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ABSTRACT

mode bs o S e

Inothis paper state space
are anl roduced an o o gencraltzal poa o =D recnn s
ve difference equattons. The dinension of the  ro-
cursion and of the state reparencntation are Connpras
red and related Lo sciuctural properties ot the sta

te model:s.

2-D RECURSIVE EQUATIONS AND STATE SPACE MODELS

This paper discusses some aspects of the stato
space models of 2-D filters (1-4) which are
ted with the problem of constructing minimal rea-
lizations.

COnNnec=

In the 1-D case, reachability and observabili-
ty are crucial in this framework, and we shall ana-
lyze to what extent the corresponding 2-D proper-—
ties provide an answer to the problem of reducing,
and possibly minimizing the dimensicn of the state
space.

Some important aspects of reachability and ob-
servability, whose interest is mare specific to
System Theory (4-6), and other structural proper-
ties, as internal stability (7-9), will be omitted
in our analysis since their connections with the
dimension of the realizations seem to be quite mar-
ginal.

As in the 1-D case, the linear processing of
two dimensional data can be represented by a con-
volutional operation or, when the transter
is rational, by a recursive alyorithm.

Function

Let K be any field and u(h,k) ¢ K and yih,k): K
be the input and output signal values in
(h,k) €Z x Z. The convolutional operation is the
following
too
y(h,k) = Ei‘jw(h-i.k—j)uti,J)
-0
Here w(i,j) is the unit sample response, i.e. Lhe
response of the system to the input whose values
are 1 in (0,0) and 0 elsewhere.
When the series

) s IR, (R |
w(zl,zz) = Li’jW(l,J)Ll 22

is proper rational:

91 93 i 4 By Py _
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1(21,22) =k, ijij&1£2 /:l >jaijd1£¢ '+ A 1 (1)

o o O (9] }
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we obrtain a 2-D (partial) difference vquation rela-
ting v and u which provides the output values re-
cirsively:
E.Jl p-‘
ylh,k) = - IL b2 aijy(h-i,k"j) ks
(8] (8]
1=k j )
4 9, (2)
+ L. L. b, _u(h-i,k-j
; 19 k-3)
o o
We can see some conceptual as well as mathema-

tical key differences that arise in the 2-D case
with respect to the 1-D sltuation:

1. once we have computed y(h,k) the structure of
the recursive équation does not give any direc-
tion how to select univocally the point in % x2%

where we have to calculate the "next" output;

the values y(h,k), u(h,k) and the 1nput and out-
put data used to calculate the output value in
(h,k) are not sufficient te compute the output
value in any point of % x % which is not already
involved in the recursive equation. For instan-
ce, the computation of y(h+1,k) requires
u(h+1,k-j) and y(h+1l,k-i) 5 = 0515 vegos

i =O,l...p2.

Both of the facts above are intrisically con-
hected with the partial order in 2 x 4 that has been
lmplicitly assumed in (), i.e.

(hyk) < i,3)@ h<i, k<q

This leads to a notion of "future" and "past"

which is deeply different from the 1-D case, where

the 1-D recursion is provided by the well known
difference equation:

n m
yik) = - ii aiy(kAi} + ﬁi biu(k—i) (3)
o

Here the index k has the Interpretation of time.

The recursion structure exhibited by .(2) and (3)
can be directly exploited in both cases to introdu-
ce a state representation.

In fact, starting fronm (3), let define
vector at time k as the
the n output values
ding k.

a state
vector whose elements are
and the m input values prece-




Thus the updating equations are given by

x(k+1) = A x (k) +Bu(k)
(4)

y (k) € x (k) +Du(k)

it

and the state space has dimension n+m.

As it is known, lower dimension state-space mo-
dels, which realize the i/o map given by (3), ex-
ist and n gives their minimal dimension when the
polynomials Ziaizl and fjihizJ are coprime. More-

over there are linear, finite algorit hms based on
reachable and observable canonical forms, which gi-
ve such minimal order models.

Similarly, starting from (2), we can obtain a

state representation by assuming as a sl.te vector
in (h,k) the vector whose elements are the input
and output values in the gight hand term of (2) ex-

cepting u(h,k), u(h-1,k) and u(h,k~1). wWith this
definition of state, the updating equation is gi-
ven by the following first ordér vector difference
equation:

x(h#l,k+1)=:Alx(h+I,k)+A2(h,k+1)+B]u(h+l,k)
+Bzu(h,k+i) (5)
y(h.k) = Cx(h,k) +Du(h,k)

So doing, the dimension of the state space is
in the order of p]p2+q1q2. It is worthwhile to no-

tice that the two state vectors x(h+1,k) and
x(h,k+1) are not mutually independent since most
of the input and output values which are elements
of x(h+1,k) are elements of x(h,k+]l) too. These va-
lues do not take up the same indexes as vector com-
ponents in both states but the indexes are mutual-
ly related.

A further obvious indication that the dimen-
sion of the state vector defined above is excee-
dingly high is provided by the number of initial
data needed to calculate the output values on a
segment ¥ ={(-i,i), i=1,2,..,n}.

Actually, when we solve equation (2) directly
we need the output and input values in two strips
containing N(p1+p2)+p1p2 and N(q1+q2+l)+q1q2points

respectively. If we use the state model we
have to take into account the local states
x(-i-1,i), i=0,1,..,N and the input values
u(-i-1,i), i=0,1,..,N and u{-i;i), i=1,..,N.

Thus the required storage in terms of local
states is in the order of N(p1+p2)0(N+1)p1p2+

+N(q1+q2+1)+(N+l}qiq2-

The increase of the storage in the state space
model is the price paid when we abandon the par-
rial order in initial data needed in (2).

Let us remark that in this case even more hea-
vily than before, input and output values in the
same points of 7 x2 are components of several dif-
ferent state vectors. All this clearly indicates
that there exist state models of considerably
lower dimension.

In the following we shall consider the connect-
ions between dimension and structural properties
of the state and discuss how to reduce the dimen-
sion of the state model.

STRUCTURAL PROPERTIES AND MINIMALITY

First, consider the 2D transfer function as a

; i ' ; -1 -1
Guotient of two coprime nolynomials in K[?l 12, ] £

m i n m

n ; .
u " e T e - =)
L =Y T zZ . %
w(?],zz) )i b Cijzl z2 /i g b g dijzl 257
o Q = (o] (o]
(6)
o =0, d =
n,m nm
In the corresponding formal power series
. < PRSP W |
2oLy =N -l
W 1'% §1+J¥Uw(1,1)?]zz
we have w(D,0) =0, This clearly descends from the

proper causality assumption, which leads to state
space models (5) with D=0,

Let us introduce in (6) the following change of
variables

n=z, E=zj‘42
50 we have
n+m-1 m i n+m LM =g
Ln e & 7/ E omiI,a . g™
oh od h=1.3] h o) h-d.i
(7)
n+m-1 n+m h
= d : I3
Fh n Ch(E)/ jh n dh(’)
o o

where the supports of numerator and denominator are
in the dashed reqion of Fig. 1.
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denominator of (6) does not imply the coprimeness
in Kin,£| of numerator and denominator of (7). The
loss of coprimeness takes place when, for some v>0,
all homogeneous polynomials of degree less than v
vanish in the numerator and denominator of (6).

In this case in (7) CO{E),...,cv_l(E) and

: ; -1
The coprimeness in K{; 12, ] of numerator and

dO(ﬁ),...,d (£) are zero and nY is a common fac-

v=-1
tor of the numerator and denominator.

If in (7) there are no cancellations which re-
duce the degree in n of the denominators, n+m is a
lower bound for the dimension of 2-D systems which
realize (7). Infact, slnce the tranafer funceion
af (%) is given by

. =il
L(n[-hl‘hzﬁ) (Bl+32£) ’

a denominator of degree n+m in n cannot be obtained
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with dimension lower than n +m.

In general it is not known if the lowest bound
ntmods always obtainable and of it can be reached
using mateilves wilh entries 1o K oor in some ot le
extenslon of K.

Whatever solution we may look for, we must face
with the followjng facts:

(i) the transfer functions with unitary numerator
are always realizable with dimension n +m;

(ii) all transfer functions (7) are realizable
with dimension n +2m (cr m + 2n) (10,4);

(iii) if cancellations reducing the denominator de-
gree in n occur in (7), realizations ol i-

mension lower than ntm are possible and
their minimal dimension may depend on the
feld where we consider the eatrics of A],
1\2, “1' “‘.f' (o
Example. Consider the Lranoter {unction
—22—1 T S
z B
1 ! 1 k niraly
- s s o ()
- ¥ = v
z -z, n = +1)
1 £

It aduils realizations of dimension 2 over C
but the lowest dimension over R is 3 (11,12),

A further aspect which Jdifferentiates the 2-D
case from the !-D is the following., The 1-D minimal
realizations of the same transfer function are al-
gebraically equivalent, i.e. unique modulo a chan-
ge of basis in the state space, while there exist
2-D minimal realizations of the same filter which
are not algebraically equivalent.

Example:

| 10
“1‘[0 1:|' A, "[u 1} ‘
L] e

c =[1 0]

are minimal realizations of the same transfer func-
tion, but they are not algyebraically equivalent.

A well known technique for obtaining minimal
realizations in the 1-D case conaists in elimina~
ting the unreachable and uncbservable state sub-
Spaces. The generalization of this method to the
2-D case encountres from Lhe beginning the diffi-
culty of defining the reachability and observabi-
lity properties. In fact there exist two types of
structural properties which are related to the lou-
cal state and to the global state, Lhe latter be-
ing the set of local states on a separation set of
the discrete plane. If we refer Lo local reachabi-
lity and observability, tic 1-D reduction procedu-
res (13) can be extended Lo the 2-D case but LN oyge-
neral the lower order realizalions we obtain arc
not minimal. On the other side, globally reachable
and observable realizations are minimal but some
examples exist of transfer functions (see for in-
stance (8)) which do not admit globally reachable

and observable realizations (at least over R).

Moreover, as ftar as we know, there arce no sy~

Stemat te procedure:s whineh give Jlobally reachable
and observable realizations whenever they exist.

Let us associate with the 2-p system (5) the

following 1-D system

wit+l) = (A1+A2g)w(§1 +(B]+82£)v(t)

r{t)

(9)
= C w(t}

detined aver the tield K(i).

Is 1s easily verified (6) that global reachabi-

i

lity and observability of the 2-p system (5) imply
reachability and Gbservability of (Y9). Nevertheless '
1L 1s important to notice that if (A(L) ,B(L),C(E))

i a minimal realization over K(f) of (7), in gene-

ral

A

A(L), B(£) and C({) do not exhibit the structure

Al A
= ul-razg (10)
=

where AI'A)’BI'B? and C have entries in K, and itis

not always possible to reduce them to the structure

(10)

by a change of basls induced by an invertible

matrix on K(£).

Example. Consider adain the transfer function (8).
The following is a 1-D minimal realization of di-
mension 2:

"ALE)

0 1 0 ~

S 5 , B(E) = oocii) = [o g+
ET+1 O 1

It is strightforward to see that there 18 no

chanae of basis in R (f) which reduces the matri-
ces AlL), B(L), C(£) to have structure (10) . This
agrees with the fact that there are no 2-p systems
of dimension 2 which realize (8) over R.

()

(4)
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