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STRUTTURE RICORSIVE PER L'ELABORAZIONE DI DATI BIDIMENSIONALI
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Universita di Padova

1. INTRODUZIONE

L'elaborazione lineare di dati unidimensionali (1D) & basata su algoritmi ricon
ducibili fondamentalmente alla convoluzione, alle equazioni alle differenze e alle
funzioni di trasferimento. -

Non tutti i legami fra i dati di ingresso e di uscita descritti dagli algoritmi
di tipo convolu?orio possono essere descritti anche da algoritmi ricorsivi quali le
equazioni alle differenze e le funzioni di trasferimento (razionali) : tale possibi-
1it3d si ha soltanto se & razionale la serie che costituisce il nucleo di convoluzio

ne. Nella struttura degli algoritmi ricorsivi 1D gioca un ruolo importante 1'ordine

- totale di cul & dotato l'insieme dei tempi, nel senso che presi due istanti qualsia-

si & sempre possibile stabilire quale dei due precede l'altro e quindi introdurre
una relazione di causalita fra coppie arbitrarie di eventi.

/ Nell'elaborazione lineare di dati bidimensionali (2D) gli algoritmi che si usano .

sono dello stesso tipo, e la possibilita di sostituire ad una convoluzione una egqua-

zione alle differenze & ancora legata alla razionalita del nucleo di convoluzione.

Come si vedra, esistono peraltro due fondamentali differenze rispetto al caso 1D. La

_prima riguarda la struttura d'ordine che si introduce nel piano discreto, che & il

prodctto degli ordimi sugli assi. Trattandosi di un ordine parziale, non & sempre de

- finita una relagione di precedenza fra due punti e la relazione di causalitd non va-

le fra coppie di eventi qualsiasi. La seconda differenza riguarda le strutture alge-

briche che rappresentano l'evoluzione dinamica degli algoritmi nei due casi: 1l'anel-
pp g g

~ lo dei polinomi in una indeterminata nel caso 1D e quello dei polinomi in due inde-

~ terminate nel caso 2D. Com'e noto, molte proprieta strutturali comunemente usate nel

l'analisi di algoritmi 1D sono strettamente legate alla fattorizzabilita di ogni po-

linomio sul corpc complesso in prodotto di polinomi del primo grado, alla sviluppa-

bilita in frazioni parziali di ogni rapporto di polinomi e al fatto che l'anello dei
polinomi in una variabile & un dominio a ideali principali. Poiché per i polinomi in
due indeterminate le proprietd precedenti non sono valide, nell'analisi e sintesi de

gli algoritmi 2D non sono in generale estendibili i risultati del caso 1D e si deve
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far ricorso a tecniche piu complesée.

Scopo di queste note & di confrontare le principali proprieta strutturali degli al-
goritmi 1D e 2D soprattutto con riferimento alla loro rappresentazioneAmediante e-
quazioni di stato. Si & ritenuto utile per ogni argomento far precedere un sinteti-

co richiamo sul caso 1D ad una presentazione pili dettagliata del caso 2D.

2. RAPPRESENTAZIONI INGRESSO-USCITA

Nell'elaborazione lineare 1D e 2D il legame fra i dati in ingresso e in uscita

e fornitoc dalla convoluzione, dall'equazione alle differenze e dalla funzicne di tra

sferimento.

Un operatore di convoluzione viene assegnato mediante una successione s(i), as-

- sociando ad ogni successione di dati d'ingresso u(i) quella dei dati di uscita

espressa da

+00
y(h) = I s(h-i)u(i) . ' AN

i=- . -

_ La convergenza di (1) & assicurata quando si vincolino s ed u ad appartenere a spa-

2

i = g 2
zi opportuni (p.es. s ed u in 1 oppure s ed u entrambe con supporto compatto a sini

3

stra). In particolare, se il supporto di s & contenuto nel semiasse positivo z, ., il

legame (1) & di tipo causale.

La struttura generale di un'equazione alle differenze & del tipo

z"aiy(h+i) = T b u(h+j) (2)
ier ° jEJ
con I e J sottoinsiemi finiti di Z . Il legame fra i dati di ingresso e di uscita &
causale quando si ponga I={0,1...n}, 3={0,1...n-1} e si assuma a = 1. D'ora in

poi ci riferiremo ad equazioni (2) causali.
’

23 51 noti che, nell'aggiornamento di un passo

i) l'istante nel gquale - sulla base delle precedenti elaborazioni - si calcola il
valore dell'uscita,& individuato dall'ordine totale dell'insieme dei tempi, ov-
vero - quando si siano calcolati ....y(t-1), y(t) - il successivo valore da ottene

re & necessariamente y(t+1).
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ii) I dati di cui bisogné disporre per l'aggiornamento di un passo sono gli n cam-
pioni dell'ingFesso e gli n campioni dell'uscita precedenti l'istante in cui si
calcola y.

iii) I dati di cui si deve disporre per inizializzare l'intero processo di elabora-

zione sono soltanto gli n campioni dell'ingresso e gli n dell'uscita che vengo-

no utilizzati per compiere il primo passo dell'elaborazione.

Infatti ad ogni nuovo passo si utilizzano un nuovo valore dell'ingresso, il va

lore dell'uscita calcolato al passo precedente e parte dei dati di ingresso e

di uscita utilizzati al passo precedente.

Rappresentando la successione dei dati in ingresso e in uscita con serie forma-

COtz) = T ou(d)zs . . ¥(z) = y(i)z
i ' i

il legame ingresso uscita & esprimibile mediante una funzione di trasferimento

W(z) =p/d

Y(z) = W(z)U(2)

~con p e d polinomi in z . La ipotesi di causalita si traduce mnella condizione

< _deg d > deg p.

2D ‘ _ ]
S Gli ingressie le uscite sono in gquesto caso successioni con due indici u(i,j) e

_y(i,j). Il nucleo di convoluzione & una successione s(i,j) e l'operatore & espresso

dalla relazione

K- . 4o 4o
gt 2O . y(h'k) = ) by s(h—-i,k—j)u(i,j)

£ i==—co j::-—oo

(3)

I tipi pidl comuni di causalita cui si fa riferimento sono

]

- causalita a semipiano, in cui y(h,k) dipende dai valori u(i,j) con i<h. Cid cor-
AZ
S risponde ad assumere che s(i,]j) sia 0 per i< 0 (ovviamente, si ha una causalita a

semipiano anche assumendo s(i,j)=0 per j<0);

J——
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- causalita a quarte di piano, in cui y(h,k) dipende dai valori u(i,j) con (i,3) <
< (h,k),i.e. i<H, j<k e (i,]) # (h,k). Cid corrisponde ad assumere che s(i,j) pos

sa essere diversa da zero soltanto per (0,0) < (i,3).

Nel seguito si fara riferimentc a quest'ultimo tipo di causalita.

La struttura generale di un'equazione causale alle differenze &

nl n2 1'11 n

I L a_y(wiked) = I I b_u(hei,k+]) (4)
4=0 4=0 7 i=0 j=0 I

[\

" con an1n2= 1, bn1n2= 0.

. Si noti che:

Laf!

i) una volta che si & proceduto al calcolo dei valori dell'uscita fino ad un certo
passo, non & univocamente individuato - in generale - in quale puntc di Z x Z

debba essere calcolato il successivo valore dell'uscita

valori calcolati 0 0000 :
dell'uscita o ooo0o0 @ 5 &
0o0o0 ocoo0co0® .
000O0O o0 @ valori calcolabili
. 00000 '3 al passo successivo

ii) si supponga di aver calcolato y(h,k) sulla base dei valori d'ingresso e di u-

scita y(h-i,k-3j}, uth-i,k-j) relativi all'area tratteggiata, e di voler calcola

re l'uscita in uno dei due istanti (h+1,k) o (h,k+1). Dalla struttura dell'equ_a_i_'

zione & immgdiato constatare che il calcolo di y(h+1,k) richiede la conoscenza

$ 50—8-0 >
(h—nl Jk-n,)
O o O
O O '
A 0O
O
" (h,k)
* % % ¥ @ (h+l,k)

-« 5 500
0 00O

00 O0O0OC
0O0CO0OQoO0

>
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dei valori di ingrésso e di uscita nei punti (h+1,k-i) i= 1,2,...n2, indicati
con asterisco in figura, valori che non appartengono all'insieme dei dati uti-
lizzati per i’l calcolo di y(h,k).

iii) I dati di cui si deve disporre per iniéializzare l'intero processo di elabora-
zione sono in numero infinito: infatti col procedere dell'elaborazione esisto-

no sempre passi in corrispondenza ai quali si devono introdurre dati iniziali

non compresi fra quelli precedentemente utilizzati o elaborati.

Rappresentando gli ingressi e le uscite con serie formali in z1 e 22:

ulz,,z) = I u{i,jlziz;, Yz ,2) = I y(%,j)zlz

172 i .
ij _ ij

N e

il legame ingressc-uscita causale & espresso da una funzione di trasferimento

nl,n2 nl,nz g

W(Zl'ZE) =p/d con p= Z _ b, .21 22 , 9= I . a, _z1 22], a =1, b =0.
Ty 1 n n

- 0 J 1] 0 i,] 1] 1n2 1rn2

Si ha cosi

_i _,.j

18 Y(Zi'z2) = W(Zl'zz)U(zl'zz),. o

/

3. RAPPRESENTAZIONE INTERNA

s Le equazioni alle differenze sia nel caso 1D che 2D conduccno direttamente alla
introduzione di modelli di Stato, pur di considerare come componenti del vettore di
stato opportuni valori dell'ingresso e dell'uscita che figurano nelle equazioni stes

se.

Ia equazione alle differenze

n-1 n-1
b u(h+i) - & . a,y(h+i)
1 1 1

- - y(h+n) = I
1
0 0

’

pud essere riscritta nella forma

- y(h+n) = C x(h+n)

- ponendo

B I, N S AR A ek

henghrmre e

A e s

cpsie e s

~ s e o



[u(h)u(r+1) ... u(h+n-1) y(h) ...y (h+n-1)]

T
x (h+n)

a
1]
Ca
o
|
V]
|
5]

Per il calcolo di y(h+n+1) occorre ovviamente disporre del "vettore di stato"

x(h+n+1). Esso pud essere calcolato ricorsivamente a partire da x(h+n) e da u(h+n).

Dalla struttura stessa del vettore di stato si ha

x(h+n+1) = Ax(h+n)+Bu(h+n)

con
. J i o] [ 0]
— B :
4 Y '
1] 0
12 A = ._q_';ﬂ;29| mmmmmm B = l
72 | 0 1 ' 0
B ] & .
0 | :
| 1 0 5
" g+ .bn_l}-ao Ay @)

In tal modo le equazioni del modello di stato assumonc la forma usuale

10

x(t+l) = Ax(t)%—Bu{t)
~

y(t) = Cx(t)

an

{5a)

(5b)

~~ La (5a) & un'equazione vettoriale alle differenze del primo ordine di tipo 1D, e co

23 me tale & inizializzata assegnando il vettore x in un istante generico.

Dalle matrici (A,B,C) si pud risalire alla funzione di trasferimento

n X

. . . .

e Wz) = X bz /X a,z Y- c(1-az) B
i=0 yoegd

YT
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e viceversa, data una funzione di trasferimento razionale propria, il metodo prece-

dente consente di costruire un modello di stato.

20
L'equazione alle differenze (4) pdb essere riscritta nella forma
(ni,nz) (nl,n2)
y(h,k) = y .. b, u(h+i-n_,k+j-n_) - b .. a y(h+i-n_,k+j-n_)
i i 1 2 i 17 1 2
(0,00 7 (o8 = *4
(1,3)#(n, ,n.) (i,3)#(n ,n,) e
172 ! 1572
= Cx(h,k) y
con
- |
C=1b . _ sisuw — A WA § - -
[ 00 n, 0 -1 n -1,n_| 00 ani,n -1 n -1,n ]
e

oy = G e ) - 1.k (hen ke ). .
x () = [u(h n,k-n) .. .uhk-1ulh-1,kly(h-n k-n ) ...y(h I,k}J

1
Per proceégre a calcolare il wvalore dell'uscita in istaﬁti successivi ad (h,k) & ne-
cessario determinare in quale modo evolve il "vettore di stato" x(h,k). Dalla sua

definizione e dalla struttura dell'equazione alle differenze (6) si possono determi

“nare delle matrici Al,A ,B1 e B2 in modo tale che sia

2

-~
x(h+l,k+1) = Alx(h+1,k)+A2x(h,k+1)+B1u(h+1,k)+B2u(h,k+1) (7)

- L'equazione (7) & un'equazione vettoriale alle differenze del primo ordine di tipo

2D, per la cui inizializzazione non & sufficiente la conoscenza dello stato in un
solo punto. Col procedere dell'elaborazione & anzi necessario disporre di stati angd.

ziali in un numero via via crescente di punti e per compiere un numero non limitato

- di- passi di elaborazicne e si devono assegnare infiniti stati iniziali su un "insie

me di separazione"¥ <z x Z

i s
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stati iniziali

stati
iniziali per
x(h,k)

per x{r,s)

4. MINIMALITA' DELLE RAPPRESENTAZIONI DI STATO

I1 modo in éui‘si & definito lo stato ﬁel paragrafo precedente & insoddisfacente
quanto meno per la dimensione eccessiva del vettore di stato cui si perviene.
Nel caso 1D, data una rappresentazione ingresso-uscita, si pud arrivare ad una rap-
- presentazione di stato del tipo (5) anche in modo assiomatico. Pili precisamente, per
- definire lo stato in t=0, si considerano gli ingressi per t< 0, si assume che due
ingressi u, ed u2 siano equivalenti secondo Nerode {u1ﬂ4u2) se le uscite corrispon-

. N

den}:i y1 ed y2 sono uguali per t>0,e si identificano glirstati in t=0 come le classi di equi-

" valenza sugli ingressi.

- Lo spazio di stato risulta quindi definito come 1l'insieme delle classi di equivalen

za di Nerode

XN = U/
- :
E' importante notare che XN ha dimensione finita se e sclo se il legame ingresso-
-uscita & rappresentabile con una funzione razionale e che in questo caso 1l'aggior-
namento & del tipo (5).

Le principali proprieta del modello di stato ottenuto con le classi di Nerode sono

(i) la dimensione dello stato & minima entro la classe dei modelli (5).
(ii) i1 modello & unico a meno di cambiamenti di bdse in XN.

(iii) il modello & raggiungibile e osservabile.

Per le rappresentazioni ingresso-uscita 2D si possono ancora utilizzare le classi di

equivalenza sugli ingressi, facendo perd riferimento al passato e al futuro di un

B 3




insieme di separazione‘%b .

Gli ingressi u1 e u2 con supporto nel passato di ‘fo sono equivalenti secondo Nerode
(ulﬂJuz) se le uscite corrispondenti yl e y2 coincidono nel futuro di ‘go. Come spa-
zio di stato si assume 1l'insieme delle classi di equivalenza
X = U/
o /

A differenza di quanto si & detto nel caso ID,XN ha dimensione infinita anche se il

- legame ingresso-uscita & esprimibile conuna funzione razionale.

Le principali proprieta del modello 2D di Nerode sono:

i) Dato un modello di stato 2D

x(h+1,k+1) Alx{h+1,k)+A2x(h,k+1)+B1u(h+1,k)+B2u(h,k+1)y{h,k) =

(8)

Cx(h,k)

the realizzi il legame ingresso-uscita in considerazione, si indichi con ¥ lo
spaiio prodotto dagli spazi di stati nei punti di %b, i.e. lo spazio i cui e-
lementi sono le successioni {x(i,-i)}, 1€ 2% (spazio di stato "globale"). Allo

ra X & un “dottospazio di Z.

~ii) I1 meodello di Nerode & raggiungibile e osservabile per costruzione, mentre ta-

luni legami ingresso-uscita possono non ammettere realizzazioni (8) nelle qua-
1li lo spazio di stato globale sia raggiungipile e osservabile.

Cid pone in evidenza una sostanziale differenza fra i modelii 1D e 2D: in questi
ultimi non c'é leéame diretto fra lo "spazio di stato" sul quale viene operato il
passo elementare di aggiornamento e lo spazio minimo dei dati iniziali (spazio del-
le classi di Nerode}. Piu precisamente il modello dinamico degli stati di Nerode non
& rappresentabile con equazioni del tipo (8), e non da informazioni sulla dimensione

minima del vettore x(-,-) che compare in tali equazioni.

G
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- & sempre possibile realizzare W(z

Per i legami ingresso-uscita 1D esistono procedimenti lineari alternativi alla co-
struzione delle classi di equivalenza di Nerode per ottenere modelli di stato di di
mensione minima. Essi sono basati sulla equivalenza fra minimalitd e raggiungibilita
e osservabilita. Anche per i modelli 2D esistono tecniche lineari per ridurre la di
mensione dello spazio di stato. In quésto caso perd non si perviene - in generale -
a modelli minimi.

Si noti anche che, a differenza di quanto avviene nel caso 1D, la dimensione del mo
dello di stato minimo 2D dipende dal corpc su cui sono dati i coefficienti (e cid fa
pensare che l'eventuale procedimento di minimizzazione si basi su tecniche nonlinea-

ri) e dalla struttura del numeratore della funzione di trasferimento.

5. MODELLI DI STATO CON MATRICI COMMUTATIVE

Per particolari legami ingresso-uscita ci si pud riferire a modelli di stato pii

'nsemplici del modello (8). Se W(zl,zz) & separabile, i.e. se il denominatore fattoriz

- za come prodotto di un polinomio in z1 e di un polinomio in 22

= !
d(zl,zz) dl\zl)dz(z2)

1,22) con un modello del tipo

# - ™
© = x(h+l,k+1) = Alx(h+1,k)+A2x(h,k+1)—AlAzx(h,k)+Bu(h,k)

y(h,k} = Cx(h,k)

con A e A2 matrici commutative (i.e. A1A2==A2A1).

Si tratta di un “flodello del secondo ordine, nel senso éhe per calcolare x{(h+1l,k+1)

necessitano i valori di x e di u in punti che distano pilt di un passo da (h+!l,k+1).

All'interno della classe di guesti modelli 2D il parallelo con la teoria 1D & molto

pit stretto. Infatti l'evoluzione delloc stato & esprimibile nella forma

: -t =1 = 'y =1
I-A -a +A A Bu = I-A I-A Bu
B, (022 Bz a8 R e ) B = g teag)  [a (5agen) e

e ———_ —
a , .
1 operazione, in z

e e

a
2 operazione, in z

HR




cosicche la dinamica complessiva risulta dalla composizione di due dinamiche 1D. In
particolare,quando sono soddisfatte le condizioni di raggiungibilita e di osservabi-
lita locali (i.e. dei singoli stati x(i,j), indipendentemente dagli stati adiacenti),
& garantita la minimalitd del modello di stato che - se minimo - & unico a meno di
un cambiamento di base ed ottenibile a partire dalla funzione di trasferimentoc con
tecniche lineari.

Se si considerano i modelli del primo ordine (8) e si introduce 1l'ipotesi che Al e

A_ commutino, questi modelli realizzano soltanto funzioni di trasferimento il cui
denominatore si scompone, sul campo complesso, nel prodotto di fattori del 1° ordine

del tipo (l-az —bzz).

1
La condizione che un polinomio in due variabili fattorizzi in termini del primo or-
dine non & in generale verificata, dato che non vale per i polinomi in due variabi-
1i il teorema fondamentale dell'algebra. La condizione di fattorizzabilitd del deno-
minatore in poligomi del primo ordine non & peraltro sufficiente da sola a garantire

1l'esistenza di modelli di stato del primo ordine con A1A2==A2A1.
6. STARILITA'

Nella elaborazione ricorsiya di datirlD 972D il problema della stabilita riguar-
da sia l'andamento delle variabili in ingresso e in uscita, sia quello delle varia-
bili interne (io "stato") dell'algoritmo che realizza il legame ingresso-uscita. Si

Vhanno Gosl due nozioni di stabilita, quella esterna (o BIBO) e quella interna.Com'é

- noto,la stabilitd esterna non implica quella interna: cio& non tutti gli algoritmi

che realizzano un legame ingresso-uscita stabile sono necessariamente stabili.

Data una fquione di trasferimento \

_ klz) _
W2 = e

zi (p,d} =1
Si r P, o

o t1 B8

le proprieta seguenti si equivalgono

,

e (1) il legame ingresso-uscita & BIBO stabile

(o]
(ii) I|s |«<e
i
0
- (iii) d(z) e privo di zeri per Izlf_l.

Si noti che il numeratore di W(z) non ha rilevanza nella stabilita BIBO.

i
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SR y . =T 2

Per i1 modelli di stato (5) la stabiiita interna corrisponde ad assumere che x(t) =

= Atx(O) converga a 0 per t—+« qualungque sia lo stato iniziale x(0).

Una condizione equivalente & che il polinomio det(I-Az) sia diverso da zero nel di-
sco |zI§L1, e ciocg che gli autovalori 4i A abbiano tutti modulo mincre di 1. Come
conseguenza, se un modello di stato & internamente stabile, allora & BIBO stabile il
suo legame ingresso-uscita. In generale, il viceversa non & vero, salvo nel caso in

cul il modello di stato sia una realizzazione minima. Questo implica che ogni legame

ingresso-uscita BIBO stabile ammette modelli di stato internamente stabili che lo

realizzano.

Anche per una funzione di trasferimento 2D

plz ,z) = o
Wiz ,z.) -l L s zl = (p,d) 1
- = FTETEETEmET— Z =
172 a(z_ ,z_) i57172 ° P
1" 2 0
le proprieta
(1) il legame ingresso-uscita & BIBO stabile

m .
(ii) Z|s, | <=
1]
0

‘

=

si equivalgono. La proprietd corrispondente alla (1iii) del caso 1D, i.e. d(zl,zz) &

privo di zeri in |z <1, |22]5_1,é condizione sufficiente per la stabilita BIBO ma

<

" non necessaria. Infatti la stabilitd BIBO & garantita anche se il polinomio d(z ,z )

1" 2

_ si annulla in alcuni punti del toro |21]= 122]= 1, purché in questi punti si annulli

anche il numeratore p(z1
~ :
seconda specie. Ne consegue che il numeratore ha rilevanza nella determinazione del-

,zé}. Tali punti si chiamano singeclaritd (non essenziali) di

la stabilita BIBO di una funzione di trasferimento 2D.
Dato un modello di stato (8) la stabilitad interna corrisponde ad assumere che,
per ogni insieme di stati x(i,-i), i=0,%1,... aventi tutti norma inferiore a un nu

mero positivo M, x(h,k) tenda a zero quando h+k~>®. Si dimostra che il modello & in-

" ternamente stabile se e solo se

det(I-A,z -A,z) # 0 per |z ! (9)

L - e
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La condizione precedente si traduce anche in un vincolo sullo spettro di una fami-

-

glia di matrici: il modello 2D & internamente stabile se e solo se lo spettro delle
jw .
matrici (A1+ej Az) & contenuto nel disco unitario per ogni w reale. 1In particolare

la stabilita di Ali:A2 & condizione necessaria per la stabilita interna.

Osservazione. Se A1A2::A2A1, esiste una trasformazione di base che riduce entrambe

le matrici in forma triangolare superiore (o inferiore)

o
I
’)
=g
I
”

La condizione (9) si riduce in tal caso alle condizioni scalari |a,| + |3 [ <1
) i i

%] I .

Per ogni mcdello di stato 2D, la stabilitd interna implica la stabilita BIBO, mentre

- la stabilita BIBO non implica quella'interna anche se il modello di stato & di dimen
; ;

sione minima. Infatti le funzioni di trasferimento BIBO stabili in cui siano presen-

ti sing;la;ité di seconda specie sul toro unitario non ammettono realizzazioni inter

namente stabili.

'E' peraltro possibile provare che se ﬁna funzione di trasferimento & BIBO stabile e

'hoﬁ ha singolarita di seconda specie sul toro unitario, esiste sempre un modello di

stato internamente stabile che la realiZzza.

-~
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