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ABSTRACT

The paper gives necessary and sufficient conditions
for exact reconstructibility of the state of 2D systems.
It includes also a technique for designing dynamic state
observers.
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L INTRODUCTION

It is well known that in 1D linear discrete time Sys=
tems state reconstructibility (i.e. the possibility of
computing the state using past values of inputs and out-
puts) is implied by observability.

In fact, a system L= (A,B,C) of dimension n is re-
constructible iff

c
rank =n, ¥zed
_I—Az_
while it is observable iff
c
rank 1 = n, VZEC
zI-A |

A necessary and sufficient conditicn for reconstruc-
tibility is given by the existence of a matrix L that
makes A+LC nilpotent. The existence of such an L allows
to design a new dynamical system L which has the same in-
ternal structure as I, and whose output estimates exactly
the state of L in a finite number of steps.

In this paper we introduce an extension of the recon-
structibility concepts. It gives an explicit sclution to
the problem of constructing a 2D system % which provides
in real time an exact estimate of the internal state of a
2D system L= (Ry,A5,By,B,,C).

As in 1D case the 2D reconstructibility property is
equivalent to a rank condition, which is here given by

c
rank [ ] =n,
- -A
1-h.2) A2,

V(zl.zz)e €xC

%hen this condition is satisfied, L exists. However inter-
nal structure of I is not necessarily similar to the struc
ture of L. This depends on the fact that a 2D counterpart
of the ID nilpotency condition does not hold.

2, CAUSAL RECONSTRUCTIBILITY

B ,B_,C,D)

The state model of a 2D system L = (A,.A2 1B

199

75-097

is given by the following equations j_.-l__?

x(h+l, k+1) = Alx(hﬂ, k) +A2x(h, k+1) +Blu(h+1, k) +

+Bzu(h, k+1) o

y{(h,k) = C x(h,k) +D u(h,k)
where x(h,k)Ean is the local state, u(.h,k)EIRm and

y(h,k) €R® are the input and output vectors at (h,k)€ Fx &
and A ,A_,B ,B_,C,D are real matrices of suitable sizes.

1727172
Denote by
E L
- o o4 =
_{”0 = Zi x(i, .\.)zlzz
-0

the global state on the separation set

%; = {(1,) : i+3 =0}

and by

K(z2) = I X(i.])z;z;

i+jz0
Ulz ,z)) = I uii,f)z 2]
172 172

i+3>0
Yz ,2) = I y(i,j)z2]
1ragh = %2

i+3>0

the state, input and ocutput functions respectively.
Then, from (1) one gets
X(2,,2.) = (I-A z -Az) [Z + (B.z.+8.z)ulz, ,z.)]
1'%2 iy ka8 DR G TR
(2)

Y(zi,zz) =C :K(zl,zzj +D U(zl,zz)

and, assuming zero initial conditions X = 0, the rational
[}

transfer matrix

4 -1
W J = = o
E(zl 22) Cc(I Aiz Azzz} (Blz +Bzzz} +D (3)

1 1

gives the input-output map of the system

Y(zl,zzJ = WE(zl'zz)U(zl'zz)

The system (1) is finite memory if the free state
evoluticn x(h,k) vanishes for any set of initial sates and
h+k sufficiently large.

The finite memory property is equivalent to assume



= - - = 1
Af(zi'zz) det (I ;\Izi Azzz)

In fact L\.:(zl,zz) =1 implies that (I-A!zl—Azzz)- is a
polynomial matrix. Viceversa the finite memory property
implies that the power serlies expansion of (I—Alzl—Azzz)"

is a polynomial matrix, so that Ay(z,,z») =1 follows from
the polynomial identity 1=A4g(zy,zp)det(I-Ayz -Ayz,) L.

Any polynomial transfer matrix is realizable by a
finite memory 2D system. This fact follows easily from the
realization technigue presented in ,_‘_ 1__ for the single
input-single output case, which is easily extended to the
multivariable case.

The structural property which is crucial in the ana-
lysis of state reconstructicn is the causal reconstructi-
bility. Intuitively, a 2D system has this property if it
is possible to determine the local state x(0,0) when the
input and output values are known on some finite set of

points in the past of (0,0).

I (0,-k)
L ]
® 0 ?
® 0 O
e 0 I fig. 1
® 0 0 Tk i
® o 0000 ;
(=k,0) IER)

By the linearity assumption, a formal definition of
causal reconstructibility 1s given referring to the free
evolution of the system. Let X, be the space of local
states with support {(0,-k) (-1, -k+1),...,(-k,0)} and
Yy C /P Lz;i,zal_-] be the space of peclynomials with degree
less than or equal to k, i.e. the space of output functions
whose support is the triangle Ty in fig. !. Given I, we
have from (1) the maps wy, and ¢, that associate with each
sequence of local states in Xy the output restriction to
Ty and the state x(0,0). Then the intuitive notiocn of re-
constructibility can be stated in the fcllowing form
Definition 1. I is causally reconstructible if there
exist an integer k>0 _and a map py, such that the following

diagram

k
X b4
k O
, s
|
v
¢k Ve Dk
e
n
R
commutes.
Theorem 1. The following facts are eguivalent
i) L is causally reconstructible

ii) there exist polynomial matrices P(zl,zz) and Q(zq,25)
which satisfy the Bézout identity

¥ I- -A p ’ =
Q(zI zz)( niz1 222)4' (21 zz)c (4)

iii) there exist a polynomial matrix M(zy,z,) and an inte-
ger V>0 such that
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[of

C(A z +A z_)
11 22

T |

v

A z + = .

( 1% Azzz) M(zl,zz) : (5)
{ X n-1
! Claz +az)
L

iv) the matrix
C

| | (6)

| I-A z -A_z_ |

| L 22

L i

is full rank for any (zl,zz) inecxcC

proof i) + ii)
Ly, and there is no restriction in assuming Py linear on Yy
Then thers exist matrices Fij such that

Py is necessarily linear on the range of

=L =8
x(0,0) =p ( I y(-r,~s)z 'z ) =
k 12
{=r,=S)ETy
= & F y(-r,-s)
rs
(=r,=5) € T

So, by shift invariance

x(i,3j) = 2 F yli-r,j=-s)
rs
(-—r,=s1€ Ty
e 1 n
Let le,i, U= 1,2,...,n denote the canonical basis in R
and assume the init:ial condition
. e
: h -h
4 = L_ x(h,~hizz_ =e¢e (7
[} n 12 u
—w
Then, for s
. wew e i ' i-p J-s ¢ s
x{i,jlz z_ = 2 F yli-r, j-slz, z_ z z
172 ) . s L Z 12
(-z,-5) € Tk
(Piz,z_)Y( ), zizdyzted
= (Pi{z,z Z G2 z. .z )z 2
2 17727 M1 2

where P(zl,zz) denotes the polynomial matrix

- r s

Piz. ;2 = = z

1% 155172
(—z.—S)ETk

We therefore have that the difference

X(z,,2 ) -Plz,,2 )¥(z ,2_ ) =
105 1°%2 ey
= (1-A z -az) ‘e -Plz ,2)C(I-A.z -A z) ‘e ey
1B Sy 195 R T T

is a polynomial vectcr. Thus the polynomial matrix

satisfies

-t -1
I-A -A -P C(I- -A =
( lz1 222) (21'22) (I Alzl 212) Q(zl,zz)
of the expres-

and (4) is obtained by postmultiplication
sion above by (I-A z -A z ).

11) * 1) Assuming 7. as in (7), one gets the proof by



following backward the steps of the previous point.

By linearity, the proof extends to the general case.

ii) + iii) Rewrite (4) in the following form
V=1 v-1 @ 3
I gz ,z)+ L Pz ,z)C L (A z *A 2) =
2 171 2 171 22
g0 1 i=0 3=0
T @ 3
= z +A2z2)

4=0 11

where Q; and P; are the i-th degree homogeneous terms in

Q(zy,25) and P(zy:2).
Hence
I-P CY Az 4AZ) : B G 2T (8)
- +A_Z = +
e iy * 1212

(o]

C(h z +A 2 )
M TR
AVIRVE S 1
C(A z +A )\J_1
+
#1252

If v»n, by Cayley Hamilton theorem the right hand
term in (8) can be written as

[of

1,

.

...P] Y g

C(A z +A_z_)
1k 22

PP

Ty v-

s 2o 25
" +
_1 R

M(z,,25)

To complete the proof, it remains to show that in (8)
P, can be assumed to be zero. If not, consider the identi-

ty
; " 5 -A -P A c=0
P C Adj(I Alzi A 22]{I Alzl 22} P E(zl'z )
(9)

By adding (9) to (4) one gets a new Bézout identity

CIEREREERS Mj(I-—Alzl-Azzz)}(I—Aizl-azzz) +

+[Plz iz - B by (2 02 C = 1

where the matrix P(zl,zz) - Poﬂg(zl,zz) has zero constant
term.

iii) = iv) For any (zl,zz)ert, (5) implies the recons-

tructibility of the 1D system {Alzlﬂ\zzz.C). Hence

c
TRnK I-{A, 2 +A_Z )2z =n
Tl 22

for any z in € and (6) follows by assuming z=1.

iv) =+ 14) Let Nj(zy,Z5)s N (zl.zz)....,ﬁ (21'22) be the
submatrices of order n of (6) and qy(2y,23), dp(Zy.25)
ois qs(zl,zz) be their determinants.

Denote by }gc[zl,zz] the ideal of polynomials p
which satisfy the following equation

P(zy,22)C+Q(2q,29) (I-Ay2y-A22Z2} = plzy,29) I (10)
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for some polynomial matrices P and Q.

First of all we shall prove that the algebraic varie-
ty ¥ (F) is the variety of the polynomials qq,qps---:dg?

Y(F) = V(qlaqz.---.qs>

From the definition of “k(zifzz’- k=1,2,...,8; it is
clear that there exist constant matrices Py, QO such that

N ¥ = I—A -

k(zl 22) Pkc+Qk( z azzz)
Then premultiplying both sides by adj Nk{zt,zz) yields
3 (2,201 = [adj Nk(zl,zz)pk]c»f

+ [ady N (2,200 J(1-A 2 -8 2)

(1)

which shows that g is in Jf for k=1,2,...,s and

¥l Qe easg V2 ¥ (F
1772 s

To prove the inverse inclusion, choose any nonzero
polynomial p in # and polynomial matrices P and Q sati-
sfying the equation (10). Then, for any (zl.zz)é ¥ (p), we
have

Plzi.zz) Q(zl.zz} i
(z° zu} C + (z° z% (I-Alzl-}-\ z ) =1
piz ey P45y

Therefore the row span of
c

I-A z°-A z
1217%2%2

n o
is ¢ and, consequently, (z;,zz) cannot be a common zero
of Qysqqs---+dg- This means that (z:,z;)é ¥ Qe eeed)
and proves the inclusion

iz 5 ¢
¥(F) 2 ¥ (ql,qz,...,qs)

We complete the proof by showing that 1€ # , which
directly implies the Bézout identity. By assumption iv),
¥ (dy,9ps--++dg) is empty. Hence ¥ (f) is empty and, by
Hilbert Nullstellensatz / 2 /. =sz 'z ] =(1).

Remark It will be useful for the desiqn of the cbserver

to nota that in the Bézout identity (4) it is not
restrictive to assume that the matrices P(zl,zz) and
Q(zl,zz) have real ccefficients.

3. SYNTHESIS OF A 2D OBSERVER

As we shall show, the reconstructibility property of
I is a necessary and sufficient condition for the existen-
ce of an exact observer, i.e. a new system L whose output
at (h,k) is an estimate of the current state x(h,k) of E,
that becomes exact for h+k sufficiently large.

Definition 2. Given a 2D system L, a 2D system t given by

x(h+l, k+1) = s‘li(nu, x) +F2§(h, k+l) +

—u(hﬂ. k) u(h, k+1)
+ G + G
1 y(h+l, k) 2 | y(h, k+1)
(12)
| alhk) |
v(h,k) |

7(n,k) = H x(h,k) + J



is an exact observer if the following conditions hold:

i) i is finite memory

ii) the “"estimate error”
e(h.,k) = x(h,k) = y{h,k}

vanishes for h+k
conditions ID and

sufficiently large, forall initial
X, in L and in I respectively.

Remark Notice that for |D observers condition i) is re-
dundant. Actually it is implied by condition ii) since the
state and the output of 1D observers coincide.

In general, this cecincidence cannot be a priori assu
med for 2D observers.

Theorem 2. A system L is causally reconstructible if and

only if it admits an exact observer I.

proof. Assume L be causally reconstructible. Then, by
Theorem 1, we can express the inverse of (I—A!zl-Azzz) as

-1 =1
) -A ;.
(I-A =z z.) z, nzz,)

11 22 1

= Qtzl'z") + P(zl,z_\:CfI—A

50 that (2) can be written in the following form

Uiz ,z,)
(z.,2) X +wWlz_,z_) ‘2W (13)
Qzl, O, "2

YiZ )

X z
lzi. 2) |
1% 4
with

i |
|

i
+B222)_P(ZI'ZQ,DIP(ZI'ZE)J

Wiz .,z fo(z_,z) (B z
(z,.2) lo(z, vz ) (B 2, !
(14}
Let L= {Fy,F5,Gy+Gy,H,J) be a finite memory 2D system
which realizes Hizl.zz) . As we have seen in section 2,
such a system exists since H(zl,zz} is a polynomial ma-
trix.
Then I is an exact observer of I. In fact the estima

te error

X(zl,zz) —Y(zl,zz)

Q(z1 ,22) '{o - H{I—Flzl-FEZZJ

~

k4

(]

vanishes after a finite number of steps.

Vicecersa, iet L= (F,,F_,G ,G_,H,J) be an exact ob-

s [
server of I, and let
2 = Ix(i,-i)zz) = x(0,0)
o i 12
5 =0, u(z_ ,z =0
L] (1 2)
-1
Since (I—?lzl-rzz") is a polynomial matrix, by (11}
we obtain ‘
~ 1 %
Y(z_, = H{I-F z -F +G
( 1 zz) { 124 225! (Giz1 222)[Y(zl.22}J

P(zl,zz)‘!(zl,zzj
where P(zl.zzl is a polynomial matrix.

The estimate error given by

z) = Xz, ,z ) -2z,
Ev{z1 22) (z1 22) Y(z1 22)

X ' ~P ' '
(zI 22) (z1 22)C X(z1 22]

(I-P(z

-1
/2 )C)(I-A z -A _z ) x(0,0C)
1752 11 22
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1s a polynomial vecter for any x(0,0). Hence

=
z -A z )

11772%2 k5

Q(z,,z)) = (I-P(z, ,2,)C)(I-A
1@ 1"z
is a polynomial matrix and we obtain the Bézout identity
directly from (16).

The proof of Thecrem 2 above provides a COnstructive
procedure for the design of an exact observer, based on

the knowledge of the polynomial matrices P(zl.zz) and
¢ = ,223 =

By Theorem 1, P(2zy,Z2) and Q{(zy,zp) are easily compu-
ted starting from the polynomial identity

+

2 (16)

1= z +
qlquI

which holds for suitable polynomials ry:Ij,...,Ig by Hil=

bert Nullstellensatz. In fact, from (11) and (16) it fol-
lows
I3 e
(qr, +a.x. s
s -
= T ; ( ]
[kzl adj Nk'z:'z2)Pkrk(zl'22)Jc L3
[: ]
+ VY dj N {z ., I-A 2z -A )
=, adj _lel zZ)rik(zl.z:)_j( 134 zz:
which gives
B
P(zi,zz) = k:1 adj Nk(zl,zz,‘i’krk(zl.z:)
(17
s
= )
Q(z:rzz) REL adj Nk(zl,zZ}rik(zl,zz,
Example 1 Consider the following system
To1o00” [oo0o00 ]
] 0010 0000 |
A = i A_ = |
i o001 . 2 ! 0000 ,
Lo ooo loo1e]
c =[1000_ B =B,=0, D=0
The matrix
1 0o o o]
I c i1 =zg 0 0 |
\ =10 1 -2y 0 |
1 1
LI—Alzl—AzzzJ | ? 0 1 -z |
0 0 -zq A
o =

is full rank in €©xC. In fact the submatrices N, and Nj,
cbtained by deleting the last and the first row respecti-
vely, have determinants

- 3 =
q: —_zl 7 qQ_ 1-2122
Assuming
= 3 |
Il-—zz, 1:-."‘2}224‘22
1] o7 [oooo] Ti1oo0 ]
P_\O\P_]o- 1000 | o100}
1‘[0\'24E01’Qz‘§.1ool’92 jooi1o]
Lo Lo lco1o] looot ]

we obtain



qr
B

- T- ]
N, (2 02,0 = P ,C+Q (IR 2, oA L)

.
%t

Nztzl,zzl = P2C+Q2(I-J\1 1—}\2:2)

Matrices P(z_,z_ )} and Q(z,,z.;) are easily obtained
from (17). In particular P(z,,z,) is given by:

[ )
N

N
N

N

Plz_,z.)
{zlz2

N

N
WOW RN WD W W

-

N

The transfer matrix of the observer is given by (14)

—_ R e L

0

L
]

N
Ll

L '
(z: 22)

N

—

N
ROW RN W N W W

N

A finite memory realization of w(zi,zz} is the following

-

000000 010000
000000 001000
000000 000000
¢, 000000, F,=}000000/ G =0
000010 000000
000001 000000
|to0000 000000
"o o] B _
) 000100
0 1 000010
S =1g 0| '® |ooooos|"T7°
00 100000
00

4. CONCLUDING REMARKS

Having in mind the structure of the observes in 1D
it is natural to a;k whether it is possible to design a
2D exact cbserver L as a copy of the original 2D system I,
driven by static feedback laws Lje(h,k), L,E(h,k) on the
cutput estimate error €(h,k).

More precisely, we want to know whether the following
2D system

k)

(18)

+ B_u(h, k+l) +L1€€h+1. k) +L2€{h, kt+1)
<

X(h+1, k+1) = A x(h+l, k) +A2§(h. k+1) +B u(h+t,
1

e(h,k) = y(h,k) =D u(hk) =C x{h,k)

is a 2D exact observer for some choice of the constant
matrices L, and L, iR the case when L is causally recon-
structible.

The dynamics of the state estimate error

e(h, k) = x(h,k) = x(h,k)
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holds for suitable constant matrices L

4

I~

is directly obtained from (18)

e(h+l, k+1) = (Ai-LIC)E(hﬂ' k) + (AZ-LZC]eth,kH.)

We therefore have that a 2D system admits an exact obser=-
ver having structure (18) if and only if

dettI-tnl-Llc)zl- (Az-ch)zzl =1 (19)

landl-z.

It is easy to check that (19) cannot be satisfied by the

system considered in Example 4. This shows that in general
exact observers with structure (18) need not exist in the
case when exact cbservers with unconstrained structure are
available.
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