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Abstract

This contribution is concerned with the synthesis of
feedback stabilizing 2D compensators obtained by using
the Grdbner basis algorithm. A constructive procedure
is given to cobtain the coefficients of a stable closed
loop characteristic polynomial. Since the operations
involved are rational, the synthesis algorithm leads to
polynomial matrices whose entries are polynomials with
coefficients in the same field as the plant.

1. Introduction

A peculiar aspect of the synthesis of a stabilizing
2D compensator is that, in general, even when the plant
is given by a factor coprime matrix fraction descrip-

tion ND—I, it is not possible to freely assign the va-

riety of the characteristic closed loop polynomial. In

fact this variety is constrained to include the set of

points where the minors of maximal order of EP N'] va-
nish simultaneocusly [ﬂ.

This constraint can be satisfied in a direct way when
such points are explicitly computed and do not belong
to the unit polydisc. In this case it is strightforward
to determine a stable separable polynomial vanishing on
this set of points, so that a suitable power of this
polynomial can be assumed as a closed loop characteri-
stic polynomial.

In the sequel we shall present an approach to the
synthesis of a stabilizing compensator which does not
require any explicit computation of the set.

2. Feedback compensators and closed loop stable polyno-

mials

Let W(z,w) be a strictly proper transfer matrix of
dimension pxm and let

N(z,W)D (z,w) = W(z,w)

be a right factor coprime Matrix Function Description
(MFD) .

Consider the ideal # generated by the minors of
maximal order ml(z,w),...,mv(z,w) of the matrix

| Diz,m |
i |
L_N(z,w)_l

The coprimeness condition on N and D correspends to

2174

assume that the variety ¥ () is a finite subset of
Cx € or, equivalently, that the guotient lR[z,w] /F is
a finite dimensional vector space over |R.

Let L = (AI'A2'E1'BZ'C) be a 2D realizationof W(z,w)

[gl,where (I—Alz,Azw, Blz+82w) are left factor coprime
and (I—Aiz—Azw, C) are right factor coprime. Under the-

se assumptions, we have [ﬂ

det(I—Alz—Azw) = det D(z,w)

Consider an output feedback compensator represented
by a proper MFD

’ -1
WC(Z.W) =R (z,w)S(z,w)

of dimension mxp and let £ = (F_,F_,G ,G_,H) be a rea-
<! 121" 2

lization of W satisfying the relation
c
det(I—Flz—sz) = det R(z,w)

Then the characteristic polynomial A of the closed
loop system obtained by the output feedback connection
of I and Zc is given by

A = det(RD + SN} .

Using Binet-Cauchy formula, det(RD + SN) is expressed
as the sum of the products of all possible minors of
maximal order, q,,i=1,2,...,v of ﬁié]intc the corre-

i Bl

sponding minors of the same order m ,i=1,2,...,v of
i
[p'n'], that is

v
det(RD+SN) = L g m.
ll 11

Hence det(RD+ SN} belongs to the ideal £ for any choi-

ce of the compensator.
Conversely, given any polynomial p€.#,there exists

-1
a compensator R S such that

A = det(RD+SN) = p-

for some integer r [1,3] "
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This implies that ¥(A) is freely assignable, except
that it must include?¥(f) and does not contain (0,0).

Because of these facts, there exists a stabilizing
compensator if and only if ¥ (F) does not intersect the
closed unit polydisc 9"’1 in €xC.

If I is stabilizable, we can select a stable polyno-
mial p in £ and then solve the polynomial equation

RD+ SN = pI : (1)

. This gives the MFD of a stabilizing compensator, R-'ls.
The full class of stabilizing compensators is parame-
trized by a formula whose structure is analogous to the
1D theory [3]

A procedure for determining a stable polynomial p in
# was introduced in [3,4]. This is based on two steps:
(i) compute explicitly ¥ (.f#) ={ (Ctl.Bl) reeer (at,Bt)}: i

(ii) construct a 2D stable polynomial g, vanishing on
¥ (F), and having the structure

s t
glz,w) =1, (z-c ) II. (w=8) (2)
i i ] j
1 s+1

where we assumed |Cti{ >1, i=1,...,s and lBl >1,
1
j=s+l,...,t .
Hence quz,w) belongs to # for some r and in (1)

we can assume p=qr.

Once we have computed p, a general method for obtai-
ning R and § that solve (1) resorts to the Grdbner ba-
sis algorithm developed in [5:[

Remark. The above procedure applies to the design of
state feedback compensators. In this case, the matrices
D and N have the following form

D=1I-Az-A_W
1 2

N =B z+B_ W
1 2

and the solution of (1) can be obtained by a more di-
rect technique, presented in [6] "

In the sequel we shall introduce an alternative ap-
proach for determining a stable polynomial p € f that
does not reguire an explicit computation of ¥ (.%). The
procedure ends in a finite number of steps if and only
if ¥ (#) does not intersect the unit polydisc .@1.

Since the Grébner basis algorithm allows us to com-
pute the polynomials ri (z) of minimal degree in IR[z]

and r2(w) of minimal degree in IR[w] , a first at-

tempt to determine a stable polynomial p(z,w)ElR[z ,uﬂ ¥

2:'Li:' r1 or r2 is

are unstable, what happens

consists in assuming p=r, 6 or p=r

1

stable. If both r1 and r2

when we have Iui[il for some i and Iﬂjlﬁl for some j,

# does not contain stable polynomials in one variable.
In this case it is necessary to look for polynomials
in two variables in order to find a stable pe % .

Remark. The fact that rl(z) and rz(w) are both unsta-
ble, does not imply that ¥ () intersects -?1. In fact
Y(F) N ?1=J‘Zf if whenever |ui[_<_1 we have |Bi| >1. In

this case there exist 2D separable polynomials with
structure (2) that are stable. However they can be com-
puted only if we have a prior knowledge of {a.} and

i

{8_1.

i

The computing procedure we shall illustrate is based
on the following facts:
(i) for each positive integer h,f(‘\lR[zh+wh] is a non

N , . h b
empty principal ideal in |R[Z W ] Its generator
can be explicitly determined by using Grébner ba-
sis;

(ii) if there exist stable polynomials in £ , there

. ; h h
are positive integers h such that Jn R[z W _]
contains stable polynomials. In particular, the

h h
generator of £ N R[z +w I is stable;
(iii) the 2D stability check of a polynomial in

h h
[Rl:z +wJ reduces to check the stability of a po-
lynomial in one variable.

The proofs of (i) and (ii) are direct consequences
of the following Propositions.
Proposition 1. Assume "If(.ﬂ)ng"l =/4. Then there exist

. } k k
an integer k and a stable polynomial p€ ER[z +w J AE

proof. For each (ui,Bi)E"V(f}, i=1,2,...4t, either,

|0:i| >1 or |Bi| > 1. So, for each (a.i,Bi) there exist
ki ky

integers k, such that luil + Bill > 2. Then

+w zZ TttW -,

Kiohty BB, K B ke
i i

qi(z
vanishes on (ai,Bi) and has no zeros on 9’1.
It is not difficult to show that we can assume kl =
= k2 = e =kt, provided the common value of {k } is
i

large enough. Denoting by k this common value, the pro-
duct

k X
q=Hqi(z +w )

is a stable 2D polynomial vanishing on ¥ (£). By Hil-
bert's Nullstellensatz, there exists an integer r such
that

Proposition 2. For each positive integer k, there
k k
exists in  a monic polynomial pk(z +w ) of minimal
k k -k k
degree in (z +w ). The set R[z +w | N # contains stable

k k
2D polynomials if and only if pk(z +w ) is 2D stable.
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proof. Note that for any positive k there exists a po-

k k
lynomial qke tR[z +w] vanishing on ¥ (F). Hence, by
r
Hilbert's Nullstellensatz, q_k ¢ .¥ for some positive in-
k
teger r and IR[_Z +wk:lf'\ # is a non empty (principal)
k k
ideal in |R£z W ]
In order to determine the polynomial pk which gene-

k ki . .
rates lR[z +WJ N #, we use the Grébner basis algorithm.

Assume that a Grdbner basis {gl,g : ,gh} for # has

P
been computed. The normal form algorithm [5] with re-
spect to this basis is now applied in the following way:

A
(0) let h =1
o

k k
(1) reduce z +w to a polynomial h1 in normal form mo-
dulo £ . Check if there exists erE R such that
k k
a h +h = 0. If the answer is positive, a +(z +w )
o o 1 o]

is the polynomial of minimal degree in £ we are
looking for. Otherwise proceed to (2)

k k2
(2) reduce (z +w ) to a polyncmial h‘2 in normal form

medule # . Check if there exist ao,al in R, such

that ¢« h +a h +h2 = 0. If the answer is positive,
oo

11
a +c.1(zk+wk) + (zk+wK)2 is the polynomial of minimal
o

k kq
degree in R[z +w |N.%

If h ,h ,h2 are linearly independent, proceed to

reduce (z +w ) , et coetera.

Because of the first part of the proof, a finite set
of linearly dependent {h } is eventually cbtained. This
i

provides a constructive algorithm to compute pk.
k k
Since each polynomial in R|z +w ]ﬂ,! is a multiple
k ki
of pk, then R[__z +w ]mf contains 2D stable polynomials

if and only if pk is stable.
As a corollary of Propositions 1 and 2, we have that
if ¥ .ﬂ)ngal =&, there exists a positive integer k

k k
such that pk(z +w ) 1is 2D stable. In fact, by Proposi-

k k
tion 1 there exists an integer k such that R [z +w ]F\.F
contains 2D stable polynomials. Then the algorithm in
the proof of Proposition 2 gives a polynomial pk which

is 2D stable.

Adopting the procedure above, we need to check suc-
k k
cessively 2D stability of polynomials pk(z +w ), k=1,2.

++; until a stable polynomial is found.

Because of the structure of these polynomials, it is
possible to check their stability utilizing 1D stabili-
ty ecriteria.

k k
In fact any polynomial p(z +w ) is 2D stable if and
only if the corresponding polynomial p(2v) E‘R[Vl is 1D
Stable, in the sense that it has no zeros for \vlil.
To see this, assume p(2y) =0 for some Y with |Y[§1-
k k
B

k k
Then for all a and B such that o =8 =7, pla +8 ) =0

and (a,B)€ .?i

k k
Conversely, if p(a +8 ) =0 and 1:1.15_1, |B|§1, then

Kk k
Y= (a +8)/2 satisfies |y| <1 and p(2y) =0.

3. Examples

In this section two simple examples are given to il-
lustrate the construction of a stabilizing compensator
for scalar 2D systems.

The computation is based on the Grébner basis method
and on the normal form algorithm. The single steps for
constructing a Grébner basis and for computing ho'h1"' i

are not developed in details. The interested reader is
referred to [5]

Example 1.

Consider the scalar transfer function n(z,w)/d(z,w)
with
2
ni{z,w) = z +2z-1, d(z,w) = -wtz+2
Note that {n,d} is already a Grébner basis for £= (n,d).
Using the normal form algorithm, the polynomials
rl (z) and rz(w) of minimal degrees in # are expressed as

(w) £ 2w-1
r (w) = -2w-
5 W —-2w

2
rl(z} = z +2z-1,

They are both (1D and 2D) unstable. This corresponds to
the fact that

VI(F) {(GI,B )y (“2'82)} =

1
(-1-v2, 1-/2), (=1+/2, 1+/2)

and EBLJ <1, iuzl <1

Then we proceed to consider the minimal degree poly-
nomial in R[z+w]N A
By using the normal form algorithm, we have:

1 = h
o
Z+wW = -d+h , h, =2z+2
9 1 1
(z+w) = d(-w-3z-2) +4n+h2, h2=8

Hence
2
O = -8h +0-h +h_=-B+(z+w) - d(-w-3z-2) -4n
o 1 2
so that
2

pl(z+w) = (z+w) -8 = d(-w-3z-2) +4n

is the minimal degree polynocmial in R[z+w] N F. Since
2

the polynomial pi(Zv) =4v -8 has both zeros outside the

unit circle, Pl(z-?-w} is 2D stable and a stabilizing

compensator is given by

Wc = s(z,w)/r(z,w) = 4/(-w-32z-2)
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Example 2.
consider the scalar transfer function niz,w)/d(z,w),

with

3
" d(z,w) =w+z—‘5

o e

= 2 +
ni{z,w) = 2 5 2

Note that n,d is already a Grdbner basis for £z
= (n,d)-
Using the normal form algorithm, we obtain rlz =
22_1 z'+-l and r_(w) =w2—-3- w+l which are both (1D
2 4 2 2 4
and 2D) unstable.
The polyncmial p1(2+w) € m[z+wjr\ £ coincides with

d(z,w) and is 2D unstable.

2 2
So, proceed to compute 92(2 +w ). We have

1 =h
2 2 ° 3
2 4w’ = d(-z+w+=) +2n+h_ , h =7/4
2 1 1
Hence
1 7 2 2 3
0O=-—h +h =-7+2z +W ~d{-z+w+ ") - 2n
4 o 1 2
so that

BN

2 2 2 2 3
pz(z $W ) = MW =T = d{—z+w+3) + 2n

: - , : 2., 2 )
is the minimal degree polynomial in m[; +W ]rw.ﬂ. This
polynomial is 2D unstable since the zero of p2(2v) =
. i
= 2y-= 1is — < 1.
4 8 i 9
Proceed now to compute p3(z +w ). We have

1 =h
[]
3 3 2 3 3
z 4w = d(w —zw+ - w-T— 2+ 2) +
2 i
9
+ n(w+z+3) +h_, h =—
1 1 4
Hence
3 3 2 3
0=-—h +h_ = -'9—+z +w —dlw -ZW+—w—lz+2)—
] 1 4 2 2
- n(w+z+3)
that gives

& o
I

3 3 3 3
p.(z 4w ) =2 +wW -
3
3 3 3
=dw'¢w+§w~zz+2)+MWm+M

: 9 ; : 9 3 3
Since p3(2v)= 2v-vz vanishes in v = g> 1,p3(z W)

is 2D stable and a stabilizing compensator is given by

WCCZ,W) = s(z,w)/r(z,w) =

(w+z+3)/(w3—zw+% w—-32~ z+2) .

Remark. When n and 4 are polynomials with rationa)

coefficients, the algorithm given above provides a gta-
ble polynomial in f still having rational coefficients,
This is due to the fact that the construction of Gréb-
ner basis and the normal form algorithm involve only
rational operations on the coefficients of n and d. op-
viously, the same remark holds for the multivariable
case, where N and D are polynomial matrices with ratio-
nal coefficients.

In general any procedure which requires an explicit
computation of ¥'(.#),as those introduced in |3]| and
[4], leads to polynomials having non rational coeffi-
cients.
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