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On the Problems of Constructing Minimal Realizations
for Two-Dimensional Filters

E. FORNASINI AND G. MARCHESINI

Abstract—The input-output behavior of a two-dimensional linear
filter is defined by a formal power series in two variables, If the power
series is rational the dynamics of the filter is described by updating
equations on finite dimensional local state spaces. The class of realiza-
tions considered in this paper is constituted by doubly indexed dynami-
cal systems of reduced structure. :

The construction of the class of minimal realizations is based on
matrix representation techniques of noncommutative power series.

Index Terms—Difference equations, Hankel matrix, noncommutative
power series, observability, reachability, realization algorithms, two-
dimensional filter.

I. INTRODUCTION

The algebraic realization theory of two-dimensional filters
has been formulated by the authors in [1]-[4]. In this con-
tribution we will derive additional results mainly with regard
to a reduced structure of the updating equation for the local
states.

Reachable and observable realizations of two-dimensional
filters are not necessarily minimal. So, reduction algorithms,
leading to reachable realizations [2], [4], are not sufficient
to obtain minimal realizations.

A further reason why linear systems standard procedures are
not sufficient is that the dimension of minimal realizations
depends on the ground field.

As we shall show, the updating of local states in doubly
indexed dynamical systems, which describe the internal dy-
namics of two-dimensional filters, is intrinsically a noncom-
mutative phenomenon. Thus, a good deal of theoretical in-
sight can be expected from the representation theory of
noncommutative power series.

II. REALIZATION OF TWO-DIMENSIONAL FILTERS

This section is devoted to summarize some basic definitions
and results which provide the fundamental notions needed in
two-dimensional realization.

Consider a two-dimensional linear, time-invariant, causal
digital filter with scalar inputs and outputs taken from an arbi-
trary field K. The input-output map F of this filter is com-
pletely characterized by the formal power series

s=F(1)= 2 (F(1),2{z2)) o{zf €22, K[lz, 2,11 (1)

Lj=1

where K[[z;,z5]] denotes the ring of formal power series in
two variables. .

The coefficient (£(1), z{ z4 ) in K denotes the output value at
time (i,f) corresponding to the input u(h, k) =1 for (h, k) =
(0, 0) and u(h, k) = 0 elsewhere.

Given an input u

”

Pjyilj

Z,-’f(u,zlzé)zlzﬂ
iy

in the space of truncated formal Laurent power series, the
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corresponding output y is the series
y = F(u) = su.

Definition 2.1: A doubly indexed discrete-time linear, sta-
tionary, finite dimensional dynamical system 2= (A;, 4,,
B, C) is defined by a pair of equations of the form

x(h+ 1,k+1)=A;x(h+ 1, k) + Ay x(h, k+ 1) + Bu(h, k)
y(h, k) = Cx(h, k) (2)

where 4; EK"*" =12 CEK™" BEK"™ and x be-
longs to the finite dimensional vector space X = K (local state
space).

The solution of (2) for 2 >0, k > 0, is uniquely determined
by u and by the values x(k,0), h=1,2, "+, and x(0, k)
k=1,2, - (initial local states).

Associate the monomial x(h, k) z/'zX € k"% {[z,, z,]] with
the local state x(#, k) and assume x(h, 0) =x(0,k)=0, h, k =
1,2,---. Then the input-output relation is given by

y=CY x(h,k)zfz5 =CU - A 2z, - 4,2,)7 (21 2,) Bu.
hk

The series C(J - 4,2y - Ay2,)71(2,2,) B is called the transfer
function of Z.

We recall that a formal power series s € K[ [z, 2,1] is rational
if there exist polynomials p, g EK|[z7!, z31] with deg p <
deg g, such that gs =p. The polynomial g is called a denomi-
nator of s.

Then the transfer function (z;z,) C(I - 4,2, - A;z5,)7'B
belongs to (z;2,) K[(zy, 25)] =K. [(z1, z,)], where K[(z;, z,)]
denotes the ring of rational power series in two variables and
K [(zy, z5)] is the ideal of causal rational power series.

Definition 2.2: A doubly indexed dynamical system Z =
(A, A2, B, C) is a zero-state realization of a two-dimensional
filter § represented by a series s € K[ [zy, z,]] if

(3)

The dimension of a realization X is the dimension of the
local state space X,

The minimality of the realization is naturally related to the
dimension of X in the sense that a realization Z is minimal
when dim Z < dim X' for any ' which realizes §.

Proposition 2.1 [2]: Let s E€K|[[z, z,]] represent a two-
dimensional filter §. Then § is realizable by a doubly indexed
dynamical system if and only if s € K. [(zy, z,)].

From now on we shall assume that the formal power series s
characterizing the input-output map is rational. Hence, there
exists a doubly indexed dynamical system 2= (4,, 45, B, C)
such that

§=(z12;) C(I - Ayz; - A,2,)71B.

§=(z;2,) CU - Ayzy - Ayz,)7! B,

ITI. EXAMPLES OF REALIZATIONS

The structural properties of local reachability and observabil-
ity of doubly index dynamical systems have been introduced
by the authors and we refer to [2], [3] for a linear algorithm
leading to locally reachable and observable realizations.

The purpose of Example 1 is to illustrate that local reach-
ability and observability, although necessary, are not sufficient
for the minimality of the realization.

The problem of constructing minimal realizations of two-
dimensional filters is essentially nonlinear, as proved by the
authors in [4]. In fact, the minimal dimension depends on
the ground field, as shown in Example 2.

The deep difference with the standard linear theory is also
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emphasized by the failure of Hankel matrix in giving the
dimension of minimal realizations (see Example 3).

FExample 1: Let K be a field of characteristic 0 and consider
the filter

( ) 1-2;
§=(2125) ———.
1527 - g2 - 22

The following doubly indexed dynamical systems,

2, =), 4, B, cWy.

-1 0 01 1
[ 1) = (1) = 1) =
Af [0 1], AS [1 0}, B [0], c®W =11 0]

and
Z, = (43, 4P, BY, c@),
010 000 0
AP =lo o 1|, 4P =|-2 0 1|, B@=|1
010 010 0

c@=(-1 1 0],

are locally reachable and locally observable realizations of s
over the field K. However, 2, is not a minimal realization.
Example 2: Consider the filter

1
§=(212) ————=
( 1 2) 1 _ Z% _ Z%
and assume K = (€. It is easy to check that s has a minimal
realization of dimension 2 given by £, = (4(0, 4 pM) ()

with
2 ‘] A;u{o "] B(%H cW=(1 o].
1 of -i 0 ’

0

In [4] it has been proved that the filter s is no longer real-
izable in dimension 2 over the real field.

Remark: The result of Example 2 (i.e., the dependence of
minimal dimension on the ground field) was published by the
authors in November 1976 [4]. It was ‘“discovered” again in
1978 [5].

Example 3: In linear system theory the Hankel matrix
associated with a rational series can be obtained multiplying
the infinite observability matrix by the infinite reachability
matrix and its rank gives the dimension of minimal realiza-
tions, These properties do not hold for two-dimensional filters
as we shall show below,

Let sE€K.[[z,2,]], and let s={(z2;)s".
matrix H(s) associated with s is

Al(l) =

The Hankel

(s, 1) (2 (s, 2,)
(s",zy) (s, Z%) (s',2125)
(', 22) (5", z1z) (5, 23)

3
(¢, 27) '541)

H(s) =

It has been proved [6] that the rank of H(s) is finite if and
only if s is rational and a denominator g of s can be factorized
as q = qy 4, with q; €EK|[z7!], g2 € K[z3']. The series satisfy-
ing this property are elements of the ring K[(z;)] @ K[(z,)] /A
K™¢[(zy, z,)] called the ring of “‘recognizable series.”’

The following remarks are a consequence of the above-
mentioned characteristic property of recognizable series and
give an account of what the situation is with the Hankel
matrix for two-dimensional filters:

1) if 5 is rational but s & K®[(z,, z,)], then rank H{s) = co.
However, there exist finite dimensional realizations of s (see
Proposition 2.1);

‘unreachable and unobservable parts.

(', 2§25) " (s, 21)
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2) if s € K®°[(zy, z5)], then rank H(s) is finite. However,
the dimension of minimal realizations of s does not coincide
with rank H(s), as the following example shows.

Assume 5 € K ™¢[(z,, z,)] is given by

1+2z +2,

.5':(2£22) z
1 +z; +z, tz,24

Therefore, the formal power series expansion of (z;z,)7!s is

expressed by

=14z +25) ) o 1% vy +2yag)”
0

=1-212; tz23 +zizy +- -

and the Hankel matrix is then

1 0 00 -100T11
0 -1 0 110
lo -1 0
}{(S)—OO
0 1

Note that rank H(s) > 2. Nevertheless a minimal realization of
dimension 2 does exist, i.e., T = (4, 4,, B, C),

d A{O ¢ A—[_l 0] B—[l] c=[1 1]
T 1 o) o :

IV, COMPUTATION OF MINIMAL REALIZATIONS

The problem of constructing a realization (not necessarily
minimal) of a filter has been solved (see Proposition 2.1) and
we can also assume that the realization we have obtained is
L-reachable and L-observable, because of the existence of a
reduction algorithm.

Nevertheless, as shown by the examples in Section III, in
general a minimal realization cannot be derived by removing
We shall now get some
insight into the problem of minimal realization by resorting to
noncommutative power series techniques.

In particular, in this section we shall present a procedure for
obtaining all minimal realizations (modulo similarity transfor-
mations) of a filter. This exploits some results on noncom-
mutative power series which are now briefly recalled.

(s', 212,) (s, Z%) i

(s, 2f25) (', 2123) -

(S,F z%)

3
(s, 21)
(s, z3z5) (5", 2123) (s',23) -~

(s, 2322) (&, 2323)" -

A. Some Properties of Noncommutative Power Series

Let £ = {£,, &, }, and denote by E* the free monoid with
base E. A noncommutative formal power series with coeffi-
cients in the field K and indeterminates £, and £, is an expres-
sion such as

o- T

we=*

(o, wyw, (0, wEK.

The set of noncommutative formal power series with coeffi-
cients in K and indeterminates £; and &, is a noncommutative
ring, and will be written as K {{£,, £,)). Denote by K(§,, £,
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the subring of noncommutative polynomials. The integer NV is
a forma] degree of the polynomial 7 € K(§; &, if length
we Iwr > N implies (7, w) =0, The smallest such number NV
is called the degree of 7.

Definition 4.1: A noncommutative formal power series
g S K{E,, £ is called ratlonal if there exist a positive 1nteger
m, and matrices CEK1X"M BEKMX1 and 4, 4, EKMXm
such that

o= CZ (A1E +A26,)¥B=C(1 - 14, - £,4,)71B. (4)

k=0

The subring of noncommutative rational power series will be
denoted by K{(§,, &,)).

A 4-tuple (A;, A,, B, C) is called a representation of o if (4)
holds. The dimension of the matrices 4; and A, is the dimen-
sion of the representation.

Clearly, if o admits a representation, it admits infinitely
many and there exists at least one which has smaller dimen-
sion than the others. Thus it makes sense to look for minimal
representations.

Note that if (4,, 4;, B, C) is a representation for g, so is
(I'4,T, T4, T, T'B, CT) for any nonsingular T. Evi-
dently, this constitutes a recipe for constructing several (in-
finitely many if K is infinite) minimal representations given
one minimal representation,

Actually, it has been proved [7] that all minimal representa-
tions are related by similarity transformations. Hence, the
problem consists in setting up a procedure for constructing a
minimal representation.

Proposition 4.1 [7]: Let 0 =Z, === (o, w)w bein K{(&;, £, 7.
The rank n, of the (infinite) Hankel matrix

(0,1) (0, £)
(0,%) (o 512)
(0,8) (0,6%) (0,8)

(0,8) (0,8) (0,88

(0,8) (0,8

H(U’) - (G, 5352) (Us E?)

is finite if and only if o is rational. n, is the dimension of the
minimal representations of ¢ and is therefore called the rank
of g.

We shall partition H(¢) in row blocks and column blocks,
indexed by capital letters. They are defined as follows: the
Mth row (column) block includes all rows (columns) of H(o)
whose indices are words of length M - 1. The composition of
row and column partitions gives a partition of H(o) in block
matrices of finite size: the block in the (M', M") position is
written as K s ps» and contains 20M'-1)+(M" -1) elements.

We shall denote by K prrx (o) the M' X M” block sub-
matrix of H(o) appearing in the upper left-hand corner of

(o),

MCH(o)y,, H(o)y, H(a)y, ar
Karxmr(o) = K@)y M) - @)z
Klohwr,, H(opr s+ H(ohar pm

In linear system theory Ho’s algorithm enables the solution
of the problem of passing from a prescribed impulse response
to a minimal realization [8]. The only hypothesis needed for
its application is that some upper bound for the dimension of
the minimal realization has to be a priori known.

Let 0 € K{(&y, £5)) and let rank H (o) = n, <oo. We define
the row length and the column length of H(g) as

L'=min {M": rank Hp; x (0) = ny}

and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 2, MARCH 1980

L"=min {M": rank Hey pr7(0) = ng}.

Denote by H (E")(U) i=1, 2, the infinite matrices whose ele-
ments 1r1 the (u, v) posmon are given by (o, uf;v) for any w
and v in =¥, &

We partition ‘)(0) conformab!y with the partition already

introduced in K (o). In this way}{ M XM”(U) and K(E')(U)M M
should constitute self-explaining notations.

Proposition 4.2 (Generalized Ho Algorithm) [9]: Let o be
in K((§, £,)? and let n, = rank H (o) <e. Denote by L' and
L" the row length and the column length of H (o), respectively.
The following steps lead to a minimal representation of o.

1) Find nonsingular matrices P and Q such that

Ini()]

PHyixpr(0) Q= [‘ ‘o‘fa (5)
) b |
= [Inyl01 PR 17 1(0) Q a] 3

0
2) Compute

=.1;2

1
= Una|0] PHpxpn(0) (6)
0

I?'J
C=[10"-0] Kpypu(0) 0 _Og .

(0,8, %) (o, E%)

(0, £18,)

(a,%261)
(0,88, 8)

(0, £28) (0, £,8,5y)

It is clear that the main limitation of the generalized Ho
algorithm is that an ¢ priori knowledge of an upper bound of
rank H(o) is needed,

When this kind of information is not available, we cannot
find a complete solution to the representation problem of a
prescribed series 0. In this situation we can look for a “‘par-
tial” representation of o, ie., for a representation (A, As,
B, C) which matches the coefficients of monomials in g up to
a given degree.

Definition 4.2: Let BEKMX1 CEKIXmy, 4, EgmXm,
The 4-tuple (4,, 4,, B, C) is a partial representation of degree
g of the series 0 € K{(§,, £,0 if

(0,8 &, " &,)=C4; A; -~

holds whenever t < g.

(4, A, B, C) will be also called a partial representation for
the polynomial my of formal degree g which coincides with the
initial segment of o.

The following theorem extends to noncommutative power
series a standard result of realization theory [10].

Proposition 4.3 [9]: Let 0 € K{&,, £, and let H(o) be the
corresponding Hankel matrix. Then the matrices(A4;, A4, B, C)
defined by (5) and (6) constitute a partial representation of o
of degree g = L'+ L" if and only if

'AfrB

(7)

The 4-tuple (A4,, A,, B, C) we consider in Proposition 4.3 is
a minimal partial representation of ¢ of degreeg=L"+ L". In
fact, all partial representations of degree g generate the same

rank Koy 2(0) = rank Mz, 3% 1(0) = Hpox v (0).
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truncated Hankel matrix H % ;~(0), so that their dimension is
at least rank K 7/ 1+ (0).

Furthermore (4;, 4,, 8, C) is the unique minimal partial
representation of degree g modulo a similarity transformation.

Hence we have the following.

Corollary 4.1: 1f (7) holds, the rational power series ¢’ satis-
fying rank o' <rank K,y ;+(0) and (¢', w) = (g, w) for [w] <
L'+ L" is iniquely determined.

B. Minimal Realizations by Means
of Noncommutative Power Series

As we have seen, Ho’s algorithm provides an effective tech-
nique for obtaining minimal representations of rational non-
commutative power series,

Intuitively, the procedure we shall give is based on the fol-
lowing idea: first, associate the commutative power series s
with the set of noncommutative power series having s as com-
mutative image, then construct minimal realizations of s using
minimal representations of the corresponding noncommutative
rational power series,

Let s € K;[(z,, 2,)] be the impulse response of a given filter §.

Define the algebra morphism ¢: K{(£,, £,)) = K[[z,, z,]] by
O(k) =k, VK EK, ¢(£,) =z, p(£;) =z,. Since

@ CU- A1 - A ) 1B>C(I- Az, - Z,2,)7'B

all rational series in the commutative variables z; and z, are
obtained by varying A4,,4,,B,C, and the map ¢ is onto
K[(Z], 22)].

Pick any o€ K((£,, £,)) satisfying ¢(0) =27'z5's. Then
each representation (A4, 4,, B, C) of ¢ is a realization of §.
Conversely, if 2= (4, 4, B, C) is a realization of § , Zisa
representation of the noncommutative rational power series
Op = ZiZoClE1 4y +£,4,) B, which satisfies ¢(0y) = zlz3ls,
Hence, the class of realizations of §coincides with the class of
representations of noncommutative rational power series o
satisfying

¢(o)=z{1z31s,

Obviously, there are infinitely many noncommutative ra-
tional power series which satisfy the last equality.

As an interesting consequence, we point out that two
minimal realizations of a given filter § are not necessarily
similar: that happens whenever these realizations come from
minimal representations of two different noncommutative
power series which have both z{!z;1s as image.

In order to obtain all minimal realizations (modulo simi-
larity transformations) we shall therefore go through the
following steps.

Step I: Determine the set M S K{(%,, £,)) of series having
minimal rank and z7!z3's as ¢p-image.

Step 2: For each series 0 € WM obtain, via Ho’s algorithm, a
minimal representation.

Let
" moon, . noon, e
szitzt =3 S ayiz; o Z byzi 23 (8)
i=0 j=0 =0 j=0

and denote by m an upper bound for the dimension of mini-
mal realizations of & provided, e.g., by the realization intro-
duced in [2], [4].

Consider the set ? of noncommutative polynomials which
fulfill the following conditions:

sy ny t+n
i) degm<2P %2(#11-[1_2—2])

1[x] denotes the smallest integer n such thatn > x.

(9!

1

(z1'z3's, zizd) 2{ 2] (10)

i) p(m= >

i+j< 2P
iii) rank Hpy 7 (m) = rank HFenxp (m
(11)

The set P is not empty. In fact, let Z=(4,, 4,, B, C) be a
realization of §, and let P > dim X.
Then the noncommutative polynomial

=rank Kpy 7, (M) < m.

2P
Te=Y 2 CA A, ABE &L,

t=0 (i, " ,ip)
satisfies
$lnz)= 20 (2'z3's, z{zd) 2f2]
i+j< 2P
and

rank HP)(P(T"Z) =rank }{(P+1)XP(1TE) = rank 'HPX(PX 1) (T!'z)
< dim .

Proposition 4.4: Let A;EK"X" =12 BEK"X1 CE
K'Xn n<m. Then (4, Ay, B, C) is a partial representation
of some polynomial in % if and only if X = (A, A4,,B,C)isa
realization of §.

The proof of Proposition 4.4 depends on the following
lemma. ‘

Lemma 4.1 [9]: Let rand r' belong to K[(z;, z;)] and

Ry By . N, s
- =t -, - _

r= a2’z Y > byzi'zy! bpn, =1
=0 j=0 i=0 j=0
o, . LT .

" I TR =

r —Z (I,']'ZI 22}' Z Z b,-,—zl Zz‘r bn']n'z =1.
i=0 j=0 i=0 j=

Let h? and h!(f‘) denote the homogeneous polynomials of
degree v in r and 7', respectively. Then

h,(f)=hff’) v=0,1,2," ", np+n, +n} +n}
imply r=r".

Proof: Let (A,,A4,,B,C) be a partial representation of
mE P Then sy =C( - Ayz - A3z,) ' B agrees with zibzgls
up to the degree 2P by condition ii). sy has a denominator in
Klzi', z3'] of degree <2m and zy{!z3l's has a denominator
given by (8). Hence sy =z{'z3ls by Lemma 4.1 and by the
definition of P. This proves the only if part of the proposi-
tion. The converse is obvious.

Noncommutative polynomials which satisfy degree condi-
tion (9) constitute a finite dimensional K-linear space (),
Since the restriction of ¢ to ¥ (), denoted ¢| V), is linear, the
set V0D of polynomials satisfying (9) and (10) is a coset rela-
tive to the subspace ker (¢| (1),

Thus, we are interested in characterizing $in V(). For that
purpose we shall give a parametric representation of poly-
nomials in V(% and then we shall find the parameters
corresponding to the elements in P having minimal partial
representations.

The procedure is summarized as follows.

1) Let Z(K) CE* denote the set of words which contain
¢, and &, respectively h and k times, let

§={w: wEE* |w|<2P,w+# el wh k)

and let K I be the space of 4 indexed sequences of elements of
K. To every sequence (¢,) €KY biuniquely corresponds in
V() the polynomial Tit)

e
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(z7lz5ts, z'27)

W(tw) = Z tL,w+ Z_
we i+j<2P
2 gptebigl.

weiNE

(12)

2) Consider the following sets in K :
T, = {(ty): (t,) €KY, rank X PxP (M) <4ql} q
Vg = {tw): (0,) €KY, rank Ky oy (M, ) <a} 4

m

AN

m

AN

Up = {(t): (8,) €KY, rank Kz, yxr (M )) <a} g <m.

(13)

Each condition on the rank of matrices in (13) in equivalent
to a number of conditions on the minors of order ¢ + 1 and is
expressed by a system of algebraic equations in the parameters
tyw, wE §, Thus, Ty, V4. and U, are algebraic varieties in K7 .

3) Evaluate the smallest value of the index g such that

Bg &(Tg - Tqo)) NWg= Vo )N (U - Uy ) 6. (14)

Let m denote this value. Then (¢,,) EW 5 = (Vs N Uz) N
(T - Tim-y) if and only if m(z,,) belongs to P and has minimal
partial representation, In fact, 7 is the smallest value of g
for which the equations chain

rank K PXP (Tr(tw)) =rank H PX (F+ 1) ('ﬂ'{rw))
=rank H(ﬁ+ 1) X 2 (TT(TW)) =q

admits a (#,,) solution,

As obvious consequence, minimal partial representation have
dimension m.

4) Use (12) for constructing polynomials in P which have
minimal partial representations.

Clearly, M is constituted by all noncommutative rational
power series of rank m which extend the polynomials obtained
by the above steps. .

Once we obtained the set M, we can use the generalized Ho
algorithm for getting minimal partial representations.- The set
of these representations gives, modulo similarity transforma-
tions, all minimal realizations of 8.

Clearly, points 2) and 3) are the most difficult to be im-
plemented because they involve the solution of several non-
linear algebraic equations. On the other hand, the necessity of
introducing nonlinear algorithms is intrinsic to the problem as
the dimension of minimal realizations depends on the ground
field.

V. CONCLUSIONS

In this paper by pursuing the idea of introducing a state
space model of two-dimensional filters, the realization prob-
lem has been further investigated along the directions out-
lined in previous works [1], [2].

The class of realizations introduced in this paper is char-
acterized by a local state updating equation of the following
form:

x(h+1, k+1)=Ad;x(h+1, k) +A,x(h, k+1)
+ Bu(h, k).

The minimality of the realizations is not guaranteed by
reachability and observability. In general, the dimension of
minimal realizations depends on the field K and does not
coincide with the rank of H(s). Nevertheless, we can associate
the commutative series s with noncommutative recognizable
power series whose representations provide all the realizations
of 5. Hence, the problem of determining minimal realizations
of 5 can be approached looking for minimal representations
of noncommutative power series.
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The Approximation of Image Blur Restoration
Filters by Finite Impulse Responses

R. W, SCHUTTEN AND G. F. VERMEIJ

Abstract—Image blur can often be modeled by a linear spatially in-
variant, symmetric point spread function. For this class of functions,
several restoration filters are known in the literature.

The approximation of their frequency transfer functions (ftf’s) by
the ftf’s of small finite impulse response (FIR) filters has been studied.
Accurate approximations will be possible by 9 X 9 FIR’s with 8-bit
elements if the approximation is done in a weighted MMSE sense, and
if the truncation of the element values will be carried out such that the
errors are small. A heuristic truncation algorithm MINIM will be de-
scribed. An example of restoration by a 9 X 9 FIR will be shown.

Index Terms—Approximation, finite impulse response, finite register
length, image blur, restoration filter.

I. INTRODUCTION

In the literature on image processing [1]-[3] a number of
restoration filters are known, which can be applied in the case
of spatially invariant image blurring. In general, these filters
are implemented by means of the discrete Fourier transform
(DFT), with help of the FFT algorithm. These filters, however,
are operational only for static images as a consequence of the
computational complexity,
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