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ABSTRACT. The stabl?zt problem of two-diménsional filters is re

L
ceiving wide attentic Wi
Here a prﬂllmlnur} “account of an "internal stability ¥ theory

~is given which takes into account the dynamical model point  of
- view. ‘

The 2=D recursive model presented in Bﬂ is ccnsidered and a
Lyapunov equation is derived.

1. INTRODUCTION AND PRELIMINARY DEFINITIONS

From now on a 2-D system ¥ = (A1, Ap, By, By, C) is identi—
fied by the following pair of equations:

x(h+1l,k+1) = Apx(h, k1) +A,x(h+1,k) +B; uh ,k+1)+Byu(h+l k) (1
y(h.k) =G x(h,k)
where
-~ (h,k) are elements of ZxZ (“tlme qet"), partially ordered by
the product of the orderings
- x(+): Z2%Z~>R" is a map whose value at time (h,k) is called the
"local state at time (h,k)"

cmu(e)r Z2x2Z-R and y(+): Zx#>R are the lnput and the  output

maps respectively, and uth,k), y(h,k) are the input and the out
put values at time (h,k) j K : n
Al,AzelR”x“ By, quanvl Ceml*n are suitable matrices which
completely charactctl?L Lhe =D system I.
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When an input function u(-) is given,the solution of (1) re-
quires a complete information about a suitable sct of local states

called "initial global state,
Considered in ZX2Z a non empty set €, ("separation set™) which

satisfies the following characteristic properties:

(i) if h>i, k>j, (h,k) and (i,j) cannot simultaneously belong to
&.

(i1) 1if (h.k) belongs to ¥, then® intersects the sets {(h-1,k),
(h,k+1), (h-1,k+1)} and {(h+1,k), (h+1,k-1)} and does not
contain the set {(h+1,k), (h,k+1)}

(iii) for any (i,j) in ZxZ, the relaticen (h,k) < (i,j) cannot be
satisfied by infinitely many elements (h,k) in @.

The "future of €" is the set
B,= {(i,3): (hk)<(i3]) for some (h,k) in@}
The "global state" ¥ _,0n the sepafation set € is defined as
B € .

2,8 (20,00 (B,k)e®)

and the computation of a local state x(1,7),(i,3) in ?Q', , can  be
performed stirting from Xy, whenever u is known inFe . In particu
lar if u is {dentically zero on }‘8 the local states in 2}‘6 depend on
ly on Bcg. :
2. POLYNOMIAL CONDITIONS FOR INTERNAL TABILITY

The notion of internal stability of z 2-D system is related
to the behaviour of the free avolution of Iocal states resulting
from a bounded global state assignment on a separatipn set¥. Let
assume in # x % the -distance function d((i.3),(h,k)) & li=h| + |5-k|
and denote by i

W

d((i,32,€) = min  d((i,j),(h,k))
(h,k)e€ :

the distance between (i,3j) and the set¥. Tntroduce the following

notation n

|i3%_(€]| = swp |lx] ., ||x] euclidean nomm of x
XC‘-E%

Definition 1: ZLet € be a separation set i+ % XZ, and assume u = 0.
The 2-D system (1) is internally steble vi+h respect to € if gi-
ven €20, for every Xe with |Xg| <w, there cxists o positive tnte
ger m such that “x(i,j)“ <€ when (i,]) is <n the future of € and
a((i, i) d>m. % Ly g

The internal stability depends on the pair (A1,45), and does
not depend on the separation set .

=71 i L - N i . 'Y, -
Theorem 1 [fﬁg Internal stability respect o any separation € im-
plies internal stability w.r. to every separation cet.
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At this point the construction of internal stability erite-
ria is perhaps the most natural topic of investigation. Is iswell
known that internal stability of a discrete linear system

x(h+1) = Ax(h) +Bu(h) y(h) = Cx(h) (1)

can be checked (i) by evaluating the roots distribution of the cha
racteristic polynomial of A with respect to the unit circle in the
Gauss plane or (ii) by solving the Lyapunov equation.

Up to now the corresponding picture for 2-D systems is incom
plete. In fact a 2-D version of Lyapunov equation is not availa—
ble, despite some steps have already been done [9] The following
theorem provides the 2-D counterpart of the 1-D stability crite-
rion based on the characteristic polynomial.

Theorem 2 [6] A &~D system L= (A1,A9,B1,B),C) ¢s internally sta~
ble if and only if the polynomial det(l-Ayz1-Agzp) <s devoid of
zeros in the closed polydisc R={(zy,29)€ CxC: |z| <1, [2p] <1}

Several tests have been proposed in the literature [Shanks,
Huang, Jury, Anderson etc.:] to check if the unit polydisc®] in-
tersects the variety of apolynomial 4 éﬂ][zl,zﬂ . The original field
of application of these tests has been the external (BIBO) stabi-
lity analysis, since Shanks theorem [1] states that the external
stability of a two dimensioneal filter with transfer function p/q,
p and g coprime, depends only on the zeros distribution of q.

Actually in 1978 Coodman [5] showed that a two dimensional £il
ter can be BIBO stable even when the denominator g vanishes in so
me points of the torus Ty = {(21,22)6£XE: zll = 1221 = 1}. As a
consequence Shanks theorem has to be restated in the following form
Theorem 3 [52 Let G(z1,2p) =p(z1,22)/q(21,29) denote the transfer
function of « BIBO stable filter. Then G(zy,zp) has no poles 1In
the closed wnit polydise Py and no nonessential singularities of
the -second kind on 81 except poe:ibly on Ty.

Then the mutual implications between roots distribution of q
and BIBO stability are as follows:

BIBO stability =p» q{z1,22) # 0 in 031-T1-

BIBO stability & q(zy,z3) # 0 in &,

This shows that the absence of intersections between #; and
the varicty of ¢, which can be checked by the above mentioned tests,
ensures BTBO stability. Nevertheless we can have BIBO stability e
ven when the intersection is nonempty, that iswhen the tests would
glve a negative result.

On the other hand by Theorem 2 these tests fit perfectly to
the internal stability analysis. In particular the following Co~—
rollary of Theorem 2, derived from Huang's criterion [2], will pro
vide (see Scetion 4) a frequency dependent Lyapunov equation.

Corollary 1 :93 A 2-D ayeatem L= (AI’A?.!—’—:—) 18 z'n'ﬁc?’rzally' gta-

e
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ble i and only {f‘the complex matriz Al +e Ay is stable  ({.c.
the magnitudes o f' ts eigenvalues arve less than 1) for any real w

Remark. An obvious necessary 2-D stability condition vesulting
from Corollary 1 is that Ay +A; have to be stable.

MONDIT*”NS FOR INTERNAL STARILITY

his section we are concerned with the extension to the
ensional case of some propertlec characterizing intemmally

stable 1-D sy:—.teuw These properties are recalled in Theorem 4.

Theoven 4. The fb,voutna proposttions are equivalent: i} the sy-—

stem (2) iz internally stable; ii) the series .1 | Al]| converges;

» i=0 0 a :
iid) JAN) <1 for some integer k>0; iv) the series 1 (Al)T(al)
convergzs. : s
=2 emg s .
Note that P= % Al“Al is the solution of the Lyapunov equation
1=O

As we shall see in Theorem 5, the family of matrices
Ay,r,s€lN}, defined as
-

A?LLJLAZ 4 Af A$L¢JSA¢ - X,
; 3 A ) £l s -é r . s-l1 (4)
A}_L.f_..i AZ = A?. \.‘Al s A2) +A2(A1:_;.._z“ "AZ) HE  EE g
plays :«n <:isential yele in extending poi

2-D gyster (1) Zig dnternally ababp ; i1) the

) T g L s v
converpes; iii) T |[A7ui®Aj| <1 for some positive integer ki

. . . r;§=k = T
iv) tha series (AiL*J Ay) (A L A ) econuvergss.
r,s=0
The problem of relating the series Z (A5 lsAz) (AT, . A2)

to the solu t*on of an algebralc matrix OOLathﬂ 1is still unsolved,
except for n=l (seo ction 4).

way to obtain a Lyapunov eguation consists in reducing a
neional dvnamics to a one dimensional, by assuming a pe -
TN ‘al global state, and then in applying 1-D theory. As

two <
riodis

we shall sze in the sequel this procedure is not fruitful since
the existence of stabii'ty criteria under periodic initial condi-
tions does not imply a stable behaviour under generic initial con
ditiong.

A
”

From now on, s, 1€ Z, will denote the following separation
sets )

L o= {’h;k): hek

4
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Let call a global stateX¢g; "H periodical"if x(h,k)€ Xy 5 x(h,k)=
= x(h+l,:~H) for any (h,k) in €..

Clearly the stability check for a H-periodical global initial
state roeduces to solve a standard Lyapunov equation in  dimension
nH x nH.

The 2-D system considered in the following example is unsta-
ble. However it shows a stable behaviour corresponding to any pe-
riodic global initial state.

Example. T?.'-ft 2-D system I = (Aj,A9,~,~,~) with
i Ccos/05 sinfo.ﬂ Ay =0 SECOSJ'O_,_? sin/0.3
1" """ [-sin/0.5 cos T |-sin/0.3 . cos/0.3|

is internally unstable In fact the eigenvalues of Aq +GJUJA2 are

)\1 9 {(w) =0. '"’Q-J + J(W"'rﬁﬁ)) and the magnitude of one of them
is 1 for W=ty o9 —+(|f3 5 ~v0.3). Any other choice of w leads to a
stable matrix }\ +nJ¢L‘A2

Let now <,haﬂgc the basis in X = €2 (local state space), and
refer to the complex basis

S 3 RN I
BT LR 9 D

which constitutes a spectral basis for A7,A9 and A1+ejw1\2,"c’m. Cor
respondingly, matrices Ay and Ay assume the diagonal form

E.=ﬂ]u_'5ﬁ o a vy 07] B ng/ﬁ_ﬁ Gl A Mg 0‘}
1 05!_th4 0 vy|t "2 .«1_] 0 wz|

and the free evolution of local states in given by

ra. L5

§(h+l,k+1) Q lingiiiﬁi;i - lelgg i:i):U]XI(E:i k)l

L}‘-Z ST L) 2 2 ) 1—2 2( ‘()i
Assume the local states in xq_:o have a perlodlcal shape, say

%(h,-h) = z(rr—',—h H) for some H>0 and for every h in Z. Then

r+s
AT, = [Cs v |
& . r+s
| I ( )vzuz_
gives G
- N H-1 H-1, 12 H~1, H-1 | [~ ,
xl(.h,-11+11) ; ( O ) Vi ( 1 )\)H— ul..(H__%)uH 1|| xl(h,—n)
2, (o411 | Ty ™Ry N G N S B

: | ,
§l(b+H—1,-h)§ (‘*1) H iy (H”l)vH‘ Ly, R ;cl(h+H—l-h—ri+1

Since € is a circulant matrix [_11] its eigenvalues are
Tg = (vyu Hyry B1 o 0.5(300? J"O-3)H‘1
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where rg, £ =.1,2,...H denote the H~th roots of 1. Due to the
fact that I\)lﬂll@‘]wI is less than 1 for_:-m% real w, except w =
= Y05 - /0.3 (mod. 2n), and that r, = ej2T%/H L= 1’2""H’!\)1+
+rRulF is always less than 1. Consequently G is a stable matrix
and the components ¥X; of local states in %¢. eventually decay to
0 as i++e, ;

A similar arzument holds for }?2 ‘components. This shows that
any periodic glebal state 3€=eo determines & stable free evolution

4. STABILTTY CONDITIONS BY FOURIEE .
By Corollary 1, & = (A1,42 ,~,~,~) is
and only if the Lyapunov equation

internaliy stable if

.4 m .'.J‘ Vd
P(w) = I + te ']wAg)‘P(w}{J Y )

#ox
{A 1

tion P(w) for every real

ctions of oJ®, periodic
positive definite character of P(w) can
Sturm's test to the principal minors of

Jwk

coefficients P of the k&

wing properties: .
of P(w) are in L*

o
nansion P (w)=k=.§mP

-7.7], the sequence {p}

1
P

gexr k, Pk——-PEk, and the following set of equali=-

T,T Tn \
o2 Afely TR A, (6)
L Ao “Alrk"lAZ Aq = 1,2 00,
block Toepiitz
ﬁ\ S T \\\ 7
. }\ : __1 PC‘ £ 1 ~ .
# =] "N Po1 By PP o - (7)
E = ~ -1 P Pl E
4 - ~ O"- ~
L -\‘ \\ \\ .

inite scalar product iz the gspace 22 (c™y.

induces a »osi

fact for every non z

In
elements in L2 [—ﬂ'ﬁ} we e : '

Py_p 7. >0 where Ve are the Fouvrier coefficients of v(«):

vkeij .

T

ischer theorem, there is 2 bilactionbe ween 42 (€M) and
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the space of n-tuples with elcwonts in L [-ﬂ F] Therefore the re
lation

() = Z u'h h-k"k

defines a p031tlve definite scalar product in R (€)
Conversely, assume that there exists a sequence {Pr} of ma-
trices in RN gatisfying conditions i), ii), iii). Then the se-

4 wk . . T
rles 2, Pp “L defines a.e. a matrix functicn P(w) with elements

in L2 ﬂ,?] ’hlch solves equation (5). In fact, using (6), we 2heck
directly that

¢ Ty T \aﬁ i _ juwk _
I+A1P(m,u1+A2P(w)A2+Ale (w)A +A?e P(u)Al % Pke Plw)

¥ o P : Tt
Hence the entries of P(w) are a.e. real rational functions of ed¥,
Since

L f Ufw)dw
—1 " .
is finite, and P(w) js a.e. positive definite, the analytic exten
sion Q{z) of Q(el¥) 2 P(w) has no poles on the unit circle.
Since by continuity P(w) is at least positive = semidefinite
and satisfies equation (5) f01 all rtci w, then it is positive de
finite for all real w. :

ASSume L & (hpalias=s™~) B0 be internally‘stableandlﬁtP(w)=

kjamPkeJ”k be the solution of equation (5). Then equations (6)
can be used to investigate the structure of matrices Py in terms
of the family of matrices (4).

First notice that the Teeplitz matrix @satisfies the equa-
tion

P =T+ A . (8)

where IJ is the (infinite) identity matrix and pé&ﬂd‘éx are the dou
bly infinite Slock Toeplitz watrices:

. .. N sl | r’; \\ T\ T\" _3'

0 Ap'Ay O | 0 A, A] O %

b 2 R W g A1 .

b= 0 Al Ay O Hatie B AT aT o |
= T

0 Ay 4y 0 | E 0_al A7 O |

. SN L O

Whe therefore have the following Theorem.

Theorem 6., [Let P as 2n (7). {hen @ {e the sum of the series

: LR
¥+ 5 A Y
i=1
of Toeplita matrices and the blocke Py are expressed as
o ; '
rtk s 4]
po= Bt Taru ™) k- 0,1,2,.. (9)
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Proof. Since the P's are the Fourier coefficients of .the . conti-
nuous bounded function P(w), the operator P 2 (€n) » 92 (cn) is con
tinuous [12]. Hence there exists a positive integer M- such  that
VIPv <M¥Tv for every v in £2(€M). Then by (8) we have

N .
Yhy + \GTJ&*&&'V ta.. + %TcdxM&Mv < M{TTV
o 4 stp min{‘f;Toixafv, eV, *}gtMv} <1

Lol =
Ll (B
Let t be a positive integer such thatc M = < e

1]
jica

For anv v>t and v in 22 (cny, H V” - there exists a parti-
tion of VEVIH ey, Vi gM, 1=1,2...7+] such that

FEARLN L 7
T LRV 1AV o?

FUABL BT, @0y (o

and " t
L) Meg M M <

4 Y
V*';;i,‘g\}g’,"v_go‘rM <g M

et

o, E : Igg -5 .
Thus the secuence of oper‘“orsCPO = ,07 =5}i_3+(j.* hL g7 A >O,1s a Cau
chy sequence, as the follcwing inequalities
n
=

& i 1L e
1@ -Gl < z d*diy) < 3 215
’  “ j—-:m"'l i=m+:‘f‘ 2
and [|v]j = 1. Since p?(en

e

L5 complete, the opera-

is well defined and sclves equation (8).
1.1
dE4

1y i coincides with the sevies - = 2

o -

¥ . u 1=1 .
In faer .r_\,=63"= ('ﬂ+£p€*}bbl) satisfies the equations chain
AoedBade ., shrtp gt
and A = 0, as limdi = 0.

Example (scalar case). If the local state ‘space is one dimensio-
nal, the matrices Ay and A, become scalars a) and a; respectively,
and a closed form computation of the Fourier coefficients Py  1is
possible when the 2-D system is internally stable. )

The sclution of equation (5), given by

Ply) = (1=a2~a2 -2 -1
P {1 ( 2y - a3~ 22 a,cosw)
is positive for every real w if and only if

Vi
'lwaiﬂag>]2a (10)

12| _
Ingidentally note that condition {10) can be restated in the
following equivalent forms

1) Jay) + [ay] <1
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ii) q(zl,zz)=1-alzl-a222 £ 0 ‘in 031

. 1~a%"a% 2ala2
{i1) 2a.a 1_““')__ 21 >0
12 172

L
>

When condition (10} is satisfied, we obtain

m
1 2 7 wole [ 2 252 5.2 irl/2
PO-“EE {W(l aj-a, 2ala2¢osm} dw—-[}l aj 32) .anla%'i

When once P, is computed, the coefficients Py, k=1,2... are
obtained recursively from egns. (6). .

Ohserve that in gemeral the sum of the series (7) is notara
tional function of the matrices Ay and Aj.
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