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ABSTRACT -

The paper presents an application of duallity theery ta

global (zero state) controllability and global reconstruc-
Sibility of 20 sywtams. ‘
The procedurs is based on some Structural propertias
of a class of dynamical Systems over rings, whose algebraic
lals are 2-D systems.

1. INTRODUCTION AND 2-0) SYSTEMS REPRESENTATION

The dynamics of a 2-D systam is representad by the
folléwing Jpdating equations (1):

t(hel,kel)wh x(h¢l.k)¢A2(h.k+l )+BLu(h¢1.k)+82u(h.k+U '

(1)
yih,k)aCx(h,k)

where the local state x is an n-dimensional vector over a
fleld K, input and cuepue values are scalars ang Ay ,49,81,
32.C are maetrices of Suitable dimensions with entries (n K.
In a previous paper (2] the authers lnvestigated tha
remchability apd observanility properties of global states
<hose supports ire the separation sets
E o= {(hk) e 222, neic = th Lao,...,
In particular, a duality relation between 2-0 systams
and dynamical systems over the ring of bilateral
T ols K[£,87] Lled o 2o global reschability and observa

In this paper the original approach will he further
*xtended to Inciude 2-0 global (zere state) controllabili
%y and globsal Fecenstructibility.

Since the global states are elemants of the direct pn_:_
duet of the local state spaces on¥;, bilateral Laurent for
nal power series provide a convenient tool for representing
“ie global state dynamics.

According to this approach, let

- :
L o= I x(ieg, g8l (2)
P e
“ePresent the global state on¥, and
@ : | g
o= I uley, 8, ¥ = I yit-giyid (3
BETT m=

the restrictions +o ¥, of ilnout and OUtput functions. wWith

this notation, Lnput and Cutput functions can be writtan as

o i acn f
Pt iU g gy (a)
i=n ° l=e

“here h and k are integers. The sat K;(U;‘)) 9T (bilateral)
Laurent formal power serieas with coerficients in g7 can be
Jaturally endowed with tne structure of 1 %(§,3~!]-medula,

where x[}.&"j ls the subring or K(&) generated by K, & and
%, w4 consequence of the module Structure, the giobal
stats updating equations

fa® (A1 #4802 (8, 48,8, , Y oacH ()

'ar- easily derived from (1).

2. GLOBAL CONTROLLABILITY AND RECONSTRUCTIBILITY

Denote by R and @ the 2-0 global reachability and ob-
servability matricea of system (1)

wy | - e | u =l &
A= [{Blvszgl ll(Ald-AZ,) (BL*BZ’:):'"(ALMEQ (BL*BZQJ] '

c
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As it is known (2], zlobal reachability and observability

conditions reduce to the invertibility of @ and @ in
K(§)N ang 15 K(§ o Tespectively,

Proposition 1, System (1) is globally controllable to zero
state if and only ir (A1+428)" factorizes as

(A1+428)" « 2N |, ) (8)
for some rationel matrix M in K(&)m@,

groof. By global controllability definition, for any glo
Jal state £ there is an integer » and a sequence Y ¥,

%, 1 with eiements la €y((§)) such thae

’ =y Y, »=1 i » -

(A1+aod)Ty » 3 (Ag+458) (31»,52;}1& =0 (7)
i=0

Cayley Hamilton theorem aver commutative Tings gives that
Y= n can be assumed in (7), 30 that

Im(AlﬁAzg)n SInR (a)

'3 a necessary and sufficient condition for global control
lability. Sinca (A1+425)™ and 7 are €(§.§™" | module-mor-
Phisms from K2((&)) into KRt(E)), the range spaces i(n (a)
are submodules of K‘é‘{(&')).

Let U and v be nxn unimodular polynomial natrices
¥fich roduce A to its Smith canonical form, |.a.

URY = diag{‘wl...wt 0...0} =g

3y (8), the following equation (n the unknowns '&a 1’1,!_]_

i w40 2 A Y T
‘J(Al-ﬂ\zi} T-(P{"»ﬁfqﬁ_’fl..-'?fn_il

can be solved ror any global state 7. we therefors have
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whers H = d.nuwl ...w._l' Lo FHU , | U(A,+A.,,)" {s a rational ma
crix. Left multiplication of (3) by U™F gives

(& .az;-')“ e Ut oy iy <2
with M = VM. .

Conversely, lat (AloAziln =AM, M in Kti’)r‘m, and let
41 be a common multiple of the denominators of the entries.
of M. Then PedM is a polynomial matrix and -

n 1
(ALM2§) = 59?!’

~  The k[$,i"!]-module of global states in divisible (5,
namely for any p in K(£,8"%], the map ¥epX of the module
into itself is surjective Ez. Theoren I.].

Therefors, for any glcbal state ¥, there exists I
such that df'= ¥ and

(Al-aag}nz'- a(a,-a D) ' e

2
This proves that the equation

e 1 r s T
f.AL»\Zg) I-:?&.&L...qn_d

can be solved for any & by assuming

¥ ¥ T
Lt .- Jln-lJ = a

Prooosition 2, 3ystem (1) (s globally rsconstructible LI
ana anly if (A, A»AZ,"')“ factorizes as

(Asa,5)" =10 (10)
for some polynomial matrix T tanE-z-L] e

Iroof. 3y global reconstructibility definition, theres (s
an integer ¥ such that the output sequence @o.’%, AP 4
e unforced 2-0 system uniquely determines the final sta-
te T, .

3y Cayley Hamilton theor=m, this amounts to require
that

karmlng)n = ker @ 111)

mere(&, ‘-Aa@ and @ are (35" ] -module morphisms from
11(;)) into Kn’(k]

Lat U and YV be nxn unimodular polynomial matrices
siich reducs & =0 {ts 3mith canonical form:
TOV a diagly, ®--- @, D...0 =

Nots chat 0T e 0 i3 squivalent to0 SV . 0  and
(A1+425)7F = 3 L3 aquivalent to U(A,+Ap)™(V™iT) « 0.
Then, by {11},

a2 I AP
lmplies
1A -4 DWW 20 (13
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Sincs there are no conatraints on the last n—e comgs=
aents of the vectors V- @ which satisfy (12), by (13)
U(Aq -v-Azgh)n‘V has the following structurs

B
(A | >
DA AN = aifAy @) 0 -

Denots by e; the l-th column of the nxn ldentity matrix .
and consider any 8y in Kn((¥)) which satisfies s3{p; = Q.
Thus we have

Gu(ﬂ Lo

et 3 8 = 0 i wl,2,0..8
AL iaol HF

21 '

Hence sach element of the i-th column in (14) Is multiple
of @ in the ring K(§.47!] and there exists Tink(7. =Ljrm
such that

1 A D) | o
Ml PRESL J a TP
I
l—AZlG) v a
and
(Alu\a'ﬂn- " F vt v oWt

= U-l?U@ = T0

wners T = U=MTU 1a tn K(¥,0 7T
Conversely, (11) is an immediate consequence of (10). 3
In discreste time l-0 system theory zero state control
lability and reconstructibility ars weaker propertiss than
reachability and ocbservability.
The situation for 2-0 systams i3 very similar.
In fact If (1) is globally reschable, @ = exista nK(f)
and condition (8) can be fulfilled by ¥ =@7 (A +A; D7 .
Henoe globml reachability implies global controllability.
Alse, Lf (1) is globally obmervable, ®=: axists J.n
R{F,F=L]™D and condition (10) is satisfied by Ta(Aj+A,TI%
Thus global observability lmplies global reconatruc~
tibility,

nxn

3. SYSTEMS QVER POLYNOMIAL RINGS AND QUALITY

In this section, 2-0 glotal controllability and recom
structibility will bs shown to be dual of reconmtructiblll
ty and controllability of systams defined over the ring
z(g,2-t]. This provides different proofSof propesitions 1
and 2, based cn algebraic duality a.rg-u.l;anta.

Let us first introduce the systea

s(tel) = FP)wle)+G(TIv(e), =z(t) = H(TIw(t) , (18!

defined over the ring of polynomials K[k.f'lj. Hers the (n
out set is the ring Kf{.('kjfn'lj, =he cutput sat is  ‘the
~ing K¢, \"'L_'I[l'.n]], the states are slements of the fraee mo
dule l:!'l' 1% and the matrices 7(f),G(f),H(T) nave entriss
tn K(T.87 ]

Let 3?!, and Gp denots the reachability and observabill
vy matrices of (l4)

2, .Eam FPIGE) .. 2T e
[acp)

HTIF(T)
-] .
RTC9 bt s



ition 3. System (15) (s (zero state) controllable if
and only if F($) factorizes as

37 <R (5P (16)
[ » »=l;mm
=ith B(S) in K[E,577] and is reconstructible if and on=-

ly Lf F3(&) factorizes as
£ = Lo (17
with L(&) in KG) A

Pr'ogf.l Zero stats controllability is equivalent to the
k[§,3 "]-module inclusion

e FN3) Luapfii (1a) .

which corresponds (3] to the sxistence of the factorization

(16).
State reconstructibility of systam (15) (s expressed
by the K[§,&}]-module inclusion

kusr FHE) 2 ker 0,(8) (181

This is equivalent to the corresponding inelusion of
R(Y) spaces and to factorization (18} (al. a

Proposition 3 shows that reconstructibility and cone
trollability of systems over the ring K(!,§~'] are expres~
sed by factorization properties which correspond to 2-0 glo
tal controllability and reconstryctibility conditions gi=-
ven by (8) and (7). This fact is formally explained by view
ing 2-0 systems as dual of systems over the ring K[&,:~%].
Let us briefly recall from (2] the main steps in the cone
struction of the dual system of (14).

L. The global state space of 2-D system (1), namaly the spa
ce ¥0((§)) ,ls the algebraic dual of k2,51, which is
the state space of system (14):

. . v=ly . * T
L€ I PR (F 3

2. The output space Xn((§)) [[]] of (1) is the algebraic
dual of the ilnput space 7 'Ky [&,&"Y] (171] of sysvem (14).

Similarly the space of 2-0 inputs whose support .3 in
ai.utl. L.e: whose elements are representsd by series
=~ 0 Kyl(§)) [77*], Ls the algebraic dual of the space

R{& 54 (1], of output restrictions to [0,n-L] of system
(14)

(4.4 ("] )= = q‘be((gH Y

n
I we consider (14) and assume
T T
Ty b oot , T . T T
1) = AL-Aa; y G(&) = CT,  H(E) = BL.BE; (19)

“he global reachability and observability maps of 2-D syas-
“em (1), given by the polynomial matricss R and @, are the
algeoraic duals of the observability and reachability maps
37 system (19), ziven iy <he polymomial matrices G, and .
TraceR, =0T and @, - AT

3y srojectivity of the module K[g,l‘l]n, “he controlla
Sility condition of (19),

(A w0 e 1ad
L 2 - o}

s *dquivalent to the existence of a K[E.E‘L]-ﬂﬂm marphi sm g
“fiich makes the following diagram ’
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(AT-ATE)n
<(R.EY et Rk
~ . (200
e S gp
¥ ~
S R e G (]
commutative,

On the other side by the injectivity of the K[},¥ ]
module KB((¥)) the reconstructibility condition of (1),

ker(AL-AZE)ng kar @ (21)

is equivalent to the existence of a KEE,E-L]ML!.Q morphise
{ which makes the following diagram

a (A‘*AFI;)“ a
Kb“E)) _KE((E}) (22)
* |
~ o
o L
~ PR
. k (ED) [n] =k (&)
commutative,
We therefore have the following result

Proposition 4. Global reconstructibility of the 2-0 sys-
tem (1) Ls squivalent to controllability of the system (19)
defined over K[E.E'I'I.

Proof. Assuse first commutativity of the diagram (20). Sin
ce each of its maps admits a dual map, we have
{AE&AEE)“' - Q'Q:
a
(A:L*AEE) =g*
which guarantses the commutativity of (22) with ¢ = p*.
Conversely, assume reconstructibility of (1), L.e. the

axistence of 9 which makes (22) commutative. Then, by ta-
king the orthogonal complements of (21)

|
ker(ALMz}}" = (ker®)”
and

* L
(ksr(AE—A;Bn )< (karﬂ;)L

Hence by the properties of the spaces of linear functiocnals
#® have

T Ten
.
In(A, +A,§) S R

Then there exists ¢ which makes (20) commutative, and
in (22) @ can be assumed as @* . a

The reconstructibility condition of system (19)
T Telt
kar(Ala-AZE) S ker @ (23

{3 aquivalent %5 the axistencs of 1 KI:E.E'lI-module mor-
phism 7 which makes the following diagram

T Ten
TR D e LA S S 20
- |
~
P e 40,
~ Imdp
commutative.
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In fact, (23) is an obvious consequence of the exis-
tence of 7. Conversely (23) (mplies the existence of a
X714 -module morphism jiwhich makes the following dim-

graa
& ( AI«A;U *
({12 |

| (Afmz!ﬂ" N &
ﬂ [ £ a

x[e,x~l"

-

ker(A7+AST)" T~
4L B

ker
GP

=

0:1 In @
P

T.T -
commitative, and we can assume y = (Almaf)“ Spuod,.
The global contrdllability condition of system (1)

:_.lAL.AZrJ“: Y 4 (2%)

+ is equivalent to the existence of a K(*,§ ']-nodule mor -
pitism ¥ which makes the following diagram

1 n “1"‘27’n n
xh(m) R ———— x]‘:t(r))
. - : (28)
\“ x
LN
- ™ “ n
Kb((I”/k,ra
commutative.

i ) Io fact (25) i3 an easy consequence of “he existancs
u of ¥. Viceversa, usunlns.‘?- as the inverse of fan ImQ—.

the inelusion (25) allows to defina » -.?'Lo(A,.Aer“ which

oaices the diagram (26) commutative.

To prove that diagrams (24) and (26) are dusl tt {a
first necesmary to show *hat #2((%))/kerRcan be viewed am
the algebraic dual of m@p. Let s be any element in -
KS((T)) and denote by [s] its equivalence class modulc ker
& . Then for any q in R, 7"11", the relation ()

<O0q,[s]> = (QTG?: 8!

de1ines -2 linear functional on @ &[T % "M, iceversa. gL
vent a linear functional f: OPK[': .t‘LIﬂ-K. there exists abi
lateral power series s in K5((T)) such that

r(@gq) = <-Opq. (s>

for any q in k(7,7°177, ana (s] ts uniquely determined.
Assume that the map 7 in (24) exists, and consider an
irreducible matrix fraction representation of it given by

-1 ot
NOTY. Then o l@p is a polynomial matrix and (fp factorizes
as

,-ﬂ) =) H 4 (27)
for somw 8 (o [P 11T | 129) ratteve Srem the 3ézont

{dentity AN+BQ = In by premultiplication by 9 and postmul
tiplication by g=im -

e
for any s in Kg[(fH, the bilateral series g which

salve the squation

N's = Q~; (28)

—

(%) 42 commonly used in formal power sesries theary, (s,tl}dg

"otes the coerficient off¥ ! in the series s.

200 -

are equivalent modulo ker#?, and the map
v KCUD)= K ((F))/ker R : 3 — g

is a well defined K[¥,{ “J-module morphism.
v is the dual map of y. In fact

-1 T.T

<70,,8>= (ch’:(o )u's, g0

= (@ H @ W e pe) = (o N auge)
is equal to

<0,3, v(i>= <G, [g]>= qrﬁsz.r'i

- (@423 = (4N s, g0

for any s tn Kg((T)) and q tn K[f,T7]"

Proposition 5. Global controllability of the 2-0 system
(1) is equivalent to reconstructibility of the system (19).

The proof is similsr to that we gave for Proposition 4.
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