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On Some Connections between BIBO and Internal
Stability of Two-Dimensional Filters

M. BISIACCO, E. FORNASINI, AND G. MARCHESINI

Abstract —Necessary and sufficient conditions are given ensuring that a
BIBO stable two-dimensional (2-D) filter admits an internally stable state-
space realization.

These correspond to the nonexistence of common zeros of the relatively
prime numerator and denominator on the unit bidisc distinguished boundary.

An equivalent condition is the existence of detectable and stabilizable
state space realizations of the transfer function.

I. INTRODUCTION

In [1] Goodman has proved that there exist transfer functions
p(2,2:)/9(z, 2,), with p and g coprime, which are BIBO
stable and have nonessential singularities of the second kind on
the distinguished boundary

= {(21,22)1 |31|:|22l:1}-

A consequence of this fact is that BIBO stability does not
imply that the denominator g(z, z,) is devoid of zeros in the
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closed polydisc:
2y ={(21,2,): |2]<1; |z,| <1}

while, as we know, internal stability does [2]. So, there exist 2-D
BIBO stable transfer functions which don’t admit internally
stable realizations in state-space form.

A similar sitvation does not arise in 1-D case, since the
minimal realization of a BIBO stable transfer function is always
internally stable. For this reason, one may expect that the con-
nections between 2-D internal and external stability are more
complex than in 1-D case. As we shall see, this is not completely
true, and the purpose of this note is to discuss these connections
and in particular to analyze the conditions which guarantee that a
BIBO stable system is internally stable. Actually, we shall prove
that a BIBO stable 2-D system is internally stable if and only if it
is stabilizable and detectable, a condition which is exactly the
same we have for 1-D systems.

Nevertheless, given a 1-D transfer function, a stabilizable and
detectable realization can always be computed, while for the 2-D
case there are situations where this is not possible. More pre-
cisely, this happens when both p and g vanish at some common
point in £, which corresponds to the case of the transfer
functions examined by Goodman.

II.  DEFINITIONS AND PRELIMINARY RESULTS

Consider a 2-D transfer function

2(2,2,)

Wi(z,,z,) =
(2:2) = )

with p and ¢ coprime and ¢(0,0)=1. It is well known that
W(z,,z,) is BIBO stable if and only if the coefficients of its
power series expansion
+ oo
W(ZI’ZZ): E wUZI!Zé
i.j=0

satisfy the following inequality [1]:

+i0g

Y Iw,l<+oo.

ij=0

If g{(z,,2,) is devoid of zeros in 2, then W(z,,z,) is BIBO
stable. As shown by Goodman’s counterexample, the vice versa is
not true.

The internal stability concept refers to the state evolution of
realizations of W(z,, z,) in state space form. We recall [3] that a
2-D system X =(A4,,4,, B, B,,C, D) given by

x(h+1,k+1)=Ax(h, k+1)+ A, x(h+1,k)
+ Byu(h,k+1)+ Byu(h +1,k)
y(h,k)y=Cx(h,k)+ Du(h, k) (2)
where the /ocal state x is an n-dimensional vector over the real
field R, and 4,, A,, B,, B,, C, D are matrices of suitable
dimensions with entries in R, realizes W(z,, z,) if

(1)

W(z,2,) =C(I~ A2, = A;2,) " '(Byz + Byz,) + D. (3)
The free state evolution of system (2) is given by
Loy -1
X(2is85) ™ Z x(i,j)azg=(I—Ayz,— 4,2,) &,
i+j=0

+ o
L. (A +dl52) 25
=

(4)
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Fig. 1.

where

+ o0

r x(i,

i==—o00

-2z’

g, =
is called the global state associated with the sequence of initial
local states {x(i, —i): i€ Z}. The 2-D system X is internally
stable [2] if, given any bounded sequence { x(i, — 1), i € Z}, the
state evolution (4) satisfies

lim  sup {{lx(n—"h,h)|} =0.

n—+w heF

(5)

A necessary and sufficient condition for internal stability [2] is
that the polynomial det(/ — 4,2z, — A4,z,) is devoid of zeros in
P

Detectability and stabilizability are the structural properties
needed for connecting BIBO and internal stability of 2-D sys-
tems. We recall [4]-[9] that a system Z is detectable if there exists
an asymptotic observer of the state x (A4, k) whose estimate error
vanishes as h + k — oo and is stabilizable if there exists a 2-D
system X such that the state feedback cennection of Fig. 1 is
internally stable.

The role played by detectability and stabilizability in the
stability analysis is based on the equivalences stated in Theorems
1 and 2.

Theorem 1. The following facts are equivalent:

(i) 2 is stabilizable.

(11) The matrix

[Bizy+ Byzy | I— Az — A,2,]

(6)

is full rank for every (z,,2,) € #,.

(iii) There exist rational matrices M(z,, z,) and N(zy, z,), whose
denominators are devoid of zeros in P, such that the Bézout
identity

(B2 + Byzy) N(zy,25) + (I = Ay2y = Ayzy ) M(21,25) = T
(7)

holds.
Proof 1)=1i): Let 2 be a 2-D system represented by the
following state equations

X(h+1,k+1)=A%(h, k+1)+ A,x(h+1,k)

+Ba(h,k+1)+Byu(h+1,k)
F(h,k)=Cx(h,k)+ Du(h, k)

where u(h.k)€R”, y(h,k)ER, and assume that the feedback
connection of Fig. 1 is internally stable.
Defining

A,+BD BC
B A,

' i

2
- =

i=1,2 (8)

the internal stability of the feedback system is equivalent to
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assume that the matrix
I-Fz,— Fz,
I—Ajz;— ~(Byz;+ Byz,) D
—(Byz;+ Byz,)

_ Ay2,

(9)
is full rank for any (z,,z,) in #,. Then (6) is full rank in &,. For
example, assume

o[ I— 420 — 4,20 Bzl + Byz§| =0
for some nonzero v in €" and (z,zY) in £,. This implies
(o7 0] (I— Fz) = Fz3) =0, which is impossible since (9) is
full rank.

i) =iii): Let S;(z;,2;), S5(z;,25) -+ S,+1(2;, z3) be the sub-
matrices of order »n in (6) and s(z,2;), s3(z0,25) -
5,.1(21, 2,) be their determinants. Denote by # C C[zy,z,] the
ideal of polynomials p which satisfy the following equation
(1= Az, — Ay 2,) M(21,2,) +( B2y + By2) N(zy, 7,)

=Ip(z,2,) (10)

for some polynomial matrices M and N.
First of all we shall prove that the algebraic variety ¥7(£) is
the variety of the polynomials 5),5,," -, 8, 1:

V(f) = 'V(S]?SZ:” '!Sn+l)'

From the definition of S, (z;,2,), k=1,2,---,n+1, it is clear
that there exist constant matrices M, N, such that

Si(z152) = (1= Ay, — Ay2,) M, +( Bz, + By2;) N,
Then, postmultiplying both sides by adj S, (z,,z;) yields
si(z1,22) T = (1= A2y~ 4;2,)[ My adj 5, (2, 2,) ]
+(Byz, + Byz,)[ Neadj Sy (21, 2,)]
which shows that s, isin # for k=1,2,--+,n+1 and
P8 B 7 B VD L)

To prove the inverse inclusion, choose any nonzero polynomial
p in £ and polynomla] matrices M and N satisfying (10). Then,
for any (z2, 25 9y& ¥( p), we have
(20, 29) (a8
142 2)

p(z.2)

Therefore, the column span of

(B}z]“+Bzz§ +(I—Alz1 Azzz) (

[I— Ayz0 — 4,20 Bz + Bzzg]

z¥) cannot be a common zero of
YEY (81,55, 8,41)

is C" and, consequently, (z7,
Sy, 82, " +5,,,. This means that (z7,z9
and proves the inclusion

F(FY2H (81,85, 8 i)

Next step is to prove that there exists a polynomial ¢(z,,z,) in
# such that " (g)NF#, =2

Let ¢ = GCD(sy,9,, ", 5,,,) and factorize the polynomials s,

n+1
as

o

8, SR F R Sy S Ry
Then
Y(E)Y=7()U¥ (h, -
where ¥7(hy,--
points {(a,. b)), i=1,2,--
cause of 11).

2 hn+1)

. h,.q) is a conjugate symmetric finite set of
-, k} which does not intersect &, be-
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Define the polynomials d,(z,,z,), i=1,2,---, k as
(n—a)(zn—ar), if Ja]>1
di(z,2,)= .
(z2=b)(z—8F),  iflgl<l.

The polynomial

k
d(z,2;) =c(2,2,) _Ijld;(zi:zz)

belongs to B[z, z,] and ¥7(d) 2 ¥ (#). By Hilbert Nullstellen-
satz, d" € # for some integer h, so that we can assume ¢ = d".

Finally, by the definition of #, there exist polynomial matrices
M(z,,z,) and N(z,,z,) such that

(Byz + Bzzz)ﬁr(zlszz)*(I*Alh = Azzz)M(zuzz)
=19(2,2;)
and (7) follows by assuming
M(z,2,) =M(Z1szz)/Q(21a52)
N(z,2,) =ﬁ(zl’22)/Q(zlszl)'

i) = i): Let d(zy,z,) be the least common denominator of
the elements in M(z,,z,) and N(z,, z,). Then

(Byz + Bzzz)ﬁ(zlszz)+(1“‘4121 - Azzz)ﬂ_{(zi’zz)
=Jd(z,z,)
where N=Nd and M= Md are polynomial matrices and
d(z,,z,) is devoid of zeros in #,.
Since M(0,0)=1d4(0,0)+ 0, M(z,,z,) is nonsingular in #,.
Then the row matrix
= = -1
—N(z,2,) M(z,2,)
= [det ﬂ?(zl,zz)]_l{ — N(z,2;)adj M(z,2,)]
can be realized [3] by a 2-D system == (4,,4,,B,,B,,C,D)
where
det(I— Ayz,— Ayz,) =det M(z;,z,).

Furthermore, F; and F, in (8) are the state updating matrices
of the system obtained by connecting X and £ as in Fig. 1, and

det(] — Fiz; — Fyz,)
=det(J— Az, — A4,2,)

det|[1— Az~ 4,2, ~(Byz,+ B,2,) D

—(Byz,+ B,z,)C(I - 4,z szzz)_](ﬁlzl + E’zzz)]
=det(]— Ajz;— Ayz,)

-deL[I—Alzl — A,z +( Bz + Bzzg)ﬁﬁfl]
=det(I— A4;z, - 4,2,)

~det[(T— A,z — Ayz,) M +( Bz, + Byz,) N]det( M 1)
=det(]— Az, — A,z,) det(Id(z;,z,)) det(M ™)
=d(z,2,)". (11)

This implies that the feedback connection is internally stable.

Dual arguments can be used to prove the following theorem
(see also [7], [9]).

Theorem 2. The following facts are equivalent:

1) 2 is detectable.

i) The matrix

(12)

is full rank for every (z,,z,) € &,.
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i) There exist rational matrices P(z,,z,) and Q(z,,z,), whose
denominators are devoid of zeros in 2, such that the Bézout
identity

P(2,,2,)C+Q(z, ) (I~ A7y —Ayz) =1 (13)

holds.

III. THE MAIN RESULT

Let us first introduce the following lemma:
Lemma: Assume that the 2-D transfer matrix

+ oo
W(z,2;) = ): W.'szff
ij=0
is BIBO-stable, and let u(h, k) be a bounded input satisfying:
i) u(h,ky=0 forh+k=<0

Lm sup|lu(n—1i,i)||=0.

n—++w ;=7

ii)

Then the output function is bounded and satisfies

lim sup|jy(n—i,i)||=0.
n— +oo IEZ
Proof: Let
a, & sup|lu(n—i0)|
ielZ
and

n
B2 X W, il
k=0

For any (h, k), with h+ k>0, the input-output relation in
time domain is

y(hk)y= X W u(h—tk—r1). (14)
720
t+rsh+k
We, therefore, have
ly(h k)< 2 W (k=1 k—7)]
r,7=0
t+T7<h+k
< E H[’Vr,wna(h+k)—(r+1)
t,7=0
t+T<h+k
and introducing the new variable r=1¢+ 17
h+k r I+ k
Iy(h k)< 2 ( )y ||Wf.,-;1|) Bihakirer™ 2o B fi=p-
r=0\r=0 r=20

So, defining
n
Cn = z bk an —k
k=0
we have

n
suplly(n=i,0)ll< ¥ ba, , =c,.
ieZ r=0

Since {a, } is infinitesimal and { b, } is absolutely summable by
the BIBO stability hypothesis, the sequence { ¢, } is infinitesimal,
and the proof is complete.

We are now in a position to prove the main result. Theorem 3
shows that 2-D detectability and stabilizability are good general-
izations of the analogous 1-D concepts, in the sense that they
relate internal and external stability in the same way as in 1-D
case.

Theorem 3: The following facts are equivalent:

1y System (2) is internally stable.

i) System (2) is detectable and stabilizable, and its transfer
function (3) is BIBO-stable.
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Proof (i) = (ii): Let system (2) to be internally stable. Then
the denominator of the rational matrix
_ adj(I — 4,2, — 4;2,)
T det(I— Az, — Ayz,)

-1
([_Alzi = Azzz)

is devoid of zeros in &,.
The Bézout identities (7) and (13) are satisfied assuming

P(z;,2,)=0 N(z,2,)=0

Q(Ziszz):M(thz):(I_Alzl‘Azzz)_l-

Hence, by Theorems 1 and 2, system (2) is detectable and
stabilizable. To complete the proof, note that the denominator of
the transfer function (3) is devoid of zeros in 2.

(i1) = (i): Assume system (2) to be BIBO-stable, detectable
and stabilizable. Then, by Theorems 1 and 2 there exist rational
matrices P,Q, N, M in z, and z,, with denominators devoid of
zeros in &), that satisfy the Bézout identities (7) and (13),

From (7) and (13) one gets

(P—ii—dysy) =04 PO —tit; —Agts) ~ (15)
(I- Az, — Ayzy) !
= M+(I—Ayz— Ay2,) (B2, + Byz;) N, (16)
Substitution of (16) in (15) gives
(I = Ayz; = dugy) |
= Q+ PCM+ PC(I~Ayz,— Ayz,) ' (Byz,+ Byz2,) N
and, recalling (3), we get
(I— Az, —Ayz,) '=Q+PCM—PDN+ PWN. (17)

This is a BIBO stable transfer matrix. In fact P,Q, M, N can
be viewed as BIBO stable transfer matrices, and BIBO stability is
preserved under multiplication, by Cauchy’s theorem [10] on the
product of absolutely summable series.

Consider now the free state evolution of system (2) starting
from any initial global state %, associated with a bounded
sequence { x(h,— h)} of local states. Then the state evolution is

-1
X(z),2) =(I -5y - Ayz) %,
=(Q+ PCM — PDN+ PWN)%,.

It follows that x(h, k) can be viewed as the output of a
multi-input, multi-output BIBO stable 2-D filter with transfer
matrix (Q + PCM — PDN + PWN), driven by the input

a(h,k)={x(h’7h)’ ifk=—nh
. elsewhere.

Then #(h, k) satisfies the hypothesis of Lemma 1, so that

lim  sup {|x(n—1i.i)|} =0.

n—etow ez

This proves the internal stability of system (2).

Remark 1. The key of the proof above is (17), which directly
depends on Bézout identities (7) and (13). This equation allows us
to relate the free state evolution, expressible in terms of (I — A4, z
~ A,z,) ', with the forced output evolution which is expressible
in terms of the transfer function W(z,, z,).

Remark 2. In [11] it was proved that a realization X =
(A, A,, B, B,,C) of a transfer function W(z,,z;)=p/q, p
and g coprime, is internally stable if a) W(z,, z,) is BIBO stable
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and does not exhibit nonessential singularities of the second kind
in &, and b) Z is a coprime realization, i.e,, C, I ~ 4,2, — 4,2,
are left coprime and B,z + B,z,, I — A4z, — A,z, are right
coprime.

In fact, b) implies det(f — 4,2z, — 4,2,)=q (see [12]) and a)
implies that ¢ is devoid of zeros in the closed polydisc 2.

Assumptions a) and b) are more restrictive than condition ii) in
Theorem 3. Actually coprimeness implies that matrices (6) and
(12) are full rank in €2\ &, except possibly a finite set of
points, while detectability and stabilizability refer to the rank of
(6) and (12) in £, only.

Theorem 3 reduces the problem of constructing an internally
stable realization of a BIBO stable 2-D transfer function to
obtaining a detectable and stabilizable realization.

Necessary and sufficient conditions for the existence of a
detectable and stabilizable realization are provided by the follow-
ing Theorem.

Theorem 4. Let 2 be a detectable and stabilizable realization of
the transfer function

( ) X Py
plz.2 i+j>0
W(zhzz):#:ﬁ)ﬁ T (18)
q(z,2;) E 4,213
i+j20

with p and q coprime and gy, =1. Then p and g have no common
zeros in P,. Conversely, let W(z,,z,) as in (18} and assume p and
q having no common zeros in P,. Then W(z,,z,) admits a
detectable and stabilizable realization.

Proof: Let £=(A4,,4,, B, B,,C, D) be a detectable and
stabilizable realizable of W(z,, z,). Detectability and stabilizabil-
ity properties imply (17). This can be written as

adj(I— Az, — A,z,)
=(Q+ PCM— PDN)det(f— Az, — A,z,)
det(f— Az, — A,2,)
q(z1,2,) .

+ PNp(z,,z,) (19)

By the coprimeness assumption on p and g, det(/ — 4,z; —
A, z,) factorizes through g(z,, z,), so that we may express (19) as

adj(I— Az — 4,z,) =(Q+ PCM — PDN)r(z;,2,) (2. 2;)
+ PNr(z,,z2:) p(z.2,) (20)

where r(z),z,)=det(] — A,z — 4,2,)/q(z,, 23).

Assume now that both p and ¢ vanish in (z),z%) € 2,. Since
the matrices P, Q, N, M have no singularities in (z/,z5), both
sides of (20) are well defined in (z,z9), and p(z{.z0)=
g(z2,z9) =0 implies

adj(1— 4,20 — 4,28) = 0.

We, therefore, have that every minor of order (n—1) in (/-
Az — A529) is zero, ie.

rank [ 7— 4,20 — 4,29] <n -2 (21)

Then neither the (n+1)X»n matrix (12), nor the n xX(n+1)
matrix (6) is full rank in (2], zY), which contradicts the detec-
tability and stabilizability hypotheses (see Theorems 1 and 2).

Conversely, the assumption ¥'(p,g)N% =& implies that
W(z,,z,) admits a stabilizable and detectable realization, as we
shall prove by direct construction of such a realization.

The proof is divided in 3 steps.



952 TEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-32, NO. 9, SEPTEMBER 1985

Step 1. The 2-D system Z characterized by the following
maltrices:

0
0
0
— Yan
= 00 0 0 0
0 0 0 0 0
0 0 0 1 — G
0 0 0 0
0 0 1 G20
B o1 - 1o |
~ Gos
3
— g2
— 5
Ay, = 1. ¢ 00 ~ 4o
0 1 0 0 - 412
0O 0 1 0 ~qn
0 0 — qoz2
0 1 0 —qn
L 1 0 —gp |
i 2 ] F ) i
d Poa
0 Pi3
0 P2
Pao P31
Bi=1] 0 By=1 py
0 Piz
Pio n
0 Po2
P2 Pn
L P10 | | Por |
c=[0 0 0 1] D ={P00] (22)

is a realization of W(z,z,). In fact det(] — Az; — A,z;)=
g(zy,z;), and the last row of adj(f — 4,2, — A,z,) has the fol-
lowing structure:

[oo2d 222 2,28 2} 22 mz 2 5 7 1].
Step 2. System (22) is detectable. In fact
g
P T Az, — Ay,
C
nk | === mmmsmm oo 23
- [1_(A1+L1C)21(A2+ L,C)z, (23)

for any pair of vectors L,, L,. Assuming

Li=[+ 0 0 dy 0 dy dy]

L?,_F:[ e dp dy dy dyy dy dm]
we have det[] — (A, + L,C)z, — (A, + L,C)z,]=1, so that (23)
is full rank for any (z,,z,)€ CxC.

Step 3. The matrix [ Bz, + Byz5|] — Az, — A5 2,] is full rank

if and only if (z,,2,)€ ¥ (p.g). In fact, consider (z,,z,) in
C XC and let v be a real vector indexed in the following way:

& P(JE}]

ph=[- wy vy U vy Uy

such that
o[ ByE + Byz, | — A7 — Ay7,] =0
or equivalently,

vT( B 2,2, + B,Z,) =0 (24)

oT( I~ 42— 4;%;) =0. (25)
By using (22), it 1s easy to check that (25) implies

U1 = Z;Ug Uy = Z3Ugg
Uyo = 2,09 = 212%(1

U1l = 23l T 225100

s 22
Uz = 22Ug1 = 27U

Hence v turns out to have the following structure:

=32 =

=2 Z = 5
2y Iy i3 1]

T—— ERE
g _5’00[ £3

Furthermore, substituting (26) in (24) and (25) and recalling
(18) and (22), we have

(26)

Vo0q(Z,2,) =0
Um(P(Elvfz)—qu(fzsfz)):0 (27)

Now, if (2,Z,) € ¥ (p,q), (27) implies vy =0. Then v is
zero, which implies the full rank condition.

On the other hand, if (z,,z,) € #¥7(p, g), assume 1y =1, so
that v is a nonzero vector that satisfies (24) and (25). This implies
that the full rank condition is not satisfied.

We, therefore, have that ¥"(p,q)N%, =@ implies that the
matrix (6) is full rank in 2, and hence that I is stabilizable.

Goodman gave some examples of BIBO stable and BIBO
unstable 2-D transfer functions whose denominator and numera-
tor have common zeros in the distinguished boundary 7. In all
cases, the existence of common zeros on T implies that detectable
and stabilizable realizations do not exist. Then, by Theorem 3,
any realization of those transfer functions is internally unstable,
independently on their input-output stability behavior.

Moreover any BIBO stable transfer function W(z,.z,) having
nonessential singularities of the second kind on T does admit
neither an internally stable realization nor a realization which can
be stabilized by output feedback. The reason is that stabilizability
and detectability are necessary conditions for output feedback
stabilizability.

It is interesting to note that, for the case of one nonessential
singularity at (+1, +1), the (zero initial state) external stability
can be robust with respect to parameter quantization error [13].

V. CONCLUSIONS

The Goodman example of a transfer function whose de-
nominator vanishes in #, was taken here as the starting point
for clarifying the connections between BIBO and internal stabil-
ity for 2-D filters and hence, in the light of state space realization
properties, for pointing out the peculiar character of the Good-
man’s transfer function.

Dealing with external stability presumes that we have assumed
zero initial conditions. However, nonzero initial conditions may
arise from parasite excitations which cannot be incorporated into
the input-output description. The internal description through
the state variables permits us to incorporate the effect of this type
of phenomena and the internal stability accounts for the corre-
sponding dynamics.
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The state model properties relevant in this matter are detect-
ability and stabilizability which are characteristic of every inter-
nally stable realization. Using Bézout’s identities (7) and (13) the
results presented in the paper for the single-input single-output
case can be extended in a straightforward manner to the multi-
input multi-output case.
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