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The paper is concerned with the problem of construc-
ting feedback compensators which ensure stability pro-
perties of a 2D system. The feedback invariant subset
of zeros of the closed loop characteristic polynomial
is specified and cenditions are stated for the existen-
ce of stabilizing compensators.

Introduction

The first papers dealing with the class of 2D systems

1-4
appeared in the literature nearly ten years ago and

one of the aspects that this theory afforded from the

5,6
beginning was the stability analysis . Nevertheless

only very recently the stabilization problem using feed

C o
back compensators has been tackled Having in mind
the 1D systems theory,static feedback compensators have

been considered first but,differently from the 1D situ-

ation,they have shown poor efficiency

The dynamics of 2D systems depends on two independert
variables,so the idea of using compensators which are
in some way static with respect to one variable and dy-
namic with respect to the other was also pursued. The
efficiency of the compensators can then be considerably
improved,but the system resulting by feedback connection

does not keep any lcnger the quarter plane causality7
A deeper understanding of the techniques related to
polynomial matrices in two indeterminates and their con
nections with system properties allowed to tackle the -
synthesis problem of dynamic feedback compensators that

are realizable by 2D systems

Our aim in this contribution is to discuss the stabi
lization problem by using state and output feedback com
pensators. We shall present conditions for the existen:
ce of such stabilizing compensators and the relative
constructing techniques. As we shall see,particular in-
terest deserves the set of zeros of the characteristic
polynomial of the resulting feedback system that are in
variant under feedback dynamic compensation. -

Preliminary definitions and results

In this section we shall briefly review some defini-
tions and results about polynomial and rational matri-
ces in two indeterminates,that will be used in the fol-
lowing sections.

Also we will introduce the state eéuations of 2D sy-
stems and some properties related to the stabilization
problem.

1579

35131 pPadova ITALY

Consider a strictly proper transfer matrix w(zl,zz)

pxm
E\R(zl,zz) and let

-1
NR(zl'zz)DR (21,22) (1)

be a right matrix fraction description (MFD) of W. The
polynomial matrices NR and DR are said to be right fac—

. =4 - i
tor coprime (and consequently NRDR is a right coprime

MFD) if for any polynomial matrix X{zl,zzj such that

z

n
N
I

ﬁR(zl,zz}X(zl,zz)

o
N
N
0}
w]}
W
W
=
w
N

with &R and ER polynomial matrices,we have det X(zl,zz)
= const.
; 10
The following facts are equivalent
(1) NR and Dﬁ are right factor coprime

(ii) the Bézout equation
XD +#YN =1 (2)

is solvable both with XR and YR having elemernts in

R(zl)[22] and in R{zzl[zl].

(iii) the matrix
N (z ,z.)
R 1 2
(3)
D _{z ;2.9
R 1 2
is full rank for any generic point of ¥,¥ bexz the al-

gebraic curve associated with the equation

det D_( ) =0
e . 21,22

over the complex field @

A rational matrix W(zl'ZE) is strictly proper if and

only if, for any right coprime MFD NRD = W, we have

R
(i) N _(0,0) =0
R

(ii) det DR(O,O} #0

We shall say that two polynomial matrices NR and DR

are zero right coprime if
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N (z ,z.)
12
rank = (3)

D
R(zl '22)

is full for any (zl,zz) in ¢xC. It can be shown that NR

and DR are zero right coprime if and only if there exist

xR and . with elements ian[zl,zz] such that the Bézout

identity (2) holds.

Clearly all definitions and statements have analogs
for left MFDs.

In general,factor coprimeness assumption does not im
ply zero coprimeness. In fact,even when NR and DR are

factor coprime,the rank of (3) may be less than m
on a finite subset of ©xC . The elements of this set,
called "rank singularities",are the intersections of
the algebraic curves associated with the minors of ma-

ximal order of (3).

11
Since the set of rank singularities does not depend

on the (right or left) factor coprime MFD of W,in the
sequel it will be denoted as ¥ (W) .

The state updating equations of a 2D system Z= (A1
Az,El,Bz,C,D) are given by6
x (h+1,k+1) = Alx(h,k+1) + Azx(h+1.k)
+ Blu(h,k+1) + Bzu(h+1,k) (4)
y(h,k) = Cx(h,k)

+ Du(h,k)

n ; m
wnere x{h,k)€ R 1is the local state, ulh,k)€R ,y(hk)

at (h,k) € 2ZxZ
and A ,A_,B ,B_,C,D are real matrices of suitable sizes

EIRP are the input and output vectors

172 1 2
Denote by
+o :
¥ w i, xti,sdige.
0 2 12

-

the global state on the separation set

%b = {(i,§): i+j = 0}
and by

wi zd = 3 - wlEdle o

12 o 12
i+320

i3

Ulz ,z.) = £ owafd, )z =z

1772 - 12
i+3z0

R S

Y(zl,zz) = . ; y(l,j)zlz2
i+jz20

the state,input and output functions respectively.
Then from (4) one gets

e e
x(zl,zzl = (1 Alzl Azzz) Jb+ (3121+be)0(zlﬂzf
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Y(zl,zz) =0 X(zl,zz) + D U(zl,zi

Assuming zero initial conditions ;fb = 0,the input-

output map of L is given Dby

Y(zl,zz) = Hz(zl,zz)u(zl,zz)

where

A -1
w A = C(I-A z -A_Z Bz +B z_}+D
¢%10%) (1-n2 -A2,) (B2 +B)2))
is the transfer matrix of .

Given a rational matrix W(zl,zz),E is a realization
S - if W =W W2, )
of Wz ,z)) if Wi (z,,2,) =W(z,,2,)

A system L is strictly causal when D=0 and is (in-
ternally) stable with a degree of stability o(p>1) if

for any set of bounded initial conditicns X , the free
o
state evolution satisfies
) h+k
lim x(h,k)p =0
htk + =
A simple characterization of the degree of stability

9
of £ is given by the following Theorem .
Theorem 1. A system L is stable with a degree of sta-
bility p{p>1) if and only if its character:istic poly-
nomial

A = < i
T det (I Alzl AZZZ} (6)

does not vanish con the closed polydisc

P = Uz ez lz, | <os |z [ 20} . (7)

Let now introduce the following structural proper-
ties that will play an essential role in the construc-
tion of feedback compensators.

Definition 1. I is p-stabilizable if and only 1f the

polynomial matrix

B,z +B_z (8)

I-A -A 2
C 121732 BiE TR

has full rank in the closed polydisc 92.

T is
polynomial matrix

pDefinition 2. p-detectable if and only if the

I-A z -A_z
2%2
1 (9)

c
has full rank in the closed polydisc @ .
o

In Definitions 1 and 2 p-stabilizability and p-de-
tectability have been introduced using abstract argu-

. ments. Nevertheless they can be related to concrete

properties of the dynamics of L. In fact, L is p-sta=



ple if for any given initial local state x(0,0),

3 piliza
chere exists an input u that produces a state evolution

~h-k
% (h,k) whose norm is bounded by < ¢ , ¢>0, h,k non

negative.

Ssimilarly, I is p-detectable if the norm of every
free state evolution x(h,k), producing an identically

-h-k
zero output function, is bounded by ¢ P , 20, h,k
nonnegative.

The case p=® in pefinitions 1 and 2 deserves to be
In fact if (8) has full rank for all
then for any initial state %x(0,0)

evidentiated.

(21,22) ecxC, there

exists an input u such that the corresponding state
evolution goes to zero in a finite number of steps. In
this case L will be said controllable. Similarly, if

{9) has full rank for all [z 2, JEwxC, every free

state evolution that produces identically zero output,

goes to zerec in a finite numper of steps. Then I will

be said causally reconstructiblelz.

As in 1D case these properties are strictly related
to state estimation and control problems. Nevertheless
the 1D and 2D theories differ

some important facts.

to this respect by

It is well known that any proper rational, matrix
in one indeterminate W(z) can be realized by a 1D sys-
tem that is p- stabilizable and p-detectable for any
p>1. Moreover any minimal realization of W(z) is join-
tly reachable and Dbservable,and a fortiori p-stabili-

zable and p-detectable, for any o>l.

The situation is quite different for 2D systems,

where jointly p-stabilizable and p-detectable 2D rea-

2
exist. This is a direct consequence of the following

lizations of a proper rational matrix w(zl,z ) may not

1
result

=1 i
Theorem 2. Let NRDR be a right coprime MFD of a 2D

proper rational matrix W and L :(Al,Az,Bl,BZ,C) be a
Denote by .# and .4 respectively the

(8) and (9) do not have full

realization of W.
subsets of (x C where
rank. Then we have

a) det DR divides dEt(I—Alzl_A z_)

2 2
b) HUN 2 V()
Moreover, the following facts are equivalent:

i t D = det(I-A 2z -A Z
(i) de = et 21 2)

(1i) M u.N = (W)
(iii) (c, I—Alzl—l-\zzz) (10)
and

(11)

i-p z -A_z_, B z +B Z
( 171 722 11 2 2)
are factor coprime.

In view of the regulator design, it is essential to

1581

point out that given any 2D proper rational matrix W
-1
and any right coprime MFD NRDR = W, it is possible to

1k
construct realizations E=(A1,A2,Bl,Bz,C,D)that satisfy

det D = det{(I-A z -A Z)
R 11

2: 2

Because of Theorem 9 these realizations have the
10) and (11) are factor coprime

of them does not

r
property that matrices (
and the subsets of €x & where one
have full rank are subsets of 17(W) .

Stabilization by state feedback and state estimation

The first problem we shall tackle in this section is
assuming that the state of a strictly
,C) is available, design a

the following:

proper system L= (A 'A2'Bi’E

2
2D system = (5 5 B,B E D

) so that the system of

fig. 1, obtained by state feedback connecting L and E

is internally stable.

fig. 1

The solution is based on the following Theorem.

Theorem 3. Let E(zl,zz) denote the greatest common

left divisor 14) of I-A .z -A Z nd B z +B_z Let
(geld) A

5

T(z .2 )]

= E(z.z 1%

[z-a (2R, ByE BY? ] )EJ(21,22)

22 11

and denote by .# the finite subset of TxC where [V T]
is not full rank. Then the characteristic polynomial
A (z ,z ) of the system of fig. 1 is multiple of

det E(z ,z ) and vanishes on A for any choice of I
Moreover given any polynomial q(21 2) vanishing on

A , there exist T and an integer r>0 such that

b 2,2, = o (z.,z.)det Elz,2,) (12)

2 1"72 17 2

w] .
roof. Let R § be a right MFD of the transfer matrix

of I such that




t S = det(I-A z -A._z
de et (I 12122)

Since

ﬁf = det E det (VS + TR)
noting that det(VS+TR) vanishes on .# proves the first
part of the Theorem.

Conversely, consider a 2D pelyncmial g vanishing
,V the submatrices of

on .# . Dencte by Li, i=1,2,...

maximal order of [V T]anquri_thecorrespondingn&nors.
i
By Hilbert Nullstellensatz, there exists an integer t

£
such that g belongs to the ideal generated by il,iz,..
gl
v

We prove now that there existmatrices S and R such
that

t

VS + TR = Inq (13)

matrices such that

I-A z -Az ) +P C=1g 14)
Q(I-a,z -A, 2) g (14
Then any causally reconstructible realization of the

- -1
matrix fQ{Elzl+Bzz£) ?] (Inq) furnishes an asymptotic

observer with a rate of convergence p.

The construction goes through the following essen-
tial ‘lines. Denoting by ﬁ(zl,zz) the gerd of (I—Alzl—

= C
Azzz) and C, we have
I—Alzl-Azz2 V(zl,zz) é( )
= z
c Tz, ,z.) 172
- 1772

for some polynomial matrices ﬁ(zl,zz) and Tl(z ,22). Let

1
now .4 be the (finite) subset of €x € where [§' T'] is
not full rank. Using similar arguments as in the proof
of Theorem 3, we obtain that given any polynomial g
multiple of det E and vanishing on 4" , there exists an

¥
integer r such that (14) can be solved with ¢ =q.
Hence, if .4 does not intersect # and det E does
o}

not vanish on @ , we can construct an asymptotic ob -
p

In fact, we can write the submatrices L, 6 as
i
server with a rate of convergence 0.
L. =VEK +T%Y;, i=1,2,...,Vv
i i i
so that: output feedback stabilization
2. I =L Aadj L, = Let [ = A A B L 4 B i 7, C) b tate obser-
i*n e = (1'2’[11] Lz gir @) be @ sta 51
r of I with t i + 2] (I g
. KiAdj L +T Y.84] L, ver o wi ransfer matrix [Q(Blz1 Bzzz) 1 { nq)
i i 3 = - = = = =
and let Z::(Al,AZ,Bl,Bz,C) be a state feedback control-
Then we have ) -
ler with transfer matrix -NM
= ¥ v
q In = EiaiI =V I KialAdj Li + The state updating equations of the feedback system
i n
1 1 with a combined observer-controller compensator are
v iven b
4TI yaadiL, E ¥
i A i
% (h+1,k+1) A, 0 B,C I_x(h,k+1)
so that (13) is solved assuming - ~ o i -
x (h+1,k+1) = LC Al Blc x(h, k+1) |+
g = = -
§ =1 XaadjlL, % (h+1,k+1) 0 BC A x{h, k+1)
S . ¢ i 1 1 =
i
AV
T =1, Y a adj L, = -9 -
i 11i i A 0 B C x(h+1,k)
1 2 2
+|lLec A B.C x(h+1,k) |+
The integer r in (12) can be taken as r=tn. 2 2 " )
L o B.C A L x{h+1,k)
Corollary. L is p-stabilizable if and only if det E
does not vanish on 9; and # does not intersect 32. i 5
‘ ; 1
B h,k+1) + h+1,k
When the state of L is not available, it can be esti- * 1 v iRy ) B, il k)
mated from the knowledge of system inputs and outputs, LO 0
by constructing an asymptotic ocbserver. The technigue
. ; 12 x (h,k)
is based on the following theorem .
y(h,k) = [c o 0] % (h,k) (15)
Theorem 4. Let q(z, ,z be a polyncmial devoid of zeros -
Theorem 4. alz, .z,) poly x(h, k)
in 52 (p>1) and P(zl,zz) and Q(zi,zz) be polyncmial
1582



The characteristic polynomial of system (15) is then

A(21,22) =
-A z -A 0 -(B z +B_z_)C
Tk BymSoka ke
det|-(L z +L_z_)C I-A z -A -(B B c| =
e { 121 222) 121 222 ( 1z1+ ZZZ)C
-(B B c -A z -A
0 (Byz Bz 00 IRy

- det (I-A z -A z )det(I-A z -A z )det[1-A z -A z -
bz B2} 1217R% et(1-a z -2z,
- - = - - -1 - - ~
-{B, 2 +B ClI-A -A L +L C(I-A -A_Z
(B2 +B,2,)C(I-A z -R)z)) (L2, iy T B~ Ty)
I - -1 - - =
B z +B C-(B z +B 2z _)C(I-A z -A B z +B z_)C
(B2 5B, Joc (B2, B R ICU SRy 222)(12122)]
(16)
Recalling the structure of the transfer matrix of
the observer and the equation P(zl,zz)CA-Q(zl,zz)(I—
- -A
Alzl 222
hand term of (15) becomes:

=1 &(zl,zz), the last factor in the right.

= - - - . _1 ™.
et |I-A -2 -(B z Jg(I-A -A Z B .z _+B C
det[1-A z -a.2,-(B,2 48,2, a(I-R 2 =B, i 222)]

- - - -4 -1
=det (I-A 2z -A )det|I+g(I-A z -A_ Z (B z +B_z_ JNM
eEllmE 2 R (1+qz-az -a2,) {5y ! ]
—det (I-A z -A 2z )det(I-A z -A_z )det|(I-A z -A z )M +
et (I-a z -3 2,)det( 1122)8[( 12175
+ q(B z +B_z )N]det Mu1
A

So, the characteristic polynomial is given by

- - - - -1
det (I-A z -A_z )det(I-A z -A z )det M
11 22 11 22
detr(I—A zZ -A_2Z )M~r‘(B z +B_z )Nj
5 171 7272 e &
Now, Lf the state feedback controller is a realization

_1 - -
of -N M with det M= det(I—Alzl—A z_), the zeros of the

22
characteristic polynomial coincide with the zeros of

det (I-A z_-A det[(1-A z -A M+
EUHER e Ay, ) [i-az,-202)
{(17)
q(B z +B N
+ S{E % A O]

For any M and N, the second factor in (17) vanishes
on 4 , on the zeros of det E and, in case, on further
zeros common to i and det(I—Alzl-Azzz).

Now, since we can realize observers such that the

zeros of det(I-3 z —izzz) coincide with those of g, the

11

variety associated with the characteristic polyncmial
o~

of the whole system A(zl,zz} can be arbitrarily assi -

gned, provided it contains the varieties associated with
det E, det E and the sets 4 and A . In particular, if

C and (I—Alzl—Azzz) are right factor coprime and

-4 B
2z2) and lz

~pertnae il

e

(I-A z +B z are left factor coprime, the

11 1 722
variety of 5(21,22) is only constrained to contain M

L S S

and 4 .
i These constraints cannot be further weakened. This
descends from the properties of the characteristic poly-

nomials of output feedback systems and from the fact
that 5(21,22) coincides with the characteristic polyno-

mial of the system we get by feeding the observer with
the pair (y,y) rather than (u,y)}. The system we obtain

in this way has the structure of a system with dynamic

11
output feedback, whose characteristic polynomial
nishes on # , .4° and on the subsets det E=0
det E=0.

va=

and
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