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CONTROLLER DESIGN FOR 2D SYSTEMS
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In this paper the problem of constructing cutput feedback
compensators for 2D systems is considered. The bounds on the
algebraic variety associated to the closed loop characteristic
polynomial are evidentiated and an explicit technique for
synthesizing the compensator is given.

INTRODUCTION

Very recently some papers dealing with 2D systems have been concerned with the
problem of constructing dynamic compensators having observer-controller structure

L1 s

The principal tool considered for solving this problem is constituted by 2D ana-
logs of the polynomial matrices involved in the PBH tests for controllability

and reconstructibility. In particular, the rank analysis of these matrices provi-
des the bounds on the performances of asymptotic observers and state feedback
controllers.

The aim of this paper is to analyze the 2D output feedback scheme using the poly-
nomial matrix approach and to investigate what is the structure of the characte-
ristic polynomial as the output feedback compensator is varied. Moreover we shall
introduce a general procedure for synthesizing the compensator.

In this framework the 2D analogs of the polynomial matrices involved in the PBH
tests play a fundamental role, in the sense that the unique constraint on the
variety of the characteristic polynomial is that it has to include the set of
points where at least one of these matrices does not have full rank.

Obviously, this set depends on the system that realizes the transfer matrix. How-
ever, it contains the so called "rank singularities", that are characteristic of
the transfer matrix only, and are invariant both with respect to the realization
and to the output feedback compensation policy.

SOME PROPERTIES OF 2D TRANSFER MATRICES

Many papers appeared in the recent literature, concerning with the theory of
matrix fractions in two indeterminates /cee for instance 3 /. In the following

we shall briefly review some well known fundamental properties of  this class
of matrices with the purpose of stating notations and terminology. We shall
rather dwell upon the analysis of the so called "rank singularities" that provide
the extension to the matrix case of the non essential singularities of the second
kind for rational functions in two variables.
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As we shall see, rank singularities constitute the fundamental constraint we are
faced by, when we use output feedback technigues for modifying the dynamics of
2D systems.

Consider a strictly proper 2D transfer matrix W(zq,zp)€iR(z1,zp)P*™ and let

N (z,,z.)D_ (z,,z

piZ422,00 (252,) = W(z;.2)) ()

be a right matrix fraction description (MFD) of W.

*
The polynomial matrices Np and Dp ) are said right factor coprime (and, conse-
quently, NRD§1 is a right factor coprimeMFD) if for any polynomial matrix X
such that

N.=NX, D =DX

with &R and 5R polynomial matrices, we have det X = const.

The following theorem provides an extension of coprimeness condition to polyno-
mial matrices in two indeterminates.

Theorem 1 /3 / Let NRG;R[21:Zé]pxm and Dp= Rz1,2,]™" and consider the
matrix fraction NRD§1. Then the following facts are equivalent

(1) Np and Dy are right factor coprime;

(ii) the Bézout equation

XDp + YRNR =1 (2)

is solvable both with Xg and Yp having elements in R(zq1)[zo] and in
R(zo) [z1]5
(i11) Np and Dp are 1D right coprime both on R(zy)[zp] and R(zp) [zq];
(iv)
[Ny D (3)
is full rank for any generic point of ¥, ¥ being the algebraic curve
associated with the equation detDp=0 over the complex field €.

Assuming W(Z1,22) is strictly proper is eguivalent to require that every right
coprime MFD NRD§1 =W satisfies

(i) NR(0,0) =0

(1) DR(O,D) is invertible, so we can assume DR(U,O) =1.

Clearly, all definitions and statements have analogs for left MFDs.

We shall say that Np and Dp are zero right coprime if £3) has full rank for any
(zq,zp) €0 xC. It can be shown that Np and Dg are zero right coprime if and only

if there exist polynomial matrices Xg and Yg such that the Bézout identity (2)
holds.

(*) In the sequel the arauments z, and z» of polynomial and rational matrices in
1 2
two variables will be omitted, when unnecessary.
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In general, factor coprimeness assumption does not imply zero coprimeness. In
fact, even when Np and Dp are factor coprime, the rank of (3) may be less than m
on a finite subset of Cx(C. The elements of this set, called "rank sinagulari=-
ties", are the intersections of the algebraic curves associated with the minors
of maximal order of (3).

As a consequence of the following Theorem, the set of rank singularities does
not depend on the factor coprime MFD of W and for this reason it will be denoted

by ¥ (W).

Theorem 2. Let NRD‘} and D[1NL be right and left coprime MFDs of W. If ?}ﬁw)
and ¥| (W) are the (finite) subsets of 6x ¢ where [Ny Dy] and [N D] are not
full rank, then ¥p(K) = Wl(w)-

proof. By contradiction. Assume (zqg.zpg)€¥| (W) and (z1q,zpg)¢ ¥R(W). Consider
the Tine

21 = 2104-at

Z, = Zypt Bt

with « and 8 such that (4) does not intersect ¥p(W) and Tet NR(t)Dﬁ?(t) and
D£1(t)NL(t) denote the restrictions of NRD§7 and D[1NL to the line (4).

(4)

NR(t)D§1(t) is a 1D coprime MFD since [Np(t) Dé(t)]is full rank for every com-
plex t. On the contrary, [N (0) D_(0)] is not full rank, so Di1(t)N (t) is not
a 1D coprime MFD and

N (t)
DL(t)

L(t}R(t)
L(t)R{t)

N
D
where &L and bL are polynomial matrices, R(t) is notunimodular and 5[1(t)ﬂL(t)

is a left coprime MFD.
Then

(t) (5)

det DL(t) = det DR

On the other side, because of 2D coprimeness,we have

det DL(z1,22)

= det DR(Z1,22)
hence

det DR(t) (6)

1]

det DL(t)
Since

det D, (t) = det flL(t) det R(t)

(5) and (6) lead to a contradiction.

T are two right coprime MFDs and

As a consequence of Theorem 2 if NRD§1 and Ngﬁ‘ a
r(W), FR(W) and ¥ (W) their rank sin-

D[N, is a left coprime MFD, denoting by 7
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gularity sets, we have

’é(‘“ = 1L'(w) = ﬁR‘(w)

that proves the invariance of the rank singularities with respect to coprime MFDs.

COMNECTIONS BETWEEN ¥ (W) AND THE STRUCTURE OF REALIZATIONS OF NRD;{1

Consider a 2D system I :(A?,A2,81,BZ,C,D) given by

x(h+1,k+1) = Azx(h,k+1) +A2x(h+1,k) +B1u(h,k+1} +82u(h+1,k)

y{h,k}) = C x(h,k) +D u(h,k)

(7)

where the Tocal state x 1s an n-dimensional vector over the real field R, input
and output functions take values in R™ and RP, Aq,A2,B4,B,,C and D are matrices
of suitable dimensions with entries in R / 4 /.

Denote by
- i =i
25 = j:i x(1,-1)z122

the global state on the separation set

% = {(i,j): i+] = O}

0
and by
X(z1,22) = x(i,j)z}z% s U(z1,22) g X u(i,j)z;z;
i+j>0 1+320
) R
Y(z1,22) = I y(1,J)z122

i+3>0
the state, input and output functions respectively.

Then from (7) one gets

(I—A121—A222)X(z1,22)— (B1z€+8222)u(z1,22) = .?6 (8)

and

Y(z1,z Y= B X(z1,z ) +D U(z1,22}. (9)

2 2

Assuming zero initial conditions QB::G, the input-output map is given by

Y(z1,22) = wz(z1,22)u(z1,22)

where

-1 A
(812 +8.2.)+D = NE(Z1,22) (10)

C(I—A1z -Az 1%8,2,

172 2)

is the transfer matrix of I.
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A system £ is strictly causal when D=0 and is finite-memory if for any set of
initial conditions ¢, the free state evolution goes to zero in a finite number
of steps.

The following matrices

[T-A z, -
[L=h iz, -Rsz, sz1+8222] (11)
and
.
[ 1-A,z,-A z, ]
i "Ee | (12)
Lo

are of paramount importance in analyzing the internal structure of I and in de-
signing feedback control policies.

Matrices (11) and (12) are related to the notions of controllability and causal
reconstructibility / 1,2 /, in the sense that © is controllable if and only if

(11) is full rank for every (z7.zp) and is causally reconstructible if and only
if (12) is full rank for every (zy,zp).

The role played by the corresponding 1D matrices

[ 1-Az |
[I-Az  Bz] and {
c |

in defining how the dynamics of output feedback connected systems can be modi -
fied, is well known. Also, we can always realize a proper transfer matrix W(z)
so that (13) have both full rank for preassigned values of z, and in particular
for every z. In the latter case, the realization is controllable and reconstruc-
tible and dynamic output feedback allows to obtain arbitrary characteristic po-
Tynomials.

(13)

The situation is quite different in the 2D case, since there exist transfer ma-
trices w(zﬂ,zz) that cannot be realized by 2D systems having (11) and (12) of
full rank for every (z1,z5).

This is a direct consequence of the following Theorem.
. -1 .
Theorem 3. Consider a strictly proper transfer matrix W and let NpDp be a right

coprime MFD of W. If £=(Aq1,A2,B1,Bp,C) isarealizationof NRD§1and (z10:220)e ¥ (W),
then one of the matrices (11) and (12) has not full rank for (zqg.zpq).

proof. Given (z1U,220)6‘t(w), consider a straight line
2y =zg*at »  Z, = 2,5+ 6t (14)

where o and B are chosen so that det(I-Ajzq-Ayzo) is not identically zero on
this line.

Substituting (14) in the expression of the transfer matrix of ©, we obtain
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C(I-(A )=t (oA, +gA)) ! +£(aB, +88,))

1210%R2%20 1 *8A 1) (Byzyg+Byz, E aB,

- cvie) o) 2 )
where

v(t) = I-(A )—t(aA1+BA )

12102220 2

u(t) = 1‘[E}+BZZ +t(aB1+BBZ)

Now, letting R(t) be the gcrd of C and V(t), we have

C
V(t)

1

C(t)R(t) (16)
V(t)R(t)

and letting L{(t) be the g ¢ 1 d of V(t) and U(t), we have

1]

L(E)V(t) (17)
L(£)U(t)

V(t)
u(t)
Using (15), (16) and (17) we obtain

u(e) = ST (1))
where E(t) and ﬁ(t) are right coprime, ﬁ(t) and ﬂ(t) are left coprime and

V(t) = LOV(DIR(t) (18)
Considering NgDz! on (14) we obtain

-1 -
NR( 10 +at, 220+Bt) (z +at, z,. +8t) = NR(t)DR (t)

R 710 20

where

A
NR(t) = { 10+oct z, +Bt)

e

DR(t) +ot, z, . +Bt)

RZ10 20
If S(t) is the gcr d of NR(t) and DR(t), then

o)
—
o+
~—
1}

Using the identity

- ~_1 - _._1 =
NR(t)DR (t) = C(t)V (t)u(t)

and recalling the coprimeness properties involved, we have

det 6R(t) = det V(t) (20)
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Recalling that

-1 ]
NRDR = C{I—A1Z1—A222) (sz1+8222)

and that NR and DR are factor coprime, there exists a polynomial h(z1,22) such
that:

det(I-A1z1—A222) = h(z1,22)det Dp

which gives

det V(t) = h(t)det DR(t) (21)

Because of (18) and (20) we obtain

det L(t) det V(t) det R(t) =

det L(t) det BR(t) det R(t)

det V(t)

"

Now, recalling (19) and (21) we have

h(t) det S(t) det D(t) = det L(t) det D_(t) det R(t)

R
hence
h(t) det S(t) = det L(t) det R(t) (22)

Assume now, by contradiction, that both (11) and (12) have full rank for (z1q,2oq) -
Then [V'(0) C'] and [v(0) U(0)] have full rank. Consequently, since the pro-
duct matrix

| [v(0) ]
| R(0) = | |
1 | ¢ |

has full rank, R(0) has full rank too. Similarly, since

[V(0O)R(0) U(0)] =
V(o) u(0)]

-
—
=
e
—
-
—
[am]
~
=
—
o
-~
=
—_
[am=]
~—
P
[}

has full rank, so L(0) has.

On the other side, since the matrix on the right hand side of the following
identity

has not full rank and [ﬁ (0) 5R(Uﬂ has full rank because of the coprimeness of
Ngp(t) and Dp(t), it follows that S(0) is singular.

Now, letting t=0 in (22) we have
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0 = h(0) det S(0) = det L(0) det R(D0)
that is a contradiction since L(0) and R{0) are non singular,

We shall now characterize the realizations of the matrix fraction NRDé1 having
the property that the subset of E€xC where at least one of the matrices (11)
and (12) has not full rank, coincides with » (W).

The following Theorem provides the answer to this problem.

-1 ; ; ; ;
Theorem 4. Let NpDp be a right coprime, proper matrix fraction and let
L= (A1,A2,B1,BZ,C) be a realization of it. Then

z.-A.z.) (23)

det DR\ det(I—A1 17A75

and the following facts are equivalent:

(i) det(I—A1zq—A222) = det DR;
(i1) C(I-Azq-Apzp)~T and (1-Aq71-Apz2) ™1 (B1z1+Bpzs) are respectively right
coprime and left coprime matrix fractions;

(111) the subset of ©xC€ where at least one of the matrices (11) and (12) has
not full rank, coincides with ¥7(W).

proof. (ii) = (i) recalling Theorem 5.5 in 4_3_7, if in the following equality
1

1 -
1~A222) (BTZ1+BZZE) = NRDR

(C,(I—A121—A222)) are right coprime and ((I-Aqz1-Apzp),(B1z1+Byzp)) are left co-
prime, then det(I-Ajzq-Apzp) =det Dp.

C(I—A1z

In general, if only (NR,Dp) are right coprime, the matrix product C(I-Aqzq-A, i
(B1Z1+BZZZ) can be put in the form T V'1U, where (T,V) are right coprime, (y
are left coprime and det V| det(I-Aqzq-A2z5). Now using Theorem 5.5 in / 3_/,
we have

22)
sU)

-A.z.)

det DR\ det(I—Aiz1 225

(i) = (iii) denote by _# and 4 the sets of points where (11) and (12) have not
full rank. Then by Theorem 2 we obtain

F =M N ¥ (N).

To prove the converse inclusion, assume, by contradiction, (210,211) e 4 and
(z1gs29p) ¢ ¥ (W) and consider a straight Tline

z, . +at , z, = 2204—gt (24)

with o and g such that on that line, det Dp is not jdentically zero and {Né Dé]
has full rank. Then the restriction to (24) of NpDp', given by

- A N
+ot, z, +8t)D 1(zmmt, 220+Bt) = N_(t)D 1

20 R p{t)Dp (t)

NR(Z10
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is a 1D right coprime matrix fraction. Also, in the expression of the transfer
matrix restricted to (24), given by

1
C(I—Aa(z10+at)- A2(220+Bt)) (81(210+at)4-82(220+6t)) =

=C v'1(t)u(t) ;

the matrices V(t) and U(t) are not right coprime since by assumption [V(0) U(0)]
does not have full rank. ‘

Consequently det Dg(t) is proper divisor of det V(t), that contradicts the assum-
ption

det DR(ZT,ZZ) = det(I—A1z1—A222)

(i11) > (i1) since ¥ =¥7(W), & is a finite cardinality set. This implies that.#
and 4 are also finite cardinality sets and hence (C,(I-Aqzq-Apzp)) and
((I-Ayz1-Ayz5), (Byzq+Bpzp)) are factor coprime.

At this point a natural gquestion arises as whether there exist realizations having
the property that & coincides with ¥ (W). As we shall see, such realizations do
exist and the proof of Theorem 5 will also provide an explicit construction for
them. In fact it will be shown how to obtain realizations where at Teast one of
matrices (11) and (12) has full rank for every (zq1.,zp) (so I turns out to be con-
trollable and/or causally reconstructible) and #7(W) coincides with the subset
where the other matrix does not have full rank.

Theorem 5. Let NRD§1 be a strictly proper, right coprime MFD. Then there exists
a 2D system Z= (A1,A2,B1,32,C) that realizes NRD§1, i.e. Wp= NRDQT, such that

(i) [I‘Ajz1'A222 B?z1+8222] has full rank on ExC
I-Az -Az, 1
! has full rank on Ex & ~ ¥ (W).

[
(i1) |
L ¢ ]

proof. there is no restriction in assuming DR(D,U) =I,. Denote by ki, i=1,2,..
..M the column degree of the i-th column of

[N
b
L

R |
R |
that is the degree of the polynomial of maximal degree in the i-th column.

We can write

where
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1 ky Ky
I S Mt S
= w
L 0t
I D11 ....... DTm {
Dyt = | > Ny s
[ I— D |
and Dij and Ni'

indexed polynomial in -Dp+ I, and Np.

Introduce now the following matrices

o |
| "h-1 |
(h) | —;- ‘
An’ = | |
10 | My |
| eemmeamssaseprepass |
[ TR 0|
L0 et 0|
o |
| “h-1 |
I |
(h)
A" = . l
20 | N, |
| s |
|0 eeeeeieeeanann, 0 |
N T —— 0]
with
[0 0....0]
Mool |
i IJ. \
L B
1 0. 0]
o [l |
N. =
i 0 l
L T

are row-vectors whose elements are the coefficients of the (i,j)
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and define
Ay, = diag [A§g1) Aigz) e Aggm)]
Ay = diag [A§;1) AEEE) e Aégm)]
B, = diag [ngﬂ) Békz) e Békm)]

(kp) B(km)]

o i (k1)
B, = diag [52 BZ eee By

It is a matter of simple computation to show that
-1

(I-A1Dz1—A2022) (BTZ1+8222) =y
Assuming now
o = Rzt Ay, B Bizy By,
o = ,qsio + B DHT
we have
-1 . -1
(I-o#) @B = (I-4 -RBD.) % =
-1 -1
- ((1- B0 (1- ) )(1-2)) " & =
-1 -1
- (1~ ) (- B D (1- ))& =
-1 -1 _ -1
= (I-L%%) % (I-DHT(I-Jﬁb) 3 ) =
-1 -1
= y(z1,22)(I—DHTw) =y DR
Since
MO =N, DL =N (Iqu)_1gQ =
R'R ~ HT R~ HT -

Nygp (1= (A g#By D)z = (Ayg#B D)z, ) (By2,+By2,)

the matrices Ay =Aqg+BiDyT, Az = Apg+BoDyr, By,Bp,C=Nyr furnish a realization
of NgDR'.
The realization obtained in this way is controllable. In fact

- g = - - =
rank[I-.o/1 &) = rank[I 5B A)

= rank[l—cﬁgwéﬂj =

) MR Ca g - [ PPN (< N (7D TR
rank [diag{I I N i=1...m}|diag{B, ''z,+B, "'z, i T walil)

is full for every (21,22) since
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(ki)

[1-A] a2

(ki)
0 21— 20 z,+B

2, BT 172 EI’

has full rank for every (21,22).

We have still to prove that ¥ (W) is the set of points where
{’I—A1z1-A222 |
L c |

does not have full rank. Because of Theorem 4 it is enough to prove that
det(I-Aqz1-Apzp) = det Dp. This follows from the identities

det D = det(I-D _y) = det(I-¥D _)

R HT HT

and

det(I-&) = det(I—MO—QDHT) =

~ -1 )
det(I-MO)detLI—(I—ﬂo) @DHTJ =

det(I-vD )

HT

CONTROLLER DESIGN

Consider the 2D system of fig. 1.

/T = |
v oV L2 v

=

fig. 1

Let NRDél be a right coprime MFD of the strictly proper transfer matrix of
£ =(A1,A2,B1,B5,C). Hence, by Theorem 4,

det(I-A1z1

Also, Tet R[1SL be a Teft MFD of the proper transfer matrix of 2e=(Fq5F9,61,60,
H,Jd) with

-.f-\222) = h(z1,22)det DR (25)

det(I—F1z ) = det R

177272 L

Let x _and x. denote the local state vectors of £ and I, and assume x' e
= [x" x.]. It is easy to check that the dynamics of the Tocal state of the feed-
back system 1is given by

x(h+1,k+1) = l_\1>_<(h,k+1) +I\2i(h+1,k) +é1 v (h,k+1) *Bz" (h+1,k)
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where
- - s e
} | A1+BWJC B1H | _ [ A2+BZJC BZH ]
AI:! > Ay = |
L ec F L &C F, ]
oore 1 . T8
1 2
8= 1. By=]
L 0o | R
Then
det(I—A1z1-A222) g h(z}’zz)det(RLDR+SLNR) (26)

We shall now investigate to what extent it is possible to assign arbitrarily the
characteristic polynomial (26) of the feedback system and/or the associated va -
riety, by selecting an appropriate ..

Obviously, the factor h(z1,22) in (26), that descends from the existence of com-
mon factors in at least one of the matrix fractions C(I-A1z1-A222)'I and
(I—A1z1—Agzz)‘1(B1z1+8222), cannot be influenced by any dynamic output feedback.

It remains to analyze how det(R Dp+S| Ng) changes as we vary R and 5| with the
constraint that they characterize a proper transfer matrix. Once we have selected
R_ and S, it is possible to construct a 2D system that realizes RETSL (see for
instance the construction in Theorem 5).

Using the Binet-Cauchy formula, det(R Dp+S Ng) can be expressed as the sum of the
products of all possible minors of maximal order, gj, i=1,2,...,v, of (S, Rl

into the corresponding minors of the same order, mj, i=1,2,...,v, of [Né DR],
that 1is

det(R . qg.m, (27)

DR'FSLNR) - i 1

—

L

Clearly all polynomials that are obtained from (27) as R and S vary, vanish on
¥ (W), since they be]ong to the ideal (mq,mz,...,mv} generated by the minors of
maximal degree of [Ng Dgl.

Theorem 6. Let{JE(m1,m2,...,mv). Then there exist R and SL such that

RLDR+SLNR =p Im (28)

proof. Denote by M., i=1,2,...,v the submatrix of maximal order of [Né Dé]'
correspondig to my. Then there exist constant matrices L1 and K; such that

Mi = LiDR*_KiNR

So we have

To=l il as 2 ad (29)

milm = (Adj Mi)Mi = (Adj Mi)LiDR-+(AdJ Mi)KiNR 3
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. gjm;, from (29) we obtain

Y
Now, assuming p= z}
1

A
)0, + (2. q.(Adj M.)K.IN
1'[ 1 1

v \Y]
pl = %1 g.m. I = (5. qi(AdJ Mi)Lﬁ R Mg

m 11 m 1'I

that coincides with (28) once we have taken

v
Qi(AdJ Mi)Li’ B = %- q; (Adj MK,

A"
R = %' L i

L i

As a direct consequence of the Theorem above and of Hilbert Nullstellensatz, we
have that given any polynomial p vanishing on ¥°(W), there exist R_, S and a
positive integer r such that

det(RLDR

It is easy to check that there are cases where r cannot be unitary. As an exam-
ple, consider the following right coprime matrix fraction

r
+SLNR) =P (30)

o ; [(z)® 0] ’

L o 1]
We have mq = (1-21)2, my = (z1—22)2, so that (W)= (1,1) . The polynomial (1-z,
vanishes on (W) but does not belong to (mq,my), so that (1-22)2 #det(RLDR+SLNR)
for every RL and 5.

=i

)2

The requirement that (RLsSL) characterizes a proper transfer matrix is equivalent
to impose that p din (30) satisfies p(0,0)=0. In fact, since Np(0,0) =0 and
DR(0,0) = Iy, we have

det[RL(D,O) 1's, (0,0)] = det R (0,0)

L

so that p(0,0)+0 is equivalent to det R (0,0)$0 that is to the possibility of
realizing R[1SL by means of a 2D proper system.

In some applications we are interested in designing a compensator . such that
the resulting feedback system is finite memory, i.e. det(I—Azz1-A222)==1. Such a
compensator is called dead-beat compensator.

The existence of a dead-beat compensator depends on the following facts:

(i) the transfer matrix of & should make possible to solve the equation

det(RLDerSLNR) =1 (31)

for any right factor coprime MFD NpDp =W.
(i1) The matrices Aq,A2,B1,B2 and C of £ should be selected so that the polyno-
mial h in (25) is unitary.
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Mow, equation (31) is solvable if and only if [Né Dé] has full rank for every
(z1,2zp), that is if Np and Dp are zero coprime. In this case by Theorem 6 the
equation

RLDRﬂ—SLNR = Im
has solution and hence (31) too.

The condition h=1 implies that (C, I—A1z1—A222] are right factor coprime and
(I-A1z4-Aszp, Byzy+Bpz,) are left factor coprime.

If we recall the controllability and causal reconstructibility criteria 1_?, 2ﬁ],
the existence of a dead-beat controller can be related both to internal structu-
ral properties of £ and to external properties of NRD§1. To this purpose we have
the following Theorem.

Theorem 7. Let I :(A1,A2,B1,BZ,C) be a realization of the right coprime matrix
fraction NRDﬁq. Then the following properties are equivalent:

(i)  thereexists a dead-beat compensator

(i1) © is controllable and causally reconstructible

(i11) (C, I-Aqzq-Apz,) are right factor coprime, (I-Ajzq-Apzp, Byz;+Byz,) are
Teft factor coprime, Ny and Dp are right zero coprime.
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