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The analysis of remotely sensed data requires a massi-
ve use of digital multidimensional data processing for ima-
ge filtering. In this paper we shall take into account some
formal structute properties of two dimensional filtering,and
primarily the recursiveness, with the aim of introducing sta
te 'space models (2-D systems).

The way a 2-D system operates corresponds Lo the recur
sion performed by two-dimensional filters in Lhat the
_step filter updating can be derived by a one-step state up
dating of a 2-D system. The amount of computation at each steq
strongly depends on the dimension of the state in the dyna-
mical model and this makes worthwhile to look for state spa’
ce realizations with minimal dimension.

In many cases of interest the procedure pres;ented

this paper provides realizations of minimal dimension.
\

one—

in

2-D RECURSIVE EQUATIONS AND STATE SPACE MODELS

This paper discusses some aspects of the state space mo

dels of 2-D filters [1-4] which are connected with the pro-

blem of constructing minimal realizations.

As in the 1-D case, the linear processiﬁg of two dimen|
ional data can be represented by a convolutional operation

Er,'when the transfer function is rational, by a

lgorithm.

recursive

Let K be any field and u(h,k)e K and y(h,k)e K be the
input and output signal values in (h,k)e ZxZ. The convolu -
tional operation is the following

+w :
(h,k) = T jw(h—i,k—j)u(i,j)
ere w(i,j) is the unit sample response, i.e. the response
f the systems to the input whose values are 1 in (0,0) and
elsewhere. When the series )
1y
(zl.za) = Ei.jw(i,j)zlzz .
is proper rational:
ql q2 i j pl p2 i j
= =1 § 4
r(zl,za) t, bz gE fif1%2 oo (1)

ol Qj J 0 Q0
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we obtain a 2-D (partial) difference equation relating y and
L which provides the output values recursively:

Py P2 q; G2
y(h,k)= -z £ ,a y(h-i,k-j)+E L b ul(b-i,k-j) (2)
i
o oj ij olgd M
i+j >0

1. once we have computed y(h,k) the structure of the rezur-—
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We can see some conceptual as well as mathematical key
'‘differences that arise in the 2-D case with respect tc the
i1—D situation: :

i
1

sive equation does not give any direction how to select
to calculate
output; |

univocally the point in ZxZ where we have
! the 'next’'
|

2. the values y(h,k), u(h,k) and the input and output data
used to calculate the output value in (h,k) are not suf—
ficient to compute the output value in any point of ZxZ

! which is not already involved in the recursive equationﬁ

i
Both of the facts above are intrinsically connected {
with the partial order in ZxZ that has been implicitly assu
med in (2), i.e. ’

For instance the computation of y(h+l,k) requires
u(h+1l,k-j) and y(h+l,k-j), j = 0,1,...ap, 1 = 0,1,...pp.

thyk) <« (i,i) h<i, k<]

This leads to a notion of 'future' and 'past' which is
deeply different from the 1-D case, where the 1-D recursiomn
is provided by the well known difference equation:

n m "
vik) = -ii aiy(k—1)+ gibiu(k—i) (3)!

Here the index k has the interpretation of time.

The recursion structure exhibited by (2) and (3)ca1be;
directly exploited in both cases to introduce a state repre
isentation. In fact, starting from (3), let define a state
vector at time k as the vector whose elements are the r out
put values and the m input values preceding k.
Thus the updating equations are given by

x(k+l) = Ax(k) + Bu(k)

"

(a)
y (k) Cx(k) + Du(k) ;

pnd the state space has dimension n+m.
| As it is known, there exist lower dimension state-spa-
ce models, which realize the i/o map given by (3) and :heir
minima% dimension is n when the polynomials g aizi and

Iibj z1l are coprime. Moreover there are linear, finite algc
rithms based on reachable and observable cancnical forms,

which give such

minimal order models.

‘ Similarly,

starting from (2), we can obtain a state re
presentation by

assuming as a state vector in (h,k) the vec
tor whose elements are the input and output values in the
right hand term of (2) excepting u(h,k), u(h-1,k),u(h,k-1).
With this definition of state, the updating equation is pi-
ven by the following first order vector difference equetion

Ko aa




+I,k+!)hﬂixfh+!,kJ+A2x(h,k+1i+Blu(h+l,k)+82u(h,k+l]
(5)

ly(h,k) = Cx(h,k)+Du(h,k)

—— e
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So doing, the dimension of the state space is in the or
der of P1P2+q; G5+ Also in this case it is pessibl
ce the dimension of the state model by using linear algori-
thms [5]. Nevertheless they do not provide minimal dimension

models and this makes a deep difference from the 1-D case.

e to redu-

models and of the connections between these properties and
those of transfer functions is more involved than in the 1-D
case, and 2-D system theory did not yet reach an equivalent]
dgsgrgf 8: completeness. |

In the following we shall a:zcount for some partial re-
sults and open problems in 2-D realization.

2D TRANSFER FUNCTIONS REALIZATION

Consider a 2-D transfer functicon as a quotient of two
coprime polynomials in K[le,zgl]:

n m 1 J n m i j
W " d, . , 6
(z z, ) = g éj clJ i %a / 21 éj 1571 z, (6)
c =0, d = 1
nm nm -

In the corresponding formal power series
\

w(i,j)z zd

Wz 0z, =1 o 1%2

we have w(0,0) = 0. This is equivalent to a proper causali-
ty assumption and leads to state space models (5) with D=0.

Let us introduce in (6) the following change of varia-
Ibles i : : .

s0 we have

n+:-1 h ? . Em”j y n;m h : . Em'j

n % g n ’ . =

o h-j,
0 h o’ h-j,Jj 0 h i JaJ
i = - (7)
n+m-1 n+m %

= . nclg)/ £  ndl(g)

0 h h o h h

where the supports of numerator and denominator are in the
region of fig. 1.

Ly
£

Fig. 1

-1 -1 ;
The coprimeness in K{le,ZZ ] of numerator and denomi-
nator of (6) does not imply the coprimeness in K[n,g] of nu
merator and denominator of (7). The loss of coprimeness ta-
kes place when, for some v >0, all homogeneous polynomials
of degree less than v vanish in the numerator and denomina-j

Actually, the analysis of structural properties of 2-D

. 6
jtor of (6). In this case in (7) colg),...,c _;(g) and dolg ),
| | _l(E) are zero and pVis a common factor of the numera
itor and denominator. T
i i
i
A) If in (7) there are no cancellations which reduce the de
grﬂe in n of the denominator, n+m is a lower bound for the
d;menSLQn of 2-D systems which realize (7).In fact, since the
transfer function of (5) is given by !

;c(nI—Al—Azz)

i

(B +BZ£)|

a denominator of degree n+m in n cannot be obtained with di
mension lower than n+m. ]

As far as the existence of a n+m dimensional realiza 4’
tion is concerned, there are several techniques for constry
cting matrix pairs A;,A; of dimension (n+m)x(n+m) which sa-
tisfy

n+m
-1

. h
det(nI—Al—Azc) & g p " dh(;) (8)

However it is not known if (8) and

n+m-1
C adj(nI—Al—A2g)(Bl+Bag) = I

h
nc (£) (9
h=0 h

can be simultaneously satisfied by a suitable chioice of A

Az, By,By, C.

Since the case m = O corresponds to a 1-D realization
problem and can be solved by standard linear techniques,we
do not consider it and we assume m> 1. In the sequel we
shall introduce a constructive proéédure which gives matri-
ces Aj,A, which satisfy (8) and such that the number of free
parameters in Al,Az, B;,Bp, C exceeds the number of coeffi-
cients in I.n ch(E}. However condition (9) produces a sy -~
stem of nonlinear equations in these parameters whose solva
bility over the real field has not been proved for the geng
ric case. ]

First, let us observe that the determinant of the fol-
lowing matrix

| & =
; | , N
=1l | | ry
-1l n D n+l
AT Y l 0 l '2 *
Som, | ; I .
“a n| - + | :
______ An | el _
-€ n |
o N o | 0 |1
| I
B . i e o
lxmAw n B
ri€ IR , can be expressed as
. In p-1 ro i
AFEN T e [FERT T A S|
n+m n - det i i
n +n det Ng \\ n \.\\ vdet \\\\
LU PO .
-& -£ -£n

I A
! |
Each determinant in (10) is an homogeneous polynomial of dg
g“ee m-1 inn, €.

| How, rewrite the denominator of the transfer function
as the sum of forms npyp(n.a) of degrees m,m+l,...m+n

j n pl'l'l JNJA n 5 : zq
i. In pd g "= znv(n-c) : !
p=0 j=0 "' p=0 i

|




“Note that for p<n one has ' ”

i
| — : _
d ol dpm (dP.m—i‘fp,m—lJ---- (dpl—fpl} |
i ( -k) = ndet|-¢ T toorm . |
i$ R 5 % ~ " s~ i
L A ~ ¢ e i
fom1 fpme2er Tor e’ |
+ det|-E n L |
-~ - ‘-—...___._ I
™ - - T 'g
- -£ n i i
i
¢ . 2 - _Sp ___
T beesm poeti|-fonoco e £ detf-f n
L [
. LY
LY LN
=& n -E'n
and for p = n
dT’t,m~1 dn,m—2 B dnl an
m
vn(n. [) = n +¢ det |- n
Ma Mg
~ M
~ ‘-..“
-£
m e
= m +gdet (=& n
\\
v

.Hndependently on the values of the real parameters fij'

Then the matrices Ay,A, defined as

P00 ssesssws O ) 0 7]
-2 | ry
=1 ! r's
A =
o -1\‘ I I.‘3
\.‘ | E
=1 ry
e e e — e o a—— — _l _____
0 i 0
L. —
" -| e .
| 5
| 85 ”
fa= 0 | =3
|
~ l Sn
:_1 0
0 Y
| i | = o

’satisfy (8) and have n(m+1) free real parameters. These pa-.
and the 3(n+m) entries of By, Bz, C may be used to

of the

rameters
zfit the right hand term in (9) (i,e. the numerator
itransfer function). |

i
!

I8) If in (7) cancellations occur which reduce the degree in

i“ of the denominator, realizations of dimension lower than
f+m are possible and their minimal dimension may depend on
ithe field where we consider the entries of Ap,Ap, By,Bp, Cﬁ
] t
fxample. Consider the transfer function l

e

151 %z "% %2
P -2 -2 =2 -2
Z z -Z -z
T 1 2

1
nlg+l) . i
2,2 !
n -(g +1) i
i

! It admits realizations of dimensicn 2 over C but the 123
' west dimension over R is 3 [6,7]. |

A further aspect which differentiates the 2-D case from.
'the 1-D is the following. The 1-D minimal realizations of
the same transfer function are algebraically equivalent,i.:
" e. unique modulo a change of basis in the state space, whiz
'1e there exist 2-D minimal realizations of the same filter
which are not algebraically equivalent.

Example
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are minimal realizations of the same transfer function, but
they are not algebraically equivalent.

REMARKS ON COMMUTATIVE REALIZATIONS

In general, matrices A; and Ao which appear in the rea-
lization of a 2-D transfer function w(zl.zz) do not commu-
te, i.e. AjAp # AoAq.

The possibility of realizing a transfer function by using
pairs of commutative matrices imposes strong conditions on
the structure of the denominator of W(z;,z5). In fact, as-
sume that Ay and A, satisfy AjAp = AphA;. Then there exists|
a similarity transformation over C that reduces A; and Ap
simultaneously to lower (upper) triangular form [ 8] . Hence
the denominator of W(z1,2zp), which is a factor of

det(I_Alzl—A2z2)

splits into linear factors as

(1) (2)
i(l-ai zl—ai z,

) ' ; (11)

Clearly we have the same factorization of the denomina-
tor if we refer to the state model introduced in[9 ]:

x(h+1l,k+1l) = Alx(h+1,k)+A2x(h,k+1)+Bu(h+1.k+l)

12
y(h,k) = € x(h,k) He)
where AjAp = ApAg. In general, the commutative relation

AjAs = Aphy does not imply that the transfer function  of
(5) and (12) is a recognizable power series (contrary to
what is stated in [9]), unless all factors in (11) are po
lynomials in one indeterminate. i

The separability of the denominator of the transfer fun

i ction is a characteristic property of the following model
f[10 ]: '

y(h,k)

I x(h+l,k+1) = Alx(h—l,k)+A2x(h1k+l)-AlAzx(h.k)+Bu(h.k) E
¢ x(h,k) i

|
i

| where AjAp = AyAy. In fact the denominator of the transfeﬁ
function ]

e e e ok s . el b B 8 il . 4




Wiz ,z) an(I-Aizl}:1{1-A222)—152122 j
!
is the prodHcp‘det(I-Alzl}det(I—A222). In this case the tran
isfer function is a recognizable power series.

|
!
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