponds to the matrix wt and the last M— M ele-
ments in TB are zeros.

Thus the representation (T£}T ™!, T&T 1, TB,CT™ )
of dimension M can be reduced. For, define the repre-
sentation »: Z*— KM*M.

=it Jrgr=| ] i

and construct the matrices

It is easily checked that (£},¢5 BC ) is a representation of
o of dimension M < M. This contradicts the minimality
hypothesis. Hence ®,, and (by similar arguments) O,,
have full rank. O

As a consequence of this result, one proves the follow-
ing theorem.

Theorem 1.2: Let (AN, A", BM, C®) and (AP,
AP, B®,C?) be two minimal representations of dimen-
sion M.

Then there exists a nonsingular 7 such that

AP =T4NT-1, e )
B@=T1RM
QD =cmy—i,

in which the rows and the columns are indexed by the
words of Z*. J((o) is called the Hankel matrix relative to
the series .

The element in the (v,w) position, that is, in the inter-
section of the vth row and wth column, is given by (o, vw).

Although unnecessary, it will be convenient to order
lexicographically the words in Z*, In this way it makes
sense to select in ¥ (o) the first, the second, the nth row
{or column).

We shall partition (o) in row blocks and column
blocks, indexed by capital letters. They are defined as
follows: the Mth row (column) block includes all rows
(columns) of J((o) whose indices are words of length
M~—1. The composition of row and column partitions
gives a partition of ¥ (o) in block matrices of finite size:
the block in the (M’,M") position is written as Ksit ap
and contains 2 "D+ =D elements.

For example, the block in position (2,3) is the matrix

(o), ,=| (55 (0HE)  (ahbh) (otitf)
O | (0.880) (0888 (0.82)  (08) |

We shall denote by I, 4,-(0) the M’ X M” block sub-
matrix of J((o) appearing in the upper left-hand corner of

J (o)

Iarsps-(a)
9((0)1,1 j{(o)l,z (‘}C(G)I,M”
=| H(o),; I{(0), ;5 ‘]C(a)zM . (2.2)
W)y Hloday -+ I g
We will call
n,= sup rank I}, . ,-(0) (2.3)

M M"

the rank of the Hankel matrix (o) or, briefly, the rank
of 0. Suppose now that the series o belongs to K{(£,,£,)>
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and that (¢f,&4, B,C) is a representation of o. Since the
matrices A, and O,, in Lemma 1.1 give a factorization of

:-KM < (0)
7 'jCMxM(U)= QMaM (2.4)

we get a partial solution to the problem of investigating
the relation between the rank of J((o) and the dimension
of the representations of o. In fact, (2.4) implies that n, is
a lower bound for the dimension of each representation of
a.
We have therefore established the necessity part of the
following

Theorem 2.1 [M. Fliess]: Let o be in K{({,,§,)). Then
a is rational if and only if JC(0) has finite rank. Moreover,
rank J((o), whenever finite, provides the dimension of the
minimal representation of a.

The original proof of the sufficiency part is given by M.
Fliess in [§] and is based on some properties of serial
modules.

In Section III we shall obtain an alternative proof as a
consequence of the generalized Ho’s algorithm. In fact
Ho’s algorithm will provide a representation of ¢ with
dimension #,. _

Remark: When we know an upper bound N for n,,
Theorem 2.1 allows us to evaluate n, as rank Iy, 5(0). In
fact o has some minimal representation (£/,¢)',B,C) of
dimension n, < N. The matrices Ry and Oy associated to
this representation have full rank n,. Hence H5. 5(0)=
O5 A5 has rank n, too.

IT11. GeNEraLIZED Ho’s ALGORITHM

In linear and bilinear system theory Ho’s algorithm
enables solution of the problem of passing from a pre-
scribed impulse response to a minimal realization
[13]-{16]. The only hypothesis needed for its application is
that some upperbound for the dimension of the minimal
realization has to be a priori known.

In this section we. shall generalize Ho’s algorithm to
noncommutative power series. This leads to the computa-
tion of a minimal representation of a given finite rank
noncommutative power series o, starting from its Hankel
matrix J((o). As a consequence of Ho’s algorithm, any
series o of finite rank can be written as o=C(1—¢,4,—
§,4,)7'B; that is, finite rank implies rationality.

Let 0 € K(<{§,,€,)), and let rank 3((o)=n,<oo. We
define the row length of J((o) as

L'=min {M":rank s, (0)=n,}
and similarly the column length of J((o) as
L"=min {M" :rank I, »-(0)=1,}.

By the definition of L', each row of the (L’+ 1)th block
row of (o) is linearly dependent on the rows of the
preceding block rows. It follows that for each ¢ in Z*, with
7| < L', there exists 4(}) and 42 in K such that

(o,6w)= 2 d(o,0w), VweZ*
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and

(o,t;w)= > d(o,0w), YweZ* (3.1

vEEZ*

lo| < L’
Obviously, when [¢|<L’, we can assume d@=1 if v=1¢,
and d'0=0 if v+#¢£. The coefficients dl, i=1,2, are
arranged in two square matrices D, and D, € K#*°, p=2°
+ 20 ot 3L

D=4 3.2)

Similarly, for each wEX* with [w|< L” there exists f{)
and £ in K such that

(0.t w)=" X filh(o.tu),

uez*
Ju|< L”

(o,16w)= X fi2(0.1u),

s
|uj < L”

Dy=||d2|.

Viez*

YieE?,

(33)

For |w| < L", we assume f{) =1 if £w=u and 0 otherwise.
The coefficients f), i=1,2, are arranged in two square

u,w?

matrices F; and F,€ K™*",7=2042"4 ... 42"
Fl=”.f1(t,]3v” F2=i|f£,23vH-

Let r be in Z*. Denote by H”(¢) the infinite matrix
whose element in the (u,v) position is given by (o, urv) for
any w and v in =¥,

Notice that in general J(/(¢) does not constitute an
Hankel matrix except for r=1. In fact, one has

(3.4)

HD(a)= (o).

We partition H’(0) conformably with the partition
already introduced in 3((o0). In this way H{) . ,,-(0) and
3" (0) ps »s~ should constitute self-explaining notations.

Theorem 3.1 (Generalized Ho’s Algorithm): Let ¢ be in
K({&,&,)) and let n, =rank ¥ (o)< c0. Denote by L’ and
L” the row length and the column length of J((0), respec-
tively. The following steps lead to a minimal representa-
tion of a.

1) Find nonsingular matrices P and Q such that

Py, (0)O= {IO} (3.5)
0.0

2) Compute
I
As=[fn,IO}Pﬁcg%;y(a)Q{_g_} p

1
0
B=[1,10]PH, s, (o) -
0
c=[1 0 0]%L,XL,.(U)Q[_§’_J. (3.6)

The crux of the proof is the following lemma.



294

Lemma 3.1: Let L’ and L” be the row length and the
column length of (o), respectively. Let reZ* r=
&6, * v Then .

H 14(0)= DiD, - D, ¥,y (0)
=Ky nrAOVF,Fy o F.

Proof: Assume that  and w belong to Z*, [t < L,
|w| < L”. By repeated applications of (3.1) one gets

(o,0rw)="23 A X A .o T kG (o,0,w).
v EE* v EZ* v, EX*
lol<L  led<l’ o< L

Since (o,7rw) is the element in (¢,w) position in I(“(o),
one obtains

%g)xl_"(o): Di]sz' . Ds,CJCL’xL"(U)-
Similarly, in view of (3.3) one gets

(o,trw)= % f&, 3

W EEr u, EZ* u EX*
fu,|< L” [u, 2| < L" Ju| <L
This implies
%g)xl_"(c) = f}CI_’><L”(U)‘r’:'l};;2' = Fi,,' O

We now turn to the proof of Theorem 3.1.

The dimension of (A4,,4,,B,C) given by (3.6) is clearly
n,. Since representations of o cannot exhibit a dimension
smaller than #,, (4,,4,,B,C) is a minimal representation
of o, provided that it is a representation.

So it suffices to show that the series o' € K{(£,,£,))
defined by

(¢/,1)=CB
5;-2"'5:',):@4'14'

L

(6’, gi
coincides with the given series a. For simplicity, we write
I instead of I(;.;-(0), and H* instead of HY),.,.(a).
The matrix

<A, B

90=Q[_I_"ij-(.)_}l’ (3)

is a pseudoinverse of J(, that is I IC'IC=I(. Clearly

1
0

(0, )=CB=[1 0 0]3CIC K| - |=(a,1).

Next consider the coefficients

(U’;&,&z' 4 E.',) = CA:‘,A;'Z‘ ’ 'Ai,B

=[1 o0

S 3 i o, i),

0 JHCICHICENIC IHEICH - I @K -
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Observe that

v v—1
( I D,}%‘JC’)E}C=( II D,;S{%f)pfvf}cf}c*f}c

Ji=1 Jj=1
r—1 ¥

=( II D,;‘}CSU)SJCE_f I XFF,--F,
F= j=1

by induction with respect to the integer ». Hence

(a’, g{zgh. ;o g{_ﬁ)

=[1 o0 0]969@361‘1,3;--&?
0
1
=[1 0 0 ]It &) ; (3.8)
0

Equation (3.8) calls for picking out the top left corner
element in ﬂﬂfjfg;“gu)(o). This element is (0,4, - -+ £,). [

IV. PARTIAL REPRESENTATIONS

It 1s clear that the main limitation of the generalized
Ho’s algorithm is that an a priori knowledge of an upper
bound of rank (o) is needed.

When this kind of information is not available, we
cannot find a complete solution to the representation
problem of a prescribed series 0. In this situation we can
look for a “partial” representation of o, i.e., for a repre-
sentation (A4,,4,,B,C) which matches the coefficients of
monomials in ¢ up to a given degree.

Definition 4.1: Let p:EZ* s K">*M be a representation
of Z* on the multiplicative monoid of K™ *M_ Let Be
KM*1 CeK"™M. The 4-tuple (£},¢£B,C) is a partial
representation of degree G of the series g€ K{&LE0) if

(o,w)=Cw"B 4.1)
holds whenever |w|< G.

(&'.€4, B,C) will be also called a partial representation
for the polynomial 7, of formal degree G which coincides
with the initial segment of o.

The following theorem extends to noncommutative
power series a standard result of realization theory [14],
[15].

Theorem 4.1: Let 0 € K({{,,£,)) and let J((o) be the
corresponding Hankel matrix. Then the matrices

1 1
0 # 0
=[1 O P
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(A,,45,B,C) defined in (3.6) constitute a partial repre-
sentation of ¢ of degree G=L'+ L” if and only if

rank 30, ;-(0) =rank Iz 41y r(0)
=rank 30, .1 +1(0). (4.2)
Proof: Assume that (4,4, B,C) is a partial repre-

sentation of o of degree G. The series 0 € K{({,&))
defined by

o'= § C(§4,+64,) B
k=0

satisfies (o,w)=(0’,w) when |w| < G. This implies

Hprsp(0) =y ()
%(L'+l)xL"(o)Z(}C(L’+1)><L”(Gr)
L:}CJL.’><(L"+ l)(0)=(}CL’><(L"+l)(0’).-

On the other hand one has

rank 3, ; (o) =rank I(p 4 1yx (')
=rank SCL'X(L” + 1)(0,) =dim (A I’AZ’ B, G )
This proves the theorem in one direction.

For the other direction, note that by (4.2) the rows of
Kz v 1yx2-(0) and the columns of J(; ;. y(0) linearly
depend on the rows and on the columns of I, .., .(0),
respectively.

Although (3.1) holds now for |w|< L”, and (3.3) holds
for |7] < L’, we can still define the matrices D, D,, F,, and

F, as in Section II1. In this new situation, Lemma 3.1 is no
longer satisfied except for r=¢, and r=¢§,:

%% Li{o)=D, W s 1(0) =y 1 -(0)F,

LetT<Gandlet "< L, T—T'< L".
By the argument used in the proof of Theorem 3.1 we
obtain

CAA, - AB=[1 0

i=1,2.

01D )

i ’1 ey

f}c(ér)}r F. «-F

-1 -2 L o A

(4.3)

0
When D; operates on the left on a matrix M, it substitutes
t indexed rows of M with ¢f, indexed if [f|<L’, and
substitutes ¢ indexed rows of M with 7 indexed rows of
H® if |7]= L and M =I(. Similarly, when F, operates on
the right on a matrix M, it substitutes w indexed columns
of M with &w indexed if |w|<<L", and substitutes w
indexed columns of M with w indexed columns of J(&, if
|w|=L" and M= . Thus

. Di-,-u I%(gfr,)

[1 0 0]D,D;,-

is both the §, £, -+ & indexed row in 3Gy ,.(0) and the
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§ & - & indexed row in 3(; . ;.(0). It follows that the w
indexed element in the row vector

. Di (}C(gr)f;

[ 10 O]DHDQ”

is (0,5 & -+ & w)for any weZ* with [w|<L".

Since T—(T'+1)is smaﬂer than L” the first element in
the row vector CA; A, - -~ 4; is (0,§ & -~ &) O

The 4-tuple (A4,,4,,8,C) we cons1dered in Theorem 4.1
is a minimal partial representation of ¢ of degree G=L'+
L". In fact all partial representations of degree G generate
the same truncated Hankel matrix J(,.,,.(0), so that their
dimension is at least rank (., ,.(0).

Furthermore, (4,,4,, B,C) is the unique minimal par-
tial representation: of degree G, modulo a similarity trans-
formation. In fact, let (AI,AZ,B ¢ ) be another minimal
parnal representatlon of degree (. The series o

OC (¢4, $2A sl B has minimal representation (Al,

AZ,B & ), since
rank K, ,-(o"y=rank ;.. ,(c)=dim (4, 4,,B,C)

and minimal representation (A,,4,,8,C) via Ho’s algo-
rithm, since

j{:L’ ® L"(U) = f}C,L‘ x L”(G,)

and
HEY 1-(a)= HEL (o),

(4,45, B,C) and (/fi,AAl, B, é) are minimal representa-
tions of the same series o: thus by Theorem 1.2 they are
similar.

We have therefore proved incidentally the following.

Corollary 4.1: If (4.2) holds, the rational power series o
satisfying rank o’ <rank (.., ,.(¢) and (¢, w)=(o,w) for
|w|< L'+ L” is uniquely determined.

Note that Theorem 4.1 does not provide a géneral
solution to the problem of partial representation. How-
ever, it is sufficient for our purposes, so we will stop here.

i=1,2.

V. SprATIAL FILTERS AND DOUBLY INDEXED
Dy~NAMICAL SYSTEMS

In this section we briefly outline some aspects of the
spatial filters realization theory. Several related topics are
discussed in [2], [4], [5].

We will consider spatial digital filters with scalar inputs
and outputs taken from an arbitrary field K. The in-
put /output representation of such a filter is given by

§=(T,U,,Y,%,F) (5.1)

where T=2ZXZ (partially ordered by the product of the
orderings) is the discrete plane, U and Y are one-dimen-
sional vector spaces over the field K, 9 and @ are the
space of truncated formal Laurent series in two commuta-
tive variables over K and F: 9 —% is the input/output
map.
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A typical element of 9L or Y will be written

o0
r= ¥ (r,z{z{)z{z{,
ik

for some integer k

where (r,z{z}) denotes the coefficient of ziz{.

The input/output map F: U—% is assumed to satisfy
the following axioms:

i)  Linearity.

if) Two-dimensional shift invariance

F(zizfr)=z{z4F(r), ijEZ
iii) Two-dimensional strict causality
(u,,zfz{)=(u2,zfz{), [ <ty J<l

implies
(Fuy,z{zd)=(Fuyzizf),
Under assumption iii) it is easy to verify that the impulse
response F'(1) is a “strictly causal” power series, i.e.,

o0

F()= X (F(1),z{#4)ziz}.

ij=1

i<t, j<ty Yu,u, EQ.

More formally we can say that

s = F())E(z,2)K] [ 21,2,]] & K[[z1.2,]]

where K[[z,z,]] denotes the ring of commutative formal
power series in two variables and K_[[z,,z,]] is the ideal of
“strictly causal” power series.

~ From i) and ii) it follows that

F(u)=F(1)u, Yueal. (5.2)

Thus two-dimensional filters (in their input /output rep-
_resentation) are in one-to-one correspondence with formal
power series K[z}, 2,]].
Definition: A doubly indexed, linear, stationary, finite
dimensional dynamical system £ (DIDS) is defined by a
pair of equations of the form

x(h+Lk+1)=Ax(h+1,k)+ Ayx(h,k+1)+ Bu(h, k)
y(h,k)=Cx(hk) (5.3)

where 4, EK"*" =12, CEK'" B K"*! and x be-
longs to some finite dimensional vector space X =K"
(local state space).

The solution of equations (5.3) for A>0, k>0, is
uniquely determined by u and by the values x(h,0), A=
1,2,---, and x(0,k), k=0,1,2,-- -, (initial local states).

Let x(h,0)=x(0,k)=0, h,k=0,1,2,-- -, and denote by
sz the output of = which corresponds to the input u=1. It
is easy to check that sy is given by the following com-
mutative power series in K,[[z,,2,]]:

ss=C(I—A,z,— A,z,)” 'z,z,B. (5.4)
As usual, sy will be called the transfer function of 2. If the
system X starts from zero initial local states, the output y
corresponding to any input u is obtained as
y=ssu.

Clearly the map u—syu satisfies axioms i)-iii) as stated.
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Thus the DIDS 2=(4,,4,,B,C) determines (“realizes™)
the input/output map of the spatial filter described by the
impulse response F(1)=ss.

The realization problem is basically concerned with the
inverse procedure, ie., to pass from the input/output
description of a filter, assigned as an impulse response
F(1), to a DIDS whose transfer function sy satisfies
se=F(1).

We therefore have the following definition.

Definition 5.1: A doubly indexed dynamical system =
=(A4,,4,,B,C) is a zero-state realization of a two-dimen-
sional filter with impulse response F(1)€ K, [[z,,z,]] if

F(1)=(z,2,)C(I—A,z;— A,2,) " 'B. (5.5)

The dimension of a realization = is the dimension of the
local state space X.

The minimality of the realization is naturally related to
the dimension of X in the sense that a realization T is
minimal when dim X < dim 2’ for any =’ which realizes §.

When we want to solve the realization problem, we
have to answer several questions. For instance, how do we
characterize the class of realizable filter? What procedure
do we adopt for obtaining all minimal realizations? Is the
set of minimal realizations endowed with some algebraic
structure? As we shall see, the noncommutative power
series approach to these problems is quite fruitful.

We recall that a commutative formal power series s €&
K|[z,,z,]] is rational if there exist polynomials p.q in
K|z,,z,), with g(0,0)540, such that gs=p. The polynomial
g is called a denominator of s. We denote by K[(z,,2,)]
the ring of rational commutative power series and by
K [(z1,25)] = 2,2,K[(z,,2,)] the ideal of causal rational
power series. Consider the “natural” algebra homomor-
phism ¢ : K{({§,,§,>>—K[[z,,2,]] determined by ¢(£))=z,,
®(&) =125, ¢(k)=k, VKEK. The ¢-image of the subalge-
bra K{(£,,£,)) is contained in K[(z,,2,)].

Moreover ¢ carries K{({,,§,)> onto K[(z,,z,)] as a con-
sequence of the following theorem.

Theorem 5.1: Let F(1)EK_[[z,,2,]] be the impulse re-
sponse of a filter §. Then ¢ is realizable (by a DIDS) if
and only if F(1)EK_[(z},2,)].

Proof: Necessity is trivial. To prove sufficiency, let
F(1) be in K, [(zy,2))], F(1)=2)2,p(21,2))/ 4(2,,2), P, E
K[z,,2;), q(0,0)%0. Choose = and 1 in K({,£,) such that

¢(m)=p
o(n)=g.
Since the coefficient (n,1) is different from zero, the

polynomial 7 is an invertible element in K{{({,,&,>). The
coefficients of the series n~! can be obtained by recursion

(n=Lw)=(n,w)~",  if [w]=0
(=tw)==m, D" X (nu)(n~%0),

ur=w
w|>0

Hence, by Definition 1.1, 5" belongs to K{({,,£,)).
Plainly the series o=m~' belongs to K{({,%)> and

if [w|>0.
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satisfies
¢(0)=¢(m)e(n"")=p/q
because ¢ is an homomorphism.

If (4,,4,,B,C) is a representation of o then the DIDS
¥=(4,,A4,,B,C) is a realization of J. In fact

F(1)=2z,z,p(21,25)/ q(z},25) = (£, 5, )

=¢(£1£z 2 C($1A1+§2A2)fB )

i=0

o0
=2,2, > C(Az2,+ Ayz2,)B=2,2,C(I— A,z,— A,2,) " 'B.
i=0

a

VL

An interesting application of noncommutative power
series to filters theory is the development of algorithms for
generating minimal realizations.

We have already succeeded in obtaining nonminimal
realization algorithms and some reduction procedures [5],
[6]. It 1s a remarkable fact that the problem of getting a
minimal realization from a generic one cannot be solved
in general by removing incontrollable and unobservable
parts of a DIDS as we pointed out in [6].

The procedure outlined in this section is fitted to the
problem of avoiding minimization techniques and obtain-
ing directly minimal realizations.

Let F(1)€ K [(z,,2,)] be the impulse response of a given
filter 9.

Pick any o€ K{(§,,£,)) satisfying ¢(a)=2z; 'z, 'F(1).
Then each renresentation (A4,,4,,B,C) of o is a realiza-
tion of 9. Conversely if =(4,,4,,B,C) is a realization
of §, £ is a representation of the rational series og=

2 ,C(&,4,+&,4,)B, which satisfies ¢p(05)=2z, 'z; 'F(1).
Hence the class of realizations of ¢ coincides with the
class of representations of rational series o satisfying ¢(c)
=22 AR,

In order to obtain all minimal realizations (modulo
similarity transformations) we shall therefore go through
the following steps.

Step 1: Determine the set O C K{(¢,,£,)) of series
having minimal rank and z, 'z, 'F(1) as ¢-image.

Step 2: For each series ¢ €91 obtain, via Ho's algo-
rithm, a minimal representation.

Let S=(¢¢4,B,C) be a realization of ¢, and let M
and P integers satisfying dim X < M < P. Introduce the
following noncommutative polynomial

ALGORITHM FOR MINIMAL REALIZATIONS

> CwHB.
Wwez*
[w]<2P

Te=

1t is easy to see that

o(rg)= X

i+j<2P

(el ' Pz iel )22 (6.1)
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and
rallk EKFXp(WE):rank i}(:(P-O"I)XP(WE)
=rank KJ{'PX(F'*’])(WE) <M

As a consequence of corollary 4.1, partial representa-
tion of 7y of dimension < M are (global) representations
of the series o5, hence realizations of 9.

Assume now 7 € K{{,,&,> have formal degree 2P and
verify relations (6.1). Let (4,.4,,B,C) be a partial repre-
sentation of # of dimension < M. What conditions on the
integers P and M do guarantee that (4,,4,, 8, C) realizes
49

To answer this question, we use the following.

Lemma 6.1: Let r and r’ belong to K[(z,,z,)] and

N N, N, N,
= 2 2 agzy Zz /2 2 brjz] zz ’ bN,szl
i=0 /=0 i=0 j=0
N{ Nj o Ni N3 o
r=2 2 a2 X beind, by =1
i=0 j=0 i=0 j=0
(6.2)

Let A and A"? denote the homogeneous polynomials of
degree » in r and »', respectively. Then
WD=h",  »=0,1,2,---,N,+ N,+ N[+ N}
imply r=r"
Proof: First rewrite (6.2) as
Ny N, NN,
¥ B bErtyi=% X g

i=0 j=0 i=0 j=0
This shows that A{’=h{"=--- =h{), , =0 represent a
necessary and sufficient condition for r=0. Next observe
that a denominator of r—r’ has degree N, + N, + N{+ N,
and finally apply the condition above to r—r". O

We are now in the position to answer the previous

question. In fact, let

NN Ny N
=2 ZaETa] X X bty (63)

i=0 j=0 i=0 j=0

F(l zl z2

and suppose we know an upper bound M for the dimen-
sion of minimal realizations of 9. Denote by & the set of
all polynomials 7 which fulfill the following conditions:

a1 o A I— Nl +N2
i) degw<2P =12 M+I_ 3 (6.4)
ii) o(m)= > (zl']zz_lF(l),zfzé)z]"z{ (6.5)
i+j<2P
iii) rank L}C};xﬁ(w) =rank (}C(.FT+ yx P (7)
=rank j{:;x(ﬁ+ ])('ﬂ‘) <M. (6.6)

Proposition 6.1: Let 4,€ K" *", i=1,2, Be K™, Ce
K'""N N< M. Then (4,,4,,B,C) is a partial representa-

![x] denotes the smallest integer n such that n > x.
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tion of some polynomial in & if and only if (4,,4,,B,C)
is a realization of 9.

Proof: Let (A,,4,, B,C) be a partial representation of
mEP. Then sy=C(I—A,z;— Ayz,) 'B agrees with
z{ 'z 'F (1) up to the degree 2P. o5 has a denominator in
K[z ',z; '] of degree <2M and z; 'z;'F(1) has a de-
nominator given by (6.3). Hence oy=2z;'z; 'F(l) by
Lemma 6.1 and by the definition of P.

This proves the only if part of the proposition. The
converse is obvious. O

Noncommutative polynomials which satisfy degree con-
dition (6.4) constitute a finite dimensional K linear space
V'@, Since the restriction of ¢ to ¥, denoted ¢|V®, is
linear, the set V'™ of polynomials satisfying (6.4) and (6.5)
is a coset relative to the subspace ker (¢| V@),

Thus we are interested in characterizing & in V. For
that purpose we shall give a parametric representation of
polynomials in ¥, and then we shall find the parameters
corresponding to the elements in ¥ having minimal par-
tial representations.

The procedure is summarized as follows.

1) Let Z®* c Z* denote the set of words which contain
¢, and §,, respectively, & and k times, let § ={w:weEZ*,
|w|.<2P, w#¢ltk, Wh,k), and let K¥ be the space of ¢
indexed sequences of elements of K. Each polynomial « in
V@ is biuniquely represented onto K¥ as follows.

= 2 4wt X ((zllz;’F(l),z;'zé)

we} i+j<2P

-z (6.7)
weE§ A Z0DH

tw)if%'-

2) Consider the following sets in K#
Vr={(1,):(1,) EK? rank Wz, 5 (7)) <n} n<M
Vr={(s,):(1,) € K% rank W w(F+1)(7()) < nj n<M
W ={(t.): (1,)EK?, rank Wz, x5 (7)) <nj n< M.
(6.8)

Each condition on the rank of matrices in (6.8) is
equivalent to a number of conditions on the minors of
order n+1 and is expressed by a system of algebraic
equations in the parameters #,, we& §. Thus YV, V" and
V" are algebraic varieties in K¢,

3) Evaluate the smallest value of the index n such that

W, & (V, = Vo) (V= )n (V= V2)#a.

Let M denote this value. Then (1) € Wiz =(Vizn VN
(Vig—Viz-)) if and only if 7, , belongs to ¥ and has
minimal partial representation. In fact M is the smallest
value of » for which the equations chain

rank ¥z, 5 (7, y) =rank %ﬁx(ﬁﬂ)(ﬂ'(u))
=rank (74 1)< 5 (7)) =n

admits a (z,) solution.
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As obvious consequence minimal partial representa-
tions have dimension M.

4) Use (6.7) for constructing polynomials in ¥ which
have minimal partial representation.

Clearly, 9 is constituted by all rational power series of
rank M which extend the polynomials obtained by the
above steps. It is interesting to remark that two minimal
realizations of a given filter are not necessarily similar—in
fact whenever 9N contains more than one element,
minimal representations of two different series in 9N
cannot be similar.

In conclusion, the key points of the realization algo-
rithm are the following.

a) Evaluate an upper bound M for the dimension of
minimal realizations. This can be done in several ways
(see, for instance, [4], [5]). Obviously, the smaller will be
the integer M, the easier will be the subsequent computa-
tion. .

b) Evaluate the integer M and construct the set of
polynomials in % which exhibit minimal partial repre-
sentations of dimension M. This point has no counterpart
in standard realization algorithms and is the most difficult
to be implemented because it involves the solution of
several nonlinear algebraic equations. On the other hand
the necessity of introducing nonlinear algorithms is intrin-
sic to the problem, as the dimension of minimal realiza-
tions depends on the ground field.

c) Use the generalized Ho’s algorithm for getting
minimal partial representations of polynomials obtained
in the previous point. The set of these representations
(modulo similarity transformations) gives all minimal re-
alizations of 4.

CONCLUSIONS

We have attempted in this paper to show how noncom-
mutative power series represent a fruitful tool in the area
of filter realization.

Various aspects of the theory of rational noncommuta-
tive power series have been discussed and an extension of
Ho’s algorithm has been derived.

The partial representation problem, in which one is
trying to obtain a recursive model for the coefficients of a
series on the basis of incomplete data is subsequently
presented.

The problem of generating all minimal realizations of a
given filter is finally considered, and it is shown how to
construct all minimal state space models of the filter by
solving algebraic equations and applying the generalized
Ho’s algorithm.
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