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ABSTRACT

This paper is concerned with structural properties of
transfer functions in two variables, which can be realized
by the class of 2p systems whose state updating matrices
commute.

The analysis of these properties is done by relating
commutative realizations with noncommutative exchangeable
power series.

INTRODUCTION

The following communication deals with structural pro-
perties of 2D systems whose state updating matrices are
assumed to be commutative.

Our aim is to characterize the transfer functions which
can be realized by this class at systems and to investiga-
te what kind of problems are raised by their use in the
realization problem,

As it is well known, commutative matrices have been
first considered in the Attasi's model /17

x(h+1, k+1) = A; x(htl, k) + Ay x(h, k+1) =
(1)
= Ay AZ x(h, X) * Buth, k)
y(h, k) = G x(h, k)

where the commutative assumption A A2 = A, A, is made.
The transfer functions realizable éy model (1} are the so
called (causal) separable functions, that is they can be
written as zy z3 nl(zg, 23)/plzy) qlzy), where n is in

K [z1, z2], p in K EZL_ and q in K £§2]' The converse is
also true, i{n the sense that any (causal) separable tran-
sfer function is realizable in the class of Attasi's mo-
dels.

As we can see from (1) if we want to compute the local
state at some point (h+l, k+1), we need the local states
at (h+1, k), (h, k) and th, k+1), \which means that (1)
gives a second order state updating.

A wider class of 2D systems includes systems having
first order state updating equations, where the state at
(h+1, k+l) depends only on the local states at (h+l, k)
and at (h, k+!). The general structure of these models is
given by the following equations iij

x(h+l, k+1) = A, x(h+l, k) + A x(h, k+1) +
i 2
(2}
+ B1 n(h+l, k) + 82 ulh, k+1)
y(h,k) = C x(th, k)

and we shall consider the subclass of these systems cha-
racterized by the commutativity assumption Ay Ay = Ay Ay

In order to make our analysis simpler, we shall also
assume that either By or By is the zero vector. So doing
the analysis applies also to models / 3/ with structure

x{h+l, k+l) = Al x(h+1, k) + AZ xi{h, k+1) +
13)
+ B u(h, k)
y(h, k) = C xth, k)
and /47 with structure
x(h+l, k+1) = A1 x(h+l,k)+n2x(h,y_+1)+5u(h+1,k+1) (4)

y(h, k) = C x(h, k)
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Theorem 1

If we don't take into account the multiplicative factors
Z1s Z2 Oor zy z3, which are unessential to our discussion,
the structure of the transfer function of systems (2) (with
By or By = 0), (3) and (4) reduce to the following form

=C(I = A - A

1 5 (5)

z,)

s 2

1 z
Since the denominator for the transfer function s is a
divisor of the polynomial

) 4 det (I - A =z

171

dlz,, 2, - Ay zy)
the constraints imposed by the commutativity hypothesis Ay
Ay = Ay Ay on d(zy, 2z)) translate into conditions on the

singularities of the transfer function s.

1
An interesting factorization property of d(zy, z;) is
based on the following classical result,

1T3w7 Let Ay, A, be commutative matrices with
entries in the complex field. Then there exists a simila=-
rity transformation that reduces both matrices simultaneou
sly to upper (or lower) triangular form.

The polynomial d(zy, z5) is invariant under similarity
transformations, so we can refer to upper (lower) trianqu-
lar form of A; and A5, and we have that dlzy, zp) and the
denominator of s, factor completely in the complex field
into linear factors:

(n

dizy, z.) =1Tf1 % B z,) (6)

2

The splitting condition (&) ls a necessary condition to
be satisfied by the denominator of the transfer functions
which admit commutative realizations, i.e. realizations in
which matrices Ay and A, commute.

(2)
a - a,
i

Actually it is not sufficient, since it does not qive
any constraint on the numerator, which plays an important
role in this context.

In order to discuss this fact and the connections bet-
ween commutative and noncommutative realizations we recall
some properties of non commutative power series AR

SOME PROPERTIES OF COMMUTATIVE AND NONCOMMUTATIVE POWER
SERIES

Let K be a generic field. The algebra of formal power

series in the noncommuting variables 1 and £5  with coef
ficients in K is denoted by K %41, %2+, and a generic
element 7 of this algebra is written as
a = E (7, w)w
w ey, 9o

where {f,,¢, * s the free monoid generated by §; and £,
and (o,w) in K is the coefficient of w in the series o,
st Es

Denote now by K [ Zys 77 ]J the algebra of formal

power series in the commuting variables zy and z and de=-
fine the algebra morphism @: K ~ £1,62™ * K [[221,12 ]J
by the assianments @(5,) = z, B(f,) = z; and @(k) = k for

any k in K,

The series @(n) is the commutative image of o.

A series g in K « f1rha™ 1is called exchangeable if
the words which have the same commutative image have the
same coefficient in o

A series o in K ®£4,£,® is called rational if there
exist a itive integer n and matrices Ay, Ay in KPX0,

?OS
B in k™1, ¢ in k!¥0 Such that



: X -1
o=C 2 (AjE;+AxEy) BRC (-6 -Ayy) 1B (7)
A 4-tuple (Ay, Ay, By, C) is called a representation of
if (7) holds,

The following proposition i@:? gives equivalent charac
terizations of the set of exchangeable series which are
also rational.

g

Proposition 2. Let o be in K « £1.£2® . Then the follow-
ing facts are equivalent:

i) 0 is rational and exchangeable
i1i} 0 is a linear combination of series with the follow
ing structure
-1 -1
plE1) qlgy) r{gy) tigy) (8)
where p, q, r, t are polynomials and | | denotes
the shuffle product.
iii) there exists a representation (Ayr A2, B, C) of o with
A) Ay = Ay Ay, that is
Wiy lwl, .
(g, w) = ¢C A, A2 B, ¥'w {ﬁl,nz}
where fw]i denotes the number of i inow,1=1,2,
A further characterization of exchangeable rational se=-
ries is given in terms of separable rational functions.

B'@E-ri’m’vn 3. Let o K v £y,52% be exchangeable and
define the map @ by the assignment

w

3 ] sl 13
P N A =2 E ) 2 2,
Then o is rational if and only if @(1) 1s (the power

series expansion of) a separable rational function.

COMMUTATIVE REALIZATION

Let's now go back to the problem of Lhe existence of
commutative realizations. Consider a rational transfer
function s and denote by M the set of the 2D systems
= (Ay, A2, B, C) which realize s. Denote by N the set
of noncommutative rational power series whose commutative
image is s,

Then any system ) (Ay, Ay, B, C) in M is associated
with a representation of a noncommutative series in N,

l.e. the series
=cC( Ay & A, e s
o = I - 1 51 2 by .
Viceversa, any series o in N admits representations
(Ay, Ay, B, C) and, since @(u) = s, the corresponding 2D

systems 2’='(A1,_A2L B, C) are realizations of s, that is

elements of M 11 /.

It is now clear that there exists a commutative reali-
zation of s if and only if N contains an exchangeable
series, in other terms if and only if the (unique) exchan-
geable series ¢% having s as commutative image is ra-
tional. Moreover the full class of the commutative reali-
zations of s 1s identified with the class of the commuta=
tive representations (7) of %

A different condition for the existence of a commutati-
ve realization of s is given in terms of separability of
a commutative power series.

Given s = Z 5. . 2L zJ introduce the series
Ly "4 4. 2
- - = i3
s =@ =2 s  z 2 (9)
1) 13 172
h
where FEiLE1
S . { ) EN
ij J ij
Assume s have a commutative realization 3 = (Al' AZ'
B, C). Then, from
-1
= = - 10
s CiI Al z, AZ 22) B {
o 1+j Al Al i 3
i%5-0 ( 3 ) C \ A2 B z| 2

we have ©
s Z S
s £3=0 c Al A2 B z1 22
-1 -1
=C (I - A1 zl) (I - “2 zzl B (11)
which shows that s is separable.

For the converse, assume s be separable. Then s can
be represented as in (11), with A, A, = A_ A, (see, for in
stance, /6 /), and we go back to }10? folfculng the pre-
vious steps in the reverse order.

Aemark. If s admits a commutative realization, the com-

mutative representations (7) of the associated exchangeable
series o®are in one to cne correspondence with the com-
mutative representations (11) of the separahle series s.
This shows that, in solving the commutative realization
problem going through o or s is completely equivalent.

Hankel matrices provide the basic tool for checking the
existence of commutative realizations of a transfer func-
tion s and for constructing commutative realizations with
minimal dimension.

We recall that the Hankel matrix 1377 of a noncommutati
ve (commutative) series o (r) is an infinite matrix who-
se rows and columns are indexed by the rds of the free
monoid {f,£,1® (by the monomials 2y z5).

The matrix element indexed by the pair (u, v) (by the

pair (zy 24, z| z3) is the coefficient (g, u v) o thgkwotd
u v (the coefficient Fi+h, js+x ©f the monomial z 23 .

TDenote by H(r) the Hankel matrix of
Then

r.

i) r is separanle iff rank H(r) is finite

'11) rank H(r) gives the dimension of minimal {(commutative)
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representations (11) of r )
minimal commutative representations (11) are algebrai-
cally equivalent. They can be computed from H(r) via
Ho's algorithm 11/

i)

Analogously, let H(g) be the Hankel matrix of o. Then

1)
ii)

is rational iff rank H(g) is finite

rank H(g) gives the dimension of minimal representa-
tions (7) of a

minimal representations (7) are algebraically equiva-
lent and can be derived from H(o) via Ho's algorithm
/17,

iii)

Minimal representations of the exchangeable series o¢%®
are necessarily commutative and coincide with minimal repre
sentations (11) of s. So we have rank H(0 ) = rank H(s) (¥)]

The rank finiteness of H(3) is equivalent to the exi~
stence of commutative realizations of s, and the 4-tuples
(Ay, Ay, B, C) which provide minimal (commutative) repre-
sentations (11) of § constitute the minimal commutative
realizations of s.

Since minimal representations (11) are algebraically
equivalent, minimal commutative realizations are essential
ly unique, modulo a change of basis in the local state spg
ce. This makes a strong difference between commutative and
noncommutative realizations, since noncommutative realiza-
tions are not necessarily algebraically equivalent /3/.

The realizability condition based on the rank of H(8)
allows us to give a negative answer to the question whe-
ther structure conditions on the denominator of the tran-

(%) This can be seen also directly since the rows and co-
lumns of H(s) are obtained by keeping the rows and
the columns in H(c®) which are indexed by £] €4 ana
deleting the others.
Since the columns rows indexed by the words of the po~
lynomial €% {E coincide in H(o®) with the
column row indexed by £1°£], the deletion process
which leads to H(S) startifg from H(o®) does not redu-
ce the rank.



sfer function s are sufficient to guarantee the existence So it appears essential to study the structures of se-

of commutative realizations. ries (8) and of their commutative images. By exploiting
" the partial fraction eéxpansion on the complex field, struc
c:1::1' is done by considering the following rational fun ture (8) reduces to a linear combénation of the noncommu-
tative series 7 €3 £y | (1 -ben™",
iie 1 (12) (1 - agy) | 63, (1-agy)=m (1 = bE3)=0, m,n
(I-zl}(l-zi_-zzj € N.
; Thus the commutative image of a rational exchangeable
ori;:: E:ucz series expansion in a neighbourhood of the series is a linear combination of
E 14941 L3 i) zT z; -
m n
1 -
So, by (9), we have ' ey b ng
A R L R 1y 3" fay 25}
L,4=0 “3+1 %1 %3 az’i‘ (1 -az)"
m _n
In the Hankel matrix w) Jm+n z z,
I -~ 2 | ma .- &
(n (ztl (22) (31} (z:zzl (z5 k] z, E] z, |1 az, b z,
n rﬁéo | Hot | Ha2 Viceversa, any linear combination of series having struc

= = - _l- = - - T ......... iﬁ ture i) - iv) is the commutative image of an exchangeable
tzli rational series, hence it admits a commutative realization,

_ (25} 10 | 11 I Commutative realizations of a transfer function s are
H(s) = - = - - -f- R TS S - == always a proper subset of the set M of all realizations
\

(121 i | (commutative and noncommutative). So, in general, minimal
1 commutative realizations are not minimal in M.
(21123 "20 | Hzl E sz In some cases, as shown by the following ezémple,the in
(z%; | | | crease in the dimension of the local state seems to be ve-
- - - = == = = - - - - - - - - - - ry heavy.
| T l
I l ! Frample. Consider the polynomial transfer Function s-sz;
v The minimal dimension of its :ommutatl;e realizations
the diagonal block matrices are ° ls given by rank H(8), where s = t%?l zy z3.
The non zero rows in H(s) are indexed by the following
Ho=[1] i
00 monomials
1 172
- : 1
Hll 3 1/2 173 tl row)
! 1/2 13 , Zy, 25 ; {2 rows)
sz = 5 1/21/3 1/4 Zye 2025, 25 (3 rows)
1/3 1/4 1/5 T A RS A S SRS A o .- - o
m _m=1
T e L SR AT e 2y ZE' soves ByZgT Ca %y ekl Fowa
. 5 r ; T z2) 2z, zT- zg, . zg (m rows)
nn * St V2 e /n¢l m=1 12 zm-2 33 22 zm't (m=1 rows
1 * S 2 "7t T2
L £ L TR I/ntZ J L f _______________
b AR R R R oo
z z (1 row)
1 2
[ﬂ1#ll/n+2""' 1/2n+1

These rows are linearly independent, so we have rank
e ) H{s) = (m + 1)2. On the other side, a minimal noncommuta-

tive realization of s is the following
Now notice that Hn,/(2n+l), n=0,1,2... are the (n+1)x

x(n+l} submatrices appearing in the upper left hand corner r 0 b
of the Hankel matrix assoclated with the nonrational power | o' | a _
- -x) = T n | o %
series -log (1=x) nEl x N/n, ) Al & ~.1|
Taking on both sides of rank H(¥) > rank Hy, tha limit b oL L ..
as n goes to infinity, we obtain rank H(E) = =, } } | JI
| [o] o] m
This implies that (12) cannot be realized using commu- -
tative matrices A and Ay, despite the denominator of s m+1 m
factorizes as a product of linear factors. | =
= o o m
A, { | |
FURTHER REMARKS i . 'l})-l" =
We shall now give a first insight into the problem of a § ! o e B mel
complete characterization of transfer functions which are ! | .1
realizable by commutative matrices. : k | o |
m m+1

For this, we use jointly the following facts: r 0
B = Lo

|

|

1) a rational function s admits a commutative reallzation
iff it is the commutative image of a rational exchan-
geable roncommutative series o

i1) a noncommutative series can be represented as a linear L
combination of series with structure (8),. whose dimension is 2m+1!

 IEE T PR e |
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