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Abstract: The output feedback stabilizability conditions of 2D
systems are expressed in term of structural properties of a pair
of commuting linear transformations. An algorithm is given for
obtaining a stable closed-loop 2D characteristic polynomial.
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1. Introduction

As in the 1D case, the procedure for synthesiz-
ing 2D compensators is based on the solution of a
suitable polynomial equation in two variables [1].

For many systems, however, it is not possible
to arbitrarily assign the variety of the closed-loop
polynomial, even when the plant is given by a
factor coprime matrix fraction description (MFD)

N(z, zz)D_l(zl, 22)-

In fact, this variety must include the set & of
points where the maximal order minors of

[DT NT]

simultaneously vanish.

When faced with this rather common difficulty,
there are two avenues of approach. The first is to
evaluate approximately the set & and, in case it
does not intersect the closed unit polydisc, to
assign a closed-loop polynomial that vanishes on
& 7.

The second approach is to derive finite tests for
checking feedback stabilizability without any ex-
plicit computation of % and to assign a stable
closed-loop polynomial in such a way that the
above constraints are automatically satisfied.

Keeping with the spirit of the second approach,

the content of this paper is based on some corn-
structive methods of the polynomial ideal theory
and in particular on a matrix version of the
Grobner basis algorithm [4]. Some results are still
not complete and in their respect this is a progress
report on the state of the art on the subject.

2. Characteristic polynomials of closed-loop 2D
systems '

Let W(z,, z,) be a strictly proper transfer ma-
trix of dimension p X m and let

N(Zh ZZ)D_I(Z‘ls 22)= W(le 22)

be a right factor coprime MFD.

Consider the ideal £ generated by the minors
of maximal order m,(z;, Z2),-- -, Mmy(21, 2) of the
matrix

D(Zl’ 22)}.

N(zls ‘22) (1)

The coprimeness condition on N and D corre-
sponds to assuming that the variety ¥#7(.£) is a
finite subset of C X C or, equivalently, that the
quotient R[z, z,]/# 1s a finite-dimensional vec-

tor space over R.
Let

3 =4y, As, By; By Cs
x(h+1, k+1)

=Ax(h, k+1)+A,x(h+1, k)

+Byu(h, k+1) + Byu(h+1, k),

y(h, k)= Cx(h, k),
be a 2D realization of W(z,, z,) [6], with
(I— Az —Ayzy, Byzy B,z,)
left factor coprime and

(I—Alz] —A,yz,, C)
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right factor coprime. Under these assumptions. we
have [1]
det(/ — A,z — A,z )=det D{z. 25).

Consider an output feedback compensator rep-
resented by a proper left MED

Wiz, 2s) =R 2, 25)S(z: 22)
of dimension m < p and let

S =(Ff.F.G.G:. H)

be a realization of W satsfving the relation
det(I— F,zy— fyz5) =det R(z). z1). (2)

The characteristic polvnomial of the closed-loop
svstem obtained by the output feedback connec-
tion of X and X is given by

A=det(RD+ SN ).

Using the Binel—Chauchy formula. this is ex-
pressed as the sum of the products of all possible
minors of maximal order. g, /=1.2..... p. of
[R S] into the corresponding minors of the same
order m,. i=1.2.....p. of (D' NT]. that is

p
det( RD+ SN ) = Z g,m,.
i=1

Hence det( RD + SN) belongs to the ideal .7
for anv choice of the compensator.

Conversely. given any polynomial p €4, there
exists a compensator R 'S such that [1.2]

RD+ SN=pl. (3

Hence the characteristic polynomial 4 is a
power of p and ¥7(4) is freely assignable except
that it must include ¥7(.£) and does not contain
(0. ). We summarize our conclusions in:

Proposition 1. The svstem X admits a stabilizing
compensaior If and only if ¥ (F) does not intersect

the closed unit polvdisc ?, C C x C.

There is a diversity of issues associated with the

synthesis of 2D compensators. There is. first of all.
the question of checking feedback stabilizability.
That is. how can a particular 2D system be recog-
nized as being stabilizable or not, without an
explicit computation of ¥ ()

There is also the issue of obtaining stable 2D
polvnomials in . That is. assuming that feedback

9
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stabilization is possible. how does one actually
find explicitly a polynomial to substitute for p in
equation (3)?

Finally, there are the issues of computing R
and S and of realizing the compensator in state
space form.

The first issue is emphasized in this paper. The
reasons for this emphasis are that stabilizability
has been proved to guarantee the [initeness of
some procedures for computing stable polynomi-
als in £ equation (3) has been solved by resorting
to Gridbner-basis algorithms [7] or to Diophan-
tine-equations techniques [8]: and. finally. state-
space realizations of W[ are allowable satisfying
condition (2).

The next section recasts some results concern-
ing 2D polvnomial ideals in terms of the structure
of a suitable pair of commutative matrices
(M,. M,). Our main objective is the proof of
Proposition 2. where 2D stabilizability is related
to the spectral properties of M, and M,.

3. Stabilizability conditions

Let =(g,. g...... g,) denote a Gridbner hasis
[4] of the ideal 4. Then the set {p, =
Ly Bagew g p, ) of monic monomials in z; and -,
that are not multiple of the leading power prod-
ucts of any of the pelynomials % is finite.
The corresponding residue classes modulo £, p.
P 2. constitute a basis for the vector space
Rz 25]/F-

Consider now the following maps:

..;’/’V\Z R[:;- ::1/'"/{7’[}%[31' :3}"I‘}‘
l,,+j—> :1(]' ’{'}'

& R[op 2]/ R] ey 2,147
gt Frgsg K7,

They are both well defined, commuting linear
transformations on the R-vector space B[z, -]/
#. This implies that when R[z,. 2,]/# 1s repre-
sented onto RBY. &, and 2, are represented by a
pair of commuting matrices M, and M, in R""".

Note that the smallest Z- and Z-invariant
subspace generated by p, =1 is the whole space
R[z,. z-]/F. Thus { M{Mie, 1. jEN} s asetof
generators for the space R”

The construction of M, and M, is performed
along the following lines:
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(i) Associate with py. pa...-. p, the standard
basis vectors in R"

1 0 0

0 1 0
(! ] e t)l = _ (74‘ =

0 0 1

(iiy For each p,. represent z,p, as a linear
combination of Py Paeo-es p.. This requires a
straightforward application of the so called "nor-
mal form algorithm’ [4] with respect t0 the Grobner
basis (g, &2« 1)

(iii) The coefficients »1;, in

PR ’ —_ .
. = = @)
sp=ymp. i=1 200

i

are the entries of the matrix M, we are looking
for.

M, =[m],].

(iv) and (v) refer to the rcpruscmznion of Tﬁ
for obtaining the columns of M,. and are analo-
gous 1o (ii) and (111).

Example. Consider the transfer function

The ideal . is generated by the maximal order
minors in (1). namely N and D. and it 1s easy to
check that N and D constitute a Grobner basis
with regard to the Jexicographical ordering of the
power products.

The only monomials that are not multiple of
the leading products =y and = of N and D are

pr=1. pi=2. Pa=:

Hence
{ p,+F=p,. 1= 1. 2. 3

is a basis of R[z,. 22]/F. Associate e, with 1. e

with 7, and e; with = Clearly

=71 gr=, e

Moreover.

st ,‘.:.;' : i.:1 (mod £).

so that

FEi =3I 35

Hence we have

__.
—
|
Il
—
=
=)
[y

The computation of M, is a little bit more in-
volved. Repeated applications of the normal form
algorithm give

:f — 3z, (mod S,

|
—
|
N
|
F sl

It is easy to check that M, and M, commute.

Several properties of the ideal .# and of the
(Tinite) variety ¥ () are strictly related to the
structure of the commuting matrices M, and M,
introduced above.

Property 1. A polvnomial g & R[z,. z.] belongs 1o
the ideal # if and only if g(My. M>) = 0.

Proof. Let

G2y Bp)= Y gz Ed

This implies

and equivalently

wn

0= Tq, MiMie,. (

Multiplyving (5) on the left by M/ M: and recalling
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the matrix commutativity we have

I~

0=(Xq MM MMe) r.s=01

This proves that g(M,. M.)=10.
The viceversa 1s easily obtained by following
backward the lines of the preof above.

Corollary. Ler ¥ (&), 1= 1.2, denote the minimum

polviomial of M. Then { (z) is the minimum
degree pohvnomial in R[z,] M .F.

A classical result [5] in the theory of commuta-
tive matrices is the existence of a common eigen-
vector for M, and M.. Property 2 clarifies how
the pairs of elgenvalues that correspond to com-
mon eigenvectors are related to the structure of
the variety ¥ ().

Property 2. Let (o, a)=C X C. Then (o, «y)

€ Y (F) if and only if M, and M- have a common
eigenvector v and

M= a. Vo= .. (6)

Proof. Assume that (6) holds and consider anv
polynomial

gl 22) = g5

in . By Property 1.
0=q(M,. M,)=72Yq, MM
¥ g, M{Mie = ¥ g, 04ale.
Y g, 000 = glay. as).

Since ¢(z,. z-) is arbitrary in #,
¥ (). Viceversa. assume that (e, a,) belongs to
77 and denote by A, and k, the algebraic
multiplicitics of =, — a; and 2, —a, in ¢, and ¢-
respectively,

0

0

(0. a-) E

]
. s

Uz =)z =)
= h5{ 22 )25 - ai)ﬁ‘

hle ) # 0.
Yalza)

ey ) # 0.

Note that A-(z))h(z) €5, since hla)h.(a,)
#0. Let 7. 0 <<k, be the largest integer such
that

Fod o slas om — ) EF

and let r, 0 <r<r. be the largest integer such

that

sl Sx)=h () halz3 )2 — o ) (22— s )’
We then have that

${ D Za) B

sl zhs Sal g

Hence

|

s{M. M)e, =0 (7)
and

(M, —of)v=0. (M, —a ] )e=0.

The last two equations show that the vector «
delined in (7) is a common eigenvector.

A different characterization ol the variety
#7(.#) is based on the Frobenius theorem [9] on
simultaneous  triangularization of commutative
matrices.

Theorem (Frobenius). Let M, and M be a puir of
real commurative marvices. Then M, and M, can be
simultaneously reduced to triangular forni over € by
a similarity vransformation.

Property 3. Let T| = {z,",] and T, = [17] be a pair of
commaon triangular forms of the matrices M, and
M. Then (a. as) in € X C belongs to ¥ (F) if
and only if there exists an integer [ such ihat

i 5
I, = &, I = o

Proof. Since 7, and M, as well as 75 and M, are
connected by a common similarity transformation.
Property 1 holds for matrices 7} and 7, too.
Therefore. ¢(z,. z5) belongs to & if and only if
g(T,. T)=0.

Let g(z;. z,) €. Then

O0=¢(T,. T5)

g1y 1) ®

Since ¢(z,. z,) is arbitrary in £, q(1},.

implies (¢, 171 ¥ 7(F).
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Viceversa, let (a;. a-) € Y7 (.F) and suppose.
by contradiction.

(a. ax) # (2. 15). i=1.2.....0.

H

Then. there exists a polynomial g(z;. z5) vanish-

g i el 2k b= Lo v v. and different from
zero in (a,. a,). We therefore have

0 *
g(1,. T5) =

so that
(T To)=0 and g"(zy, 2)EL.

Since g"(ay. a,) is different from zero, (a). a,) &
¥ (), contrary to the assumption.

The condition for output feedback stabilizabil-
ity. given in Proposition 1, can be restated in
terms of structural properties of the commutative
matrices M, and M,. The following proposition 18

_—)

a straightforward consequence of Properties 2 and
3 above:

Proposition 2. The following facts are equivalent:

(1} X is outpur feedback stabilizable:

(ii} any common eigenvector of M, and M,
refers to a pair of eigenvalues («,. ay) such that

lay| =1 and/or |a,| > 1.

(itl) any pair (t}. t3) in the triangular form of

M, and M, satisfies |t | > 1 and/or |17 > 1.

Remark. The proposition above does not provide
an efficient algorithm for testing output feedback
stabilizability of X, In fact, simultaneous triangu-
larization of M, and M, as well as the computa-
tion of common eigenvectors cannot be performed
in a finite number of steps. However, Properties 2
and 3 have a theoretical intrinsic interest, in the
sense that they could constitute a good starting
point for obtaining linear stabilizability criteria in
the style of Lyapunov equations.

In some particular cases, stabilizability condi-
tions are easy to check. For instance, all the
eigenvalues of M, have modulus greater than one
if and only if there exists a negative definite
matrix P satisfying the linear matrix equation

M'PM,— P=—Q (Q positive definite).

Ouipur feedback stabilizability 49

In this case ¥, (z;). the minimum polynomial of
M,. is devoid of zeros in the closed unit disk
{(zy: 12;] =1). Since ¢, €F by the Corollary of
Property 1, there exists a stabilizing compensator
such that the closed-loop 2D characteristic poly-
nomial of the system is given by some power of
Yl

Analogous considerations hold if all the eigen-
values of M, have modulus greater than one.

A more general situation comes out when some
products M{M{ are devoid of eigenvalues in the
closed unit disk.

This happens if and only if the equation

(M{) (M{) PMiM{ - P= —Q (8)

(Q positive definite) admits a negative definite
solution P.

Referring to triangular forms. it is easy to con-
vince ourselves that condition (iii) in Proposition 2
is satisfied.

In this case the minimum polynomial (£} of
M M{ is devoid of zeros in the closed unit disk.
and the variety of

4. Construction of a stable closed-loop polynomial

The previous remark shows that in some cases
it is possible to construct directly a 2D stable
polynomial in #: whenever equation (8) admits a
negative definite solution P. the minimum poly-
nomial of M{M{ can be used.

Suppose. on the other hand. we have some
finite criterion (possibly based on M, and M,) for
deciding whether # includes a stable polynomial
and that the criterion does not provide any con-
structive technique for obtaming such a poly-
nomial.

In this case an iterative procedure for obtaining
a stahle closed-loop polvnomial has been pre-
sented in [3). Nevertheless, the analysis of the
algorithm is simplified by resorting to the matrices
M, and M, that characterize the ideal .#. This 1s
fairly clear from the proofs of Propositions 3 and
4 below.

Proposition 3. For each positive integer k. there
; ; . ’ k :
exists in S a monic p().‘frmmnu! 1,%(:{‘ +:23) of
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smimimal degree in | b :? ). The sel
RE:{ g Z‘] n.£

contains stable 2D polynomials if and only if 4, ( e
+ %) is 2D stable.

Proof. Consider the matrix M+ M% and denote
by ¢, (£) its minimum polynomial. Then Yloy +
25 Y EE, since ¥ ( Mf' + ;\-If )= 0. and minimality
follows from the definition of .

Since each polynomial in RisE+ 5] NF 54
multiple of ¢, . it follows that R[zF + z5) M con-
tains 2D stable polynomials if and only if ¥, 15
stable.

Proposition 4. Assume ¥ (FyNn P, =0. Then there
exist an integer k and a 2D stable polynomial in

R[ %4 28] NP,

Proof. Referring to commutative matrices in trian-
gular form, any (complex) pair (1}, 1) satisfies
|t),| >1 and/or |¢2] > 1. It is not difficult to
show that there exists an integer i such that

()" + (2)']> 2

fori=1.2.....

Let ,(§) denote the minimum polynomial of
M+ M2, The polynomial ¥, (21 + z3) belongs to
# by Proposition 2 and factorizes as

i 24)

Since v,(§) is devoid of zeros in the disk {& | €]

< 2}. it follows that (4] 3 i 1= 12 vens {, which

in turn implies 2D stability of all factors 2y + =2
— s,

The proof of Proposition 4 immediately sug-
gests an algorithm for computing a 2D stable
polynomial in £, based on the following steps.

1. Consider the sequence of matrices

M+ M, M
=k = iy -S:)'_'

8, =

2

Output fredhuck srahilizahility

and solve the matrix equations

s'ps—pP=—1 i=12.3....
until a negative definite £, is found. By Proposi-
lion 4. this procedure stops after & finite number
of steps if and only if the system is stabilizable.
Let h be the first integer such that S, is negative
definite.

2 Construct the minimum polynomial Uité)
of M, + M,. Then ¢,(5 +22) is a stable 2D

polynomial in 7.
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