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ABSTRACT

The possibilities of modifying the dynamical
behaviour of 2D state space models by ocutput feedback
compensation are investigated, and a characterization
of the closed loop polynomial varieties is given. The
polynomial matrix apprecach allows to show that hidden
modes and rank singularities are the unique constraints
we have to cope with in the compensator synthesis. The
proof of this result is based on some algebraic manipu-
lations of 2D MFD's and on a coprime realization algo-
rithm presented in Section 3.

INTRODUCTION

In this paper we shall be concerned with the
effects of output feedback compensators on 20 sy-
stems, whose dynamical pehaviour is represented
by state space models. We shall approach this subject
from the point of view of classical system theory, by
connecting the structural properties of the state varia-
ble description with the possibility of assigning the
closed loop characteristic polynomial via output feed-
back.

The analysis will be developed on the basis
of 2D polynomial matrix algebra. 2D matrix fraction de-
scriptions (MFD's) provide a very convenient tool to in-
vestigate how input/output maps (characteristic of the
classical methods in filter theory) are associated with
internal representations (universally adopted in control
problems) and-to obtain the transfer matrices of compen-
sators by solving Bézout polynomial eguations in two va-
riables.

A few cbservations might serve to motivate
this detailed reexamination of feedback theory in the
2D context. Recently there has been an increasing inte-
rest in studying 2D control problems, which have been
tackled using mainly two different approaches.

The first approach is essentially reductio-
nist, in the sense that 2D systems are viewed as 1D sy-
stems over the ring of polynomials in one variable,
while the second fully exploits the partial ordering of
the 2D structure and data processing is not connected
with any preferred direction.

By pursuing the first approach [l,ﬂ, in the
literature have been introduced compensators that pre-
serve the quarter plane causality and compensators that
do not. However in the former case
the feedback performances that can be obtained are not
so good as in case of 2D compensators with unconstrained
structure. Moreover most results apply there to Roesser
model only.

Following the second approach, some authors
[}] dealt with an input/output analysis of 2D systems,
based on a factorization of the plant and compensator
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transfer matrices in two variables, others {ﬁ,s] with
state-space models and 2D PBH controllability and re-
constructibility criteria. The unquesticned success of
the i/o and the state space compensation methods in 1D
theory mainly relies on the canonical properties of
minimal realizations, allowing for a poclynomial matrix
(i.e. input/output) solution of contrcl croblems and
for a subsequent synthesis of the compensator transfer
function, that does not introduce unwanted hidden modes
in the feedback loop. However in the 2D case the clas-
sical techniques have presented a lot of difficulties
to be extended, since the equivalence Detween minimal
and reachable and observable realization does not lon-
ger hold.

One of our objective in this paper is to for-
mulate a realization procedure which leads to closed
loop 2D systems free of hidden modes without pursuing
the state space minimization. The results are then ap-
plied to the analysis of closed loop characteristic po-
lynomials of 2D systems in state space form.

Finally, some algorithms are presented for
deciding whether a given polynomialin tw:variables is
assignable as a closed loop characteristic of a 2D sy-
stem and for computing the compensator transfer matrix
which produces such a polynomial.

PRELIMINARY NOTATIONS AND STATEMENT OF THE PROBLEM

A 2-D system L= (A ,A_,B ,B_,C,3) is a dyna-
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mical model [6]

x(h+1,k+1) :Alx(h,k+1) +a_ x(h+] k) +

+ Byu(hc+1) + B uih+l k)

y(h,k) = Cx(h,k) +Dbu(h,k) (1)

where the local state x is an n-dimensional vector over
the real field R, input and ocutput functions take va-
lues in R® and RP, A /A3 ,B ,Cand > are matrices

of suitable dimensions with entries in 3.
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z {1,.3)=Z.2
Y(zlr 2) yii,3lz,
the state, input and output functions, respectively,

one gets from (1)

(I-A z -A z_)Xlz ,z_)
1 2
1 2 2 (2)
1 u , = j
Byl B et &
and
Y(zl,zz) = Cx(z:,zz) +DU(zl,22). (3)
So, assuming zero :-~itial conditicns 2; =0, the ratio-

nal transfer matrix

-1
bz - B z +B D
5 CHT P:zl Azzz) ( 121 222)+

gives the input-cut map

Wiz ,z

i &

Z, 1oz, 2.
Y(z1 22) 5 (51 3

A 2D system L
memory if for

is strictly proper when D=0 and is finite

any set of initial conditions Q;, the

free state evolution goes to zeroc in a finite number of
steps. Denoting by

) (

5 3)

4(z ,z_): = det(I-A z -A_z
ty Xy (71 2
the characteristic polynomial of I, the finite memory

.
property is equivalent '4] to the condition ;(zl,z ) =1,
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Suppose now that a 2D strictly proper plant
L =(A1,A2,Bl,82,cl has been given, and consider the
feedback connecticn 'see fig. 1) with a compensator EC:
=(F_,F (G H T
17737616y HeT)
x(h+1,k+1) = FIQ(h,k+IJ+F“i(h+1,k)+Gly(h,k+l)+Gzy(h+1.k)
P
v(h,k) = H x(h,k; +J y(h,k} (6)
u(h,k) = ¥(h,k) +v(h,k)
where wv(h,k) is the external input at (h,k)
T T T T T T T |
L. # i | ¥
]‘i - T
| _ t
| ! : fig. 1
1
'
]
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: = X
The local state % = [_] of the resulting closed loop 2D
X

system I updates according to the following transition
matrices

¥ | L *B,9C | B.H
1 |=
1

g.c !
L !

and the corresponding closed loop characteristic poly-

nomial of I

(7)
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Az 12 ) =

det(I-A z -A
| e Ny (8)

depends on the matrices of the compensator. We say that
a polynomial c(zl,zz) € Rzzl,zé] is assignable if it can

be assumed as the closed loop characteristic polynomial
of the feedback connection of I and Ec, for a suitable

compensator L
c

Given L, the set of assignable polynomials is
4 proper subset of R[}l,zzl. A first cbvious constraint

on assignable polynomials is that the comstant term must
be one. Depending on the structure of I, further con-
straints can arise, relative either to the plant tran-
sfer matrix or to the particular state space model that
realizes 1it.

Referring to that, our cbjectives are the fol-
lowing
i) for a given plant, characterize the subset of assi-
gnable polynomials

1i) derive the conditions to be fulfilled in order that
the subset above includes all polynomials in two
variables with unit constant term

iii) given any specific c(zl,zz) in \Riél,zli, decide

about its assignability (or at least the assigna-
bility of its variety ¥7(c)) and then realize ZC.

The 2D matrix fraction description (MFD) approach provi-
des the natural setting for studying the problems above.
In secticn 3, the elementary properties of MFD's will be brie
fly recalled and some new results will bpe presented, B
that will support the feedback analysis and the synthe-
sis procedures of sections 4 and 5.

SOME PROPERTIES OF 2D MFD's

Let A(zl,zz) and B(zl,zz) be matrices with
elements in m[}l,zzT, of dimensions xkxh and hxk re-

spectively and assume det A(Zl'z2) #0.

Denote by ml,mz,...,m the maximal order
v
minors of
5 B
J’.A(z1 22) (zl,zz)J (9)
and by
#(a,B) = (m],mz,...,mv)
the ideal generated by ml,mﬁ,...,m =
< v

Clearly, matrix (9) is full rank except in the

points of the complex variety

¥1(a,B) ¥Y1F#(a,B)) ,

where the maximal order minors of (9) simultaneously
vanish. When ¥(A,B) #¢, A and B are called left zero

coprime (l.z.c.). A necessary and sufficient condition

for left zero coprimeness is that the Bézout equation

AX+BY =1 (10)

admits a 2D polynomial matrix solution in X and v .



A hxh polynomial matrix @iz, ,z ) is called a
2

1
common left divisor of A and B if

A=0A B=0QB (11)

B matrices. A and B are
left factor coprime det Q
all @ (12,
If & and B are not 1l.f.c.,
(GCLD)

ve factorization algorithm [?]. Different procedures

where A and are polynomial
LG T |

satisfying

if is a nonzero

constant for
a yreatest common
left divisor can be extracted using the primiti-
can also be adopted 18]. Left factor coprimeness 1s im-
plied, but does not imply, left factor coprimeness. In
EdEtL,

dinality of ¥'(a,B).

1.f. coprimeness is equivalent to the finite car-

Let W(z, ,z ) be a hxk rational matrix ir two
1 &

variables and suppose that the above polynomial matri-
ces A and B satisfy

W=24a B #  G12)
-1 )
Then A B is a left MFD of W. If further A and B are
LoE Sy a"l is a left coprime MFD cf W.
W(zl,zz) is proper if any cne of the follo-

wing equivalent conditions holds:

= i
W admits a l.c.MFD A B, with A(0,0) =1

i)

L ) =1 . A
ii) for any coprime 1.MFD A B=W4, det A(0,0) #0
iii) the entries of W are proper rational functions.

In the sequel,
MFD's,
cular, A(zl

when dealing with proper left-coprime

we shall always assume A(O,C) =1 and, in parti-
¢z,) =1 when Wiz ,z ) iz a FIR filter.
i ¥

Right MFD's can be introcuced with the obvious

changes. In particular,

1

given a r.MFD

W=CA

we denote by # (C,A) the ideal generated bv the maximal

"
y T
order minors cof (A {zl

The following theorem shows that the ideals
generated by the maximal order mincrs of a coprime MFD

of W(z‘,zj) do not depend on the particular representa-
17 2

tion (left or right}.
-1 -1 . , -
Theorem 1 Let N_D =D N be two coprime MFD's of
==5-= < R R L L
W(z_ ,z ). Then J#(N_,D ) = #(D_,N_).
T2 R R L

The proof depends on two technical Lemmas.

Lemma 1 [‘.’]
det D_=det D
L R

Under the same hypotheses of theorem 1,

Moreover, if C, A and B are 2D polyno-
=3

mial matrices such that CA B = W, then

i) det DL det A

-1 i
if and only if C A and A B

ii) det DL==det A are
factor coprime MFD's.
Lemma 2 Consider the polynomial matrix
(x| -vc | )
u:i___?___\ (13)
Le 1 a |
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where X and A are sguare matrices and det A is a nonze-
Then any r.MFD N D;l of the rational

ro polynomial.

matrix C A satisfies the following equation
deb: 0 det A (
e = det (X D_+y N (14)
det D R R ‘

The proof of Lemma Z is an immediate conseguence of the

determinantal formula for block matrices.

proof of Theorem 1. Putting A=D_, B=N , C=I in lemma

L L

ol

2 and recalling lemma 1, one gets

!
i

det(X D_+y N_)
R R

Assume that X is any permutation of the columns

'YI

of |I Oj. Then, except for the sign,the right and left
hand sides of (15) are maximal order minors of
= - -.T T

N D ana | D N_ | respectively.
- L L- - R R- g

Meocreover, as [X ,\_,j varies over the set of

all permutstions, we get a bijective correspondence
between of

-

the maximal order minors N D and
L L
Doy N S0 J(DL,NL; = ﬁ(NR,DR].

Consecuently, there is no ambiguity in defining

the transfer matrix ideal as the ideal of the

F(W)

maximal order minors associated with an arbitrary right

or left coprime MFD of W. The corresponding transfer
matrix variety Y{(W): = ¥ (EW))
finite set, whose points are called the rank singulari-
ties of W.

is a (possibly empty)

REMARK
MFD's of

¥ (W)
Wiz, ,z.)

1s empty if and only if factor coprime

are zero coprime. This makes a sub-

stantial difference with respect to |D transfer matri-
ces, where zero coprimeness and factor coprimeness are
and ¥ (W)

shall see, the existence of rank singularities plays an

eguivalent concepts, is always empty. As we
essential role in the closed loop polynomial assignabi-

lity problem.

Theorem 2 Assume that C,A,B,NR,DR and 2D polynomial ma-

trices of suitable sizes with

=1
A B =

=1
D
R R

Wiz ,z.) = N

i

o

and NRD;L is right factor coprime

Then
¥(a,B) U ¥I{C,A) = ¥ (W) U ¥'(h)
where
h =

det A/ det D
R

is a 2D polynomial (by Theorem 1).

In proving Theorem 2, we need the following

Lemma 3, that provides same additional properties of the




matrix U cotreauced ii Lemma oo

The matrix GUlz:,z?)

(=8 - - O <
19 Let (zl,ZZJE Cx¢C .

Lemma 3

"

is singular for any X and ¥ if and only if
" - FAT

least cne of the matrices A B, and is singular

when evaluated at (z27,27).

proof of Th z. By Lemma 3, we have

(zi,zz)e ¥IA,B, U FIC A} & det ""zi‘,z;):u, VX, ¥ 16)
and, applying Lemma 2,

det U(zj,z;. =0 & h det(XD;+‘{PiR}(2§, = 0 17)
Next cbserve
;z;’,z;) € ¥iw c&det(XDirYN )tz?,z;) = 0 T2 18)

This follows directly from the eguivalence of the sta-

tements belcw:

is full rank at (z:,zﬂ

|
|
LNDL?S,Zf‘J

1ii} there thac
XD (28,27 + YN l2%,2%9) =1 19)
R 1 B 1 2
iv) rolynomial matrices X and ¥ such that
g Tlad,z8d =92 ang. | 19} holds,
F , using (16), {17) and (18}, one gets
5 ¥v'(A,B)U Y (C,A) if and only I :t

that Ezj,zi Ya:oias

telongs to ¥ 7. U ¥ (W .

COPRIME REALIZATICNS

As we shall see in greater detail in the next
section, the compensator synthesis is performed in two
steps. The first one consists in solving a ZD Bézout
equaticn, wnose coefficients are determined by the clant
transfer matrix and by some requirements on the struc-
ture of the characteristic polynomial of the closec locp
system. The solution provides us with an input/output
representation of the compensator and the second step
calls for a state space realization of it.

A problem which naturally arises in cennec-
tion with the realization procedure is how to avoid the
inclusion of unwanted "hidder. modes"

polynomial.

in the closed loop

In order to introduce a concrete definition
of the concept of "hidden mcdes" in 2D state space mo-
dels, we aim to consider two complex varieties, associa-
ted with the polynomial matrices of the PBH contrclla-
bility and reconstructibility criteria, and tcestablish
some connections between these varieties and the rank
singularities of the transfer matrix. Interestingly, a
2D realization of w(zl,zz) is free of hidden modes if

s e e R

and cnly if the join of the above varieties coincide
;

with ¥7(W). So the natural guestion arises as to wnhe-
ther such realization does exist and howmay it be compu-—
ted.

The realization algorithm presented at the
end of this section, gives a positive answer to this

questicn and provides a constructive realization proce-
dure.

In

designing state feedback laws and obser-

vers c¢f a D system E=(A1,Ah,Bl,8ﬁ,C), tne following
2 2
two matrices proved to be of paramount importance 74}:

A= -2z -Az B,z +B_z 20
- 112 LY 22 el
. I=A z -A Z
i 1 22 |
0= ; (21)
iy C —
In fact, the controllability and reconstructibility

properties of L can be translated in terms of rank con-

ditions cn A and (C , that will be therefore called PBH

controllability and PBH recconstructibility matrices.

¥ (A) and ¥ 1)

plex variet:es ¥ (I-A 2 -A_zZ_ , 3 z +B ) and ¥ (C, I-
I {

1
1

Cenote for short by the com-

,\ZH
Z 2

1
-A z -A z ', and assume that NRDQ‘ is any r.c.MFD cf the
I I <« < - -

system matrixX. Then Theorem z can be easily rephrased

in terms of #, ¢ and

h = iet(I-Alzl—Aazz)/det DR ; (22)
giving

LAY U (D) = ¥ (h) U W) (23)

Of ccurse, Lf we assume that h is a nonzeroc constant,
the finite cardinality of the right hand side in (23) !
implies the factor coprimeness both of C[I-A{ZW-AAZJ

S < “ <

and (I-A z -& 2z ) Viceversa, 1f h is a

(B 2. 4B ¥,
11 93

(S8}

nonceonstant oelynomial, A andsor (€ are not full rank

along the algebraic curves associated with the irreduci-

ble factors of h . In this case, the uncontrollable and

the unreconstructible modes 1 lectively,

\C

B
en nmodes)
a

d
refer to the irreducible factors of h, that appear as
commen factors of the maximal order minors of A and
respectively.

By definition, a realization [ of Wiz _,z , is

coprime if is free of hidden mcdes.

As a matter of fact, there are many eguivalent
definitions of coprime realizations. These are summari-
zed in the following corollary, whose proof is a stright

forward conseguence of (23).

Corollary Let L =(A1,A2,BL,B_,C,D) be a realization of

LS 2

W(Zl'z“: and assume that NRD;1 is a r.c.MFD of W(z ,z_).
2 172

Then the following facts are equivalent

i det D_=det(I-A_z -A J

PoHst Dy SN

ij C(I-A .z -A_z )~} and (I-A .z -A z_) (B z +B z_)

. I-A2 ~R,2,) 1°1772%2 17172%2
are right and left coprime MFD's respectively

1il) ¥ A) U FIC) = ¥W)

iv)} I is a coprime realizaticn.



REMARK

mal realizations, since their local state space needs

Coprime realizations are not necessarily mini-

not have minimal dimension.

A =A *-_G OAW B
1 2 o |t 1

mal. Even more,
sfer matrix

For instance, the coprime realization

i L
B = , c=]0 1| D=0
[ eBi

of the transfer function (zl+22)/(1-21—22) is non mini-

admits infinitely many.

lizations for any proper transfer matrix is positively
answered by Theorem 3, that provides also an explicit
It should be noticed that the

since the statement re-

realization procedure.
Theorem proves scmething more,
fers toany (not necessarily coprime) r.MFD of W(zl,z

The question of the existence of coprime rea-

satisfying DR(O,O) =1I.

Theorem 3
W(zl,zz} satisfying DR(O,G] = 1. Then there exists a 2D

system I =(A1,A

Let N D
R R

B, B

C.,D
271 2 )

sfies the following conditions

i) Az
1

ii)

In particular, if N p-!l is r.coprime, &

det(I—Alz

12 )

is full rank in GCxC€

2

A Z

= det D
g rBy2y) =det Dy

R R

a coprime realization of w(z‘,zz).
i

sketch of the proof

W
(21,2

k., i
1

| N
i
1

2

R

L r

that is the degree of the polynomial of maximal degree

in the i-th column.

and D, and N, . are row-vectors whose elements are the
i3 ij

coefficients of the (i,j)-indexed polynomial in —DR+I
m

and N

R

o)

strictly proper, so that N(0,0) =0. Dencte by

1,2,...,m the column degree of the i-th column of

'

We can write

- ¥y, N =N
HT R HT
| z 1 z zkrl v zkl
T S S S
yr o= }
L, B s wwnnievi oSSR 5 O
_ { Dll """" Dlm } .
HT | ‘ % HT
|qul ....... Dmm_j

Introduce now the following matrices

it is easy to show that whenever a tran-
admits a coprime realization, then it

be a r.MFD of the transfer matrix

that realizes W and sati-

turns ocut to be

There is no restriction in assuming

! M | 0 \
| M ! -
| h-1 | |
A | ; } (h) _ |
10 i £ X 1
| M, o |
- |
[0 i smmommmnin s 0| a
o T T 0| & |
_ " ~ -
‘ h ‘ :
N | |
: h=k | ;
! - |
(h) _ | I (h) _ :
20 : N ’ 2 ol
l 2 | ~
DO e an .o -
1« S a; ! 1,
| i
with
0 O e | 1 0...91]
M= Noo=
] | j
L or L o,
and define
- (kq) (k) (k)
A = diag|a . e
10 9ld T A B0 -
.= ky) (kg) (k)
a = diag|a ! - m’]
20 IRyt 2y 20 -
— (k k ( =
By = diaqLBlt 1) sf 2. B:km)'
= (k) (ko) (ki)
B_ = diag|B_ L B2, . m’
5 iag |} 5 5 - BZ ¥
Then th tric A =A +B D = =
e matrices i T o A2 A20+BZDET' BI'B2'C
o furnish a realization of NRD;] satisfying i) and
ii). The details of the proof are given in 3
Oewmies | 0 et e e |
_________ po_ Ll
: ; |
\- | 1
- k k-1 X ‘
iiee 0| 2m oz Zm e 2Bz oz |
P2 172 1 2 1|
...... N
"
....... N
pm |

ASSIGNABILITY OF THE CLOSED LOOP CHARACTERISTIC

POLYNOMIAL

18

At the end of section 2 we posed problems i) -
-iii) relative to the system of fig. 1, obtained by in--



LA, LA

T
m

terconnecting a strictly proper plant . =

and a compensator L = (Fl

Qur aim now 1s tec give a solution tz such

P S S e I e
€ oAl R

an ; T g swans
problems. Let W(Z1'22) and wc(zl,zzj be the zransfer

matrices of I and respectively, and consider two
== =0
MFD's PQ and X Y satisfying
W(Zl;zj:‘ =PQ , detgq = det(I-p 2 -A.2 ) (26)
Wiz ,2) =X ¥, det X = det(I-F 2 -F z_) (27)
e 1 2 11 & 2
Then the closed loop characteristic polynomiai (8) is
given by
iz ,z detix Q-Y P} (28)

) =
¥z

Cn the other hand, by Thecrem 3 any left MFD X_EY with

X(0,0) =I admits a realization EC :(Fl,A",G_,Z_,H,J)
that satisfies the condition
det X(z ,z_) = det(I-F z -F_z_)
1 2 11 "2 2
So, as (X,Y) varies over the set of polvnomial matrix

pairs with X(0,0) =1I, produces all assicraple clo-

sed loop polynomials for the given plant .

o
Let E be a GCrRD of P and Q. Then
P = NE 0 = DQE (29}
and Nng‘ is a r.c.MFD 3f W. As a consequence of (22
and (2Zo), we have
h(z ,z_) = det(I-A z -A_z_ ) /det DR = det = (30)
1 11 2w
and (28) becomes
iz ,z_) = h det(X D_~+v¥ N ) (31)
R R

The above formula clearly shows that h(z‘,zj;, which

represents the hidden modes of I, is an invar:ant fac-

tor of i(zl,zq) w.r., to feedback compensation.In other
FA

words, as far as fixed modes are concerned, D systems
behave exactly in the same way as 1D systems do. How-

ever a deep difference between 2D and 1D systems comes
out when we consider the fa;tor det (X DRAFY N:]. In

fact, as we established in the proof of Theorem 2, this
factor must vanish for any choice of X and Y cn the set
# (W) of rank singularities. Such restricticn does not
exist in the 1D case, where the solvability of the Bé-

zout equation X DR-&Y NR =1 and hence the complete as-

signability of the polynomial det (X D *Y¥ N ) are con-

sequences of the coprimeness of NR and DR

P The next theorem shows how the condition that
4 vanishes on ¥'(h) and ¥(W) and that ;(0,0) 70, re-
present the only constraints, imposed by the structure
of the plant on the closed loop polynomial variety.

Theorem 4 TLet I = (Ay,A5,81,B5,C) be a realization of

19

proof

the transfer matrix W. For any compensator . , theclo-

sed lcop polynomial variety ¥ (4) satisfies the inclu-
sion
e

YL 2 ¢ (h) y ¥ (W)

where h is given by (30) and ¥ (W) is the set of the
rank singularities of W.

Viceversa, given any algebraic curve % that
#(h) U ¥(W) and excludes the origin, a com-

that ¥(L) =¥ .

includes

pensator . exXists such
c

The first part of the Theorem has already been

proved. For the second, let M. be the submatrices of
i

) R . T T.T
maximal corder in LP Q!

that correspond to the minors

, e §l 5 -
M B2 BB il

Then there exist constant matrices

i

L and K that satisfy

adj M )M = (Adj M JL Q- (adj M_jK P
& b I, ik

a 2D polynomial c such that

% , cl(0,0) 1

1

¥y W)U ¥ih) =

@nd Hilvert's Nullstellensatz imply

4
"

c T m.g € 0,0 (33)

uitable integer r
L (33)

V2L

and suitable 2D polvnomials

g+ Tying and tcgether yields

X = C g,

g tadj M K,
- 1 1

itadi M, )L 2
s E

By theorem 4, we are able to construct a compensator

= {F

=1
- . +G_,H,J) that realizes X Y under the con-

1772
straint det(IﬁFlz1

,F2,G

~-F _z
22

polynomial is given by

) =det X. Thus the corresponding

closed loop

- rm
2z ,z.) = det(XQ-YP) =c

and ¢ is the variety of i.

Let us pause to make some observations.

1. Assignable polynomials of a strictly proper MISO sy-
easily characterized as the elements with

In fact, let

stem I are
unit constant term in the ideal h .#(W).
q be fhe characteristic polynomial of I and [pl,pz,.
..,pDJq‘z its transfer matrix and consider any poly-



nomial c in
c(0,0) =4d.

P,

Ve

s+ P ) =h FIW; and satisfving
P

Then there exist 2D polynomials x,v ,v ,...,¥ such
FR <]
that
c=ax+ipy,
i i
and x(0,U) = 1. Clearly any 2L realization L =
o
Gl.Gz,H,J: GE ‘
-1 - B

b Yoe¥ore oo o¥ |
¥y y2 YP

that satisfies x =det(I-F,z,-F,z  gives c as closed
loop characterilstic polynomial.

' S0, when dealing with MISO (and, using dual resoning,

with SIMO) an alternative characterization

of the feedback action

systems,
is available in terms of po-

lynomial ideals instead of polynomial varieties.

As a corollary cf Theorem 4, we easily solve the que-

stion ii) mentioned at the end cof section ii), thus

obtaining the fcllowing ecuivalent conditions for the

complete assignabllity of closed ioor colvnomials

i h=1 ani ¥ {W)=:

ii) (A = ¥i(d )=+ (i.e. thne plan- is controi-
lable anc reconsii.ctible in '3, :

iii) the plant admits a dead-bea: i.e. &
compensatcr & such that g,

2. Rank singularities are not invariant under output
feedback. This can be easily seer o for in-
stance

w<z1,z,- = z_-l—Ezq-z:)/(}+zz, (34}
g on P 2y
,“; —n: \1+322+21;

cransfer function

(36

rarn« singularities,

nile ¥(W) =¥ )=

that, whatever the realizations of

+Zy) may be, the resulting closed

1
rnternally unstable. In

loop systen 1= fact, indepen-
terns’ descripticns - and L. of W and

dently of tns
W

c,the variezy I the closed loop characteristic

jololy

lynomial must include ¥ (¥ and ¥{W.)) and
B ) nidden mode of the closed loop system.

”[Zl'z-

A key problem which naturally arises at this
point is to decide whether a given algebraic curve %,
described by a pclynomial equation Sizy.z5 )= 0, is as-
can be viewed as the closed loop polyno-
. 1),
the procedure will break up in-

signable (i.e.
nmial variety of the system depicted in fi

w3

By Tnecrem 4,
to three checks:

“a) (0,0) ¢ € (37)
E) ¥'(h)c ¢ (38)
) YW C ¢ (39)

Checking a) is trivial and checking b, reduces to veri-

fy if h divides a suitable power of c (for instance

c4ed D) qne last check can be algorithmically performed

101 once a set of generators of (W) has been found.

The computation of such a set and of h is im-

mediate if a coprime MFD NRDil of the transfer matrix

W 1s availlable. In fact the maximal order minors of

20

FW)

and eguat:

generate yields h.

o pe avoided if we

sing a coprime MFD of Wlz,,2.; ¢
re to the state space model arz compute the matri-
ces % and D in
Wiz, ,z_) = |[C adj(I-BA z =B 2z )i 3
R R - Hant Ao i iy

1 det(I-A z -A _z )
“m e M

m <

evaluating the

?7T ET} and then

The generators set can be obtainea

maximal order minors LM Moy e T

by eliminating their g.c.d.d:zi.z;l. Thus h 1is given
. e
det D

o= det(I«Alzl-Azzz)/det D = det S2-

!I*A‘z‘kA z_)
i 1

Assume now that a var:ie-
(39)
this section we shall briefly mer

¢ that fulfills
e4n given.

TC COiin L1Es

conditions (37) through

na

Ii2n a compensatoer

synthesis procedure that procduces a closed loop pelyno-

mial . whose variety is € . F we must evaluate &

r. ceczrime MFD NPDJ;1 of W. One way tc do this 1is touse

crimitive factorization algocritiam (7.,

or other

facvorization=

e

algcrthms that do not regquire crinit

the maximal

s1ince

we can

and

lve the Bézout eguation c

4,

1gue developed in the

nal step explelits the realizaticn algorithm of Theorern
3 fcr computing a coprime realizat:ion i, of X7 Y.

The correctness of tr rocedure 1is easily

secr, from the following chairn 2f ezualities:
¥ 1 = ¥n U ¥ldet (%D - ey (3
= ¥, Uil I by (37
™
S Yic =€
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