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ABSTRACT

This paper is concerned with some properties of transfer functions in two varia
bles which can be realized by classes of 2D systems characterized by pairs of state
updating matrices which generate algebras with special structures. Two situations
are mainly considered. The first deals with pairs of matrices which generate a sol-
vable Lie algebra (i.e. are simultaneously triangularizable). The second refers to
pairs of matrices which generate abelian Lie algebras (i.e. the matrices commute).

The analysis of the connections between the properties of 2D realizations and
transfer functions is based on the representation algorithms of non-commutative ra-

ticnal power series.

1. INTRODUCTION

It is well known [1,2,3] that any proper rational transfer functicon in two va-
riables can be realized by a finite dimensional 2D system (Al, AZ, B, C) described

by the following state updating and read-out equations:
x(h+1,k+1) = Alx(h+l,k)+A2x(h,k+1)+Blu(h+1,k)+82u(h,k+1)
y(h,k) = Cx(h,k)

In general it should be expected that any constraint we assume on the structu-
re of the pairs (A ,A_) translates into a restriction of the class of transfer func-
tions which can be realized by (1).

In this communication we shall concentrate our attention on pairs of matrices
which can be simultanecusly reduced by similarity to upper (lower) triangular form
and, in particular, on pairs of commutative matrices.

Commutative matrices have been first considered by Attasi Lﬂj, with reference

to the special class of systems given by the following equations
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x(h+l,k+1) = Al % (h+1,k) +A2 x(h,k+1)-—A1A2 x(h,k) +B u(h,k)

y(h,k) = C x(h,k)

with AlAE::AzAl. The transfer functions realizable by this model are (causal) sepa-

rable functions, that is they can be written in the form n(z

i 1)q(22),

where n is in (21,22) K[Zl'z21' p in K[zlj and g in K[zz]. The converse is also

true, in the sense that any (causal) separable transfer function is realizable in

,22)/1:»(2

the class of Attasi's models.

As we shall see, the main feature of the transfer functions we obtain from
(1) when Al and Az commutelis that their denominators factor completely in the com-
plex field into linear factors Lﬂ.

The same 1s true when the commutativity assumption is weakened and we assume
that Al and A2 are simultaneously triangularizable. The difference between the two
cases 1s that the commutativity of Al and Az imposes scome constraints on the nume-
rator of the transfer function while triangularizability does not.

In order to make our analysis simpler, we shall assume that either B1 or 82 is

the zero vectocr. So doing the analysis developed in the sequel, applies also to the

following models [6,7]:
x(h+1,k+1) = Alx(h+1,k)—rA2x(h,k+1) +B uth,k) (3}
y(h,k) = C x(h,k)

and:
x{h+1,k+1) = Alx(h+1,h)+—A2x{h,k+1) +B u(h+1,k+1) (4)
v(h,k) = C x(h,k)

If we don't take into account the multiplicative factors Zl' 22 or 2122' which

are unessential to our discussion, the structure of the transfer functions of sy-

stems (2) (with Bl or B2: 0), (3) and (4) reduces to the following form



119

The possibility of representing a proper rational function in the form (5), al-

lows us to assocciate its realization [Al,Az,B,C) with the series

in the non-commutative variables El and £_ and to expleoit known results from the

theory of non-commutative power series [81.

2. REALIZABILITY AND SIMULTANEOUS TRIANGULARIZATION

Two matrices Al and A2 are simultaneously triangularizable if they can be redu-
ced by similarity transformation to upper (lower) triangular form.

Simultaneous triangularizability - also referred in the literature as property
P - has been related to other algebraic properties of pairs of matrices. We summari-

ze the principal results in the following theorem [9,10]:

nxn . o , ) .
Theorem 1. Let AI and A, belong to ¢ .+ Then the following statements are equi-
valent:
: . : ; ; o o 5 -1 ]
(1) there ts an invertible matrix T such that P Aip and B A_P are upper (lower)
2 !
triangular;

(i1) the Lie algebra ¥ defined by matrices Al and A_ is solvable;
P4

(1ii) for every scalar polynomial W(il,éz) tn the non-commutative variables £ ,&

each of the matrices ﬂ(Al,A )[él,hé] 18 nilpotent;

2
i (iv) there is an ordering of the eigenvalues A of Al and u. of A2 such that the
e [ i ; B
etgenvalues of any sealar polynomial r(Al,Az) are H(Ai,ui), L (- )

As an obvious consequence of property P, we have that the polynomial det(I—Alzl—

7A222) factors completely in the complex field into linear factors:

det(I-A z -A = Il(1-x z - 7
VR ErBggy) = HH-AE ) 7
The factorization property (7) - also called property L [io] - 1s weaker than
property P, if n> 2.

The role played by pairs of matrices with property P in the realization of 2D

systems is defined by the following theoremn.
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Theorem 2. Let w(zl,22)= p(zl,zz)/d(zl,zzj, d(0,0) =1 and p and gq coprime polyno-
mials. Then w(zl’ZZ) is realizable by a 2D system with A and A, having property P
if and only if 6(21,22) factors completely in the complex field into linear factors.

Proof. Assume Al and A2 have property P. By (6), since 6(21,22) divides det(I—Alzl—

7A222), it factors into linear elements. Conversely, note that starting from 2D sy-
stems with Al and AZ having property P, and connecting them in series and parallel,
the Al and A2 matrices of the resulting systems still have Eroperty P. So, we need
only to take into account transfer functions wij(zl,z2)::ziz;/l—azl—Bzz. The follo-

wing 2D system, with Al and A2 in triangular form,

i+l 3j i+1 3
(o -1 \ g (8 \ ] [0]
0 = { 0 \
0 \ > 1 -
\\ \\ ‘ 0 \\ ‘
Ty \ !
\\ _1‘ ‘\\ I
Q‘ OI -1
5 | B [~ e N = T
1 2
| | 0 -1
N .
0 Lo 0 o
‘ I vo-1 o]
~
i | | i | iod 14

provides a 2D realization of the elementary transfer function wij'

A classical result due to Frobenius [11] states that any pair of commutative
matrices satisfies property P. This fact can be viewed as a corollary of Theorem 1,
since the commutativity hypothesis [AI,AZI::O implies (iii).

Consequently, as 2D systems with commutative matrices Al and A2 are a subclass
of 2D systems with triangular matrices, the denominator of their transfer functicn
factors completely into linear elements.

Nevertheless, as we shall see, it is not true that any transfer function with
denominator factorizable into linear elements, can be realized by a 2D system with

commutative matrices Al and A . This is due to the fact that when we lock for 2D



121

realizations of this type, the numerator of the transfer function cannot be arbitra-
rily assigned.

The analysis of the constraints to be imposed on the transfer functions for ob-
taining 2D system realizations with Al and A2 commuting, will be developed in the
next section by resorting to non-commutative power series. This will allow us also
to give a first insight into the problem of understanding how property P and commu-

tativity affect the structure of minimal realizations.

3 COMMUTATIVITY AND PROPERTY P IN THE REPRESENTATION OF NON-COMMUTATIVE POWER

SERIES

Simultaneous triangularization and commutativity assumptions on Al and A2 impo
se structural constraints on the coefficients of the non-commutative power series
(6) . The nature of these constraints is relevant for the analysis of 2D systems
having Al and A_ matrices with the same properties. In fact we can associate any
non-commutative power series ¢ with its commutative image induced by the algebra
morphism ¢ : K << 61,52 >> _’KU:ZI'ZZ—H , assigned by ¢(k) =k, VKEK, cb(gl) =zl,
¢(£2): z,- Then, assuming ¢ to be represented as in (6), the map ¢ associates the
non-commutative series ¢ with the 2D system (AI,AZ,B,C) whose transfer function is

-1
¢(U):=C(I—A121—A222) B.

In order to analyze in detail these facts, we need some properties of non-com
mutative power series that we shall briefly recall in the sequel.

Let K be the ground field. A generic element ¢ of the algebra K<< 51,52>> of

formal power series in the noncommuting variables 51 and 52 with coefficients in K

is written as

g = 2 (g,w)w
wE{Elagz}*
where {51,52}* is the free monoid generated by gl and €2 and (og,w) in K is the coef-
ficient of w in the series ¢. The series ¢(0) in K[[ﬁl,z2]] is called the commutati-
ve image of o.
A series ¢ in K<3:€1,£2>> is exchangeable if the words which have the same com-
mutative image have the same coefficient in o.

A series ¢ in K<3<51,£2>> is rational if there exist a positive integer n and

. . nxn . nxl . Ixn
matrices Al, A_ in K , B in K , C in K such that

2




A 4d-tuple (Al’A“'BI’CJ is called a representation of ¢ if (8) holds.
F A
The following Theorem [8} shows how the commutativity assumption Lal'AZJ =0

made on the representation (6) of a non-commutative series ¢, can be expressed as a

condition on the coefficientsof ¢ itself.

Theorem 3. Let 0 be in K<< gl,gj >>. Then the following facts are equivalent:

s rational and exchangeable

o,

i) a

; . " ’ 5 . 4 (*) ; b y 4
i1} o 28 a linear combination of shuffle products of the following form

where p, 9, ¥, t are polynomials

iii) there exists a representation (Al'Az’B'CJ of o with A A_=A_A , that is

1. .2 2.1
Ml el
(o,w) =CA A B, ¥ wELE L _}*
d 1 2 £ 172
where |w| denotes the number of &, inw, i=1,2.

A further characterization of exchangeable rational series is given in terms of

separable raticnal functions.

Theorem 4. Let 0 €K << gl,é__\ >> be exchangeable and define the map ¢: by the assign-—
- £

ment

o
" - TN T
o) L (o,w)w = L (o,E £)g ar
L 172 1 2
w i,j=0
Then o is rational if and only <1f ¢(0) i18 (the power series expansion of) a se-

parable rational function.

(‘k‘
For any f and g in {&
SR LEy s = anButs
to K<< & & >>.
1772

,E51* the shuffle product of f and g is defined as f w g =
2

1
f =Py Bes G= ql...gK]. By linearity, the definition extends

t]

3

|

S
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Assume now that the series ¢ admits a representation with Al and A_ having pro-
Z

perty P. The following Theorem shows how this assumption reduces to a condition on

the coefficients of o.

Theorem 5. Let ¢ be a rational series in K<< £ ,22 >>and admit a representation of
—_— ; 1

J

dimension n. Then o admits a representation with A and A, having property P if and

Ly 1f for am +1)-tuplet e W in {& ,£ }* we have
only tf for any (n+l)-tuplet W o { iy a
AN o W D |
3 b
(-1) (o,w Yy, «v.oow ¥y w ) =0 (10)
! ) " 14, n i n+l
Lireessd €1{1,2} 1 n
n

‘ v . Blp s
wnere = an = £
1 1°2 Ty =5

Proof. Let (Al,AE,B,C),with AI and A2 having property P, be a representaticn of o.
It is not restrictive. to assume that the dimension of this representation is less

than or equal to n. In fact any minimal representation (gl,Az,é,C) of ¢ can be ob-

tained (modulo a similarity transformation) from (Al'A +B,C) by standard reducing

2
procedures without destroying property (iii) of Theorem 1 and hence property P. Then,
for any (n+l)-tuplet w ,...,w , in {& ,E,}*, we have

1 n+l 172

w (A ,A B ol | v 5 g w (A ,a) [a Aél w (A ,A) =0 (11
(B2 Byal 3 i) 1By . p Py }
as we can check directly by assuming Al and Az in triangular form.
Let now multiply (11) by C on the left and by B on the right to get (10).
Conversely, let (A ,AZ,B,C) be a minimal representation of o of dimension m<n. It

1
. . 2 , mxm
is known from [SI that there exist m matrices M, € K and two sets of m words,

1]
each word with length less than m, {dl,...,d } anad [g1,...,g } such that for any
m m
W G{il,EZ}*, it results
w(A ,A = M o} da)
(B pidy) b de T i Ty W
Then, for any n-tuplet W W in {gl,gz}* we have
n
llT ahi
2: (-1 w (A ,A ) A LA )..... w (A ,A) (& ,A =
A ) 1( ; 2)ri (A, 2) n( Ay )
I Srea § A 1 T
1 n
. (12)
i oY g
Y o Y. tw "o wy d) =0
= . e -
hok , T L n'i
h,k LI 1 n
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Now take any polynomial m in K<:El,£2:> and consider the matrix

n
(ma a) B 2] .

This turns out to be zero since it is a linear combination of terms of the same type
as those in the summation on the left side of (12).
By applying criterion (iii) in Theorem 1 we conclude that Al and A2 satisfy

property P.

In view of the applications we shall made, it is worthwhile to state by a se-

parate Theorem the following fact we already used in the proof of Thecrem 5.

Theorem 6. Assume that the rational series o in K<< EI,EZ>> admits a representation
(Al,AE,B,C) with Al and Az stmultaneously triangularizable (commutative). Then the
matrices A, and Az appearing in any minimal representation of o are simultaneously

triangularizable (commutative).

4. COMMUTATIVE REALIZATIONS

Let's now go back to the problem of the existence of commutative realizations.
Consider a 2D rational transfer function s and denote by # the set of the 2D systems
Z::(AI,A2,B,C) which realize s. Denote by 4 the set of noncommutative rational
power series whose commutative image is s.

Then any system I = (Al,Az,B,C) in J# is associated with a representation of a
noncommutative series ¢ in .47, i.e. the series o::C(I—Alil—AEEZ)‘ B.

Viceversa, any series ¢ in .4 admits representations (Al,A2,B,C) and, since
¢(o) =s, the corresponding 2D systems Z::(AI,A2,B,C) are realizations of s, that is
elements of .# [3].

It is now clear that there exists a commutative realization of s if and only if

A" contains an exchangeable series, or, in other terms, if and only if the (unique)
exchangeable series o” having s as commutative image is rational. Moreover the full
class of the commutative realizations of s is identified with the class of the commu
tative representations (8) of o

Theorem 4 provides another condition for the existence of a commutative reali-

zation of s in terms of separability of a commutative power series.
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$ -
Given s= L s, zlz;, introduce the series

: i3
1,7
S-df =1 5 22 s gy
= g = s z 2z , s, = = =
° o e g A2 ij J ij !
1,]
Assume s have a commutative realization L= (AI,AZ,B,C). Then, from
C(I-A z -A_z_) B Mhe alal s Ll (14)
= ! i z = Z . 2
s 24 g J e = ST
i, =0
we have
- i i -1 r-1
s = z CAA Bz z =¢C(I-az ) (I-A_z ) B (15)
{4 172 12 11 2 2
1,]=

which shows that s is separable.

For the converse, assume ; be separable. Then ; can be represented as in (15),
with A1A2::A2A1 (see, for instance, IB{), and we go back to (14) following the pre-
vious steps in the reverse order.

Femark. If s admits a commutative realization, the commutative representations (8)
of the associated exchangeable series o* are in cne to one correspondence with the
commutative representations (15) of the separable series S. This shows that the se-

ries o* and s play essentially the same role in the solution of the commutative rea

lization problem.

The existence of commutative realizations of a transfer function s and theixr
construction are essentially based on the properties of Hankel matrices.
The Hankel matrix [?I of a non-commutative series ¢ (a commutative series r) is

an infinite matrix whose rows and columns are indexed by the words of the free mo-

’ 3
noid {El,Eé}* (by the monomials 212;). The matrix element indexed by the pair (u,v)
i3 h k
(by the pair (zlz;, 2122) is the coefficient (o, uv) of the word uv (the coefficient
) i+h j+k
', . of the monomial =z Z
i+h, j+k 1 2

Denoting by H(r) the Hankel matrix of r, we have that:

i) r is separable if and only if rank H(r) is finite
ii) rank H(r) gives the dimension of minimal, commutative representations 15) of ¥
iii) minimal, commutative representations (15) are algebraically equivalent. They

can be computed from H(r) via Ho's algorithm [{1.

Analogously, let H(o) be the Hankel matrix of ¢. Then
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-+

i) 0 1s rational if and only if rank H(o) is finite

ii) rank H(0) gives the dimension of minimal representations (8) of o

iii) minimal representations (8) are algebraically eguivalent and can be derived
from H(o) via Ho's algorithm Eﬂ,

" . ¥ i *
By Theorem 4, minimal representations of the exchangeable series ¢~ are neces-

sarily commutative and coincide with minimal representations (15) of 5. So we have

rank H(o) = rank H(g).

The rank finiteness of H(;) is equivalent to the existence of commutative rea-
lizations of s, and the 4-tuples (Al,AZ,B,C} which provide minimal, commutative
representations (15) of s constitute the minimal commutative realizations of s. Sin-
ce minimal representations (15) are algebraically equivalent, minimal commutative
realizations are essentially unique, modulo a change of basis in the local state
space. This make a strong difference between commutative and non-commutative reali-

zations, since non-commutative realizations are not necessarily algebraically equi-

valent Bﬁl

The realizability condition based on the rank of H(;) allows us to give a nega-
tive answer to the question whether structure conditions on the denominator of the
transfer functions s are sufficient to guarantee the existence of commutative reali-
zations.

This is done by considering the following rational function

1 1341 4 5
- — 5 ( ,? 2 g7 (16)
(1-z ) (1-2 -z ) o j+1 i 2
1 1 2 i,3=0

So, by (13), we have

In the Hankel matrix

FH H =, F
00 01 02
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the diagonal block matrices are given by:

1 1/2 ... l/n+l
1 1/2

1/2 1/3 .« 1/“ 2
H = ‘1 r H £ 3 §ooee s H = 2N+
00 : 1 { )

172 1/3 1/m+1 1/n+2 ... 1/2n+l

Now notice that H /(2n+1), n=0,1,2... are the (n+l)x(n+tl) submatrices appea-
nn

ring in the upper left hand corner of the Hankel matrix associated with the nonra-
tional power series -log (l-x) =

st

g8

n
L ox  /n.
1

Letting n go to infinity in rank H(s) > rank H L ve obtain rank H(s)
n
implies that (16}

=»,_ This
cannot be realized using commutative matrices A

and A

X despite
the denominator of s factorizes as a product of linear factors.

An existence condition for commutative realizations may be obtained by using
jointly the following facts:

1) a rational function s admits a commutative realization if and only if it is the

commutative image of a rational exchangeable noncommutative series @

a noncommutative series can be represented as a linear combination of series
with structure (9)

By exploiting partial fraction expansion of rational functions in one variable,

the series having structure (9) reduce t6 linear combinations of the noncommutative series
m _n m i o o T %o _ .-m -n

E_l TRy El w (1—bt2) ; (l~a;l) Y (l—agl) o (1~b£2) , m, n€ N.
Thus the commutative image of a raticnal exchangeable series is the power

series expansion of a linear combination of the following functions:

n m
m . 2.0 n (z 2z} m+n o
m n 3 1 2 3 1 2 3 4" B p
2 Z- o , 7 (17}
i m n n m m.,.n l-az -bz
J =z (1-bz ) 3 z (1-az ) 3 z_ oz 1 2
2 $h 1 1 2

Viceversa, any linear combination of rational functiocns (17) is the commutative

image of an exchangeable rational series, hence it admits a commutative realization.
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54 FURTHER REMARKS

In general, given a rational transfer function, the class of its realizations
with matrices Al and A2 having property P, does not share all properties with the
class of commutative realizations.

For instance, minimal realizations with Al and A2 having property P, need not

be algebraically equivalent.

Example. The following 2D systems

11 [10 1] =
DU , I, H [1 0]y
1 10 ool |1

are minimal realizations of (16) with Al and A2 triangular matrices. Yet,Z1 and 22
are not algebraically equivalent. This follows checking that the non-commutative
power series associated with Zl and 22 are different.

Moreover, 21 and 22 represent (modulo similarity transformations) the whole

class of minimal realizations of (16) which is then wholly constituted by 2D systems

with Al and A2 triangularizable.
This is not surprising. In fact, minimal realizations of any rational transfer
function whose denominator factors into linear elements, have matrices Al and A

2
with property P, if their dimension is 2. If the dimension is greater than 2 the

following example shows that matrices Al and A2 of minimal realizations need not si-

multaneously triangularize.

Example. The following 2D systems

01 0 000 1]
zl;(‘ooa, 100J, o, [-100]
loo o 010 0
[0 -1 d] (00 07 BY
I, : (|0 0 Of, 00 -1/, of, [1oa]
lo 0 0 00 0 1]

are minimal realizations of the polynomial 1—2122. It is easy to check that Al and

A2 from El do not have property P. Actually [Al,Aé] is not nilpotent.

h

tl
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than
mzm

.
12

of minimal realizations with property P is Zmtl EBT.
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Finally, we observe that minimal commutative realizations of a transfer fu
higher dimension than minimal realizations with property P and, a fortiori,
minimal unconstrained realizations of the same transfer function. As an example,

2
has minimal commutative realizations of dimension (m+l) , while the dimension
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