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FAILURE DETECTION IN
2D SYSTEMS®

E. FornasINI' AND G. MARCHESINI!

Abstract. Dynamical redundancy relations of 2D systems allow for an imple-
mentation of parity checks by means of 2D dynamical models. This paper presents a
complete characterization of the admissible parity checks, both in time and in formal
power series domains, and provides a dynamic implementation which does not
increase the intrinsic delays of the failure detection process.
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1. Introduction

Over the past decade several contributions to the problem of failure
detection in dynamical systems have been presented in the literature (Chow and
Willsky, 1984; Lan et al., 1986; Massoumnia, 1986; Isermann, 1984).

Any failure detection method essentially involves some processing technique
of the measured variables and is based on the use of redundancy among them.
Redundancy relations fall in two classes: direct redundancy exploits the rela-
tionships among instantaneous outputs of sensors, while femporal redundancy
takes advantage of the relationships among the histories of sensor outputs and
actuator inputs. In both cases, the signal generated by the detection process—
the residual—depends on the difference between the measured and expected
values of some function of the plant output. In the absence of a failure, a zero
residual should testify the normal behaviour of the plant.

In a linear environment, the residual generation process based on temporal
redundancy is easily described by a moving average (MA) model. Thus it seems
quite natural to look for a residual genevator in state space form. The task it
performs conceptually splits in two different steps, though very often inextric-
ably mixed in the operation of the state model. The first step consists in
reconstructing the free output of the plant, by eliminating the forced evolution,
the second one relies on checking if the space of the admissible outputs contains_
the signal generated in the first step. If the signal is not contained in it, the
corresponding residual will be nonzero, which constitutes an alarm evidentiating
that a failure occurred.

The above procedure requires to perform a parity check on the outputs. The
set of parity checks can be explicitly described in terms of linear functionals
associated to the observation matrix of the plant (Lan et al., 1986).
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This paper deals with the solution of the failure detection problem for 2D
systems. As well known, 2D systems provide input/output and state-space
models representing physical processes which depend on two independent
variables. Typically, they apply to two-dimensional data processing in several
fields, as seismology, X-ray image enhancement, image deblurring, digital
pictures processing, etc. Also, 2D systems constitute a natural framework for
modelling multivariable networks, large scale systems obtained by interconnect-
ing many subsystems and, in general, physical processes where both space and
time have to be taken into account. Finally, they are needed when synthesizing
2D control laws (Bisiacco, 1985).

2D systems constitute a relatively recent area of research and up to now
there are no results in the literature concerning the 2D failure detection
problem. The input and output signals that are needed in 2D failure detection are
defined on the discrete plane Z X Z or, more frequently, on a suitable half-plane
of ZxZ. Moreover, since the quarter plane causality is assumed, the output
value at (z, j) only depends on the input values and initial conditions of the
system on the set {(h, k): h=i, k=j}.

Clearly the failure detection based on direct redundancy only keeps into
account the outputs of the sensors at the single point (i, 7). Here the causal
structure of the system is not relevant and the detection problem can be tackled
along the same lines as the 1D case.

Vice versa, when considering temporal redundancy, the difference between
the causality structures calls for a specific treatment of the 2D case. As it is well
known, a 1D parity check processes a data set,

v, y(U+1), --- y(t+7),

whose support is a finite time interval and the parity check cannot be performed
before ¢=T if the data are available starting from ¢=0.

On the other hand, the 2D data entering the residual generation process
constitute a finite set whose support is contained in a triangular window of the
discrete plane Z x Z,

y(i-v, j)
¥—v#l, 1—1) y—v+1, j)
...... (1)
JE~1, J—wv+l) w GlE~1, §—1) y(i—1, j)

It comes out that if we have to perform the parity check and to make available
the corresponding residual at (z, 7), we need data in the past of (7, j) that belong
to a “band” constituted by v+ 1 diagonals. In particular, if the data are known in
the half plane { (&, £): h+k=0}, the residual can be computed at (z, j) if and
only if +j=v. In this case, if no failure occurred in the system, the parity check
leads to the same result if the data set (1) is substituted by any other set we
obtain from (1) once (i, j) has been substituted by (&, k) with h+k=v.

As one can expect, because of the above invariance property, the residual
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generation process is naturally represented by MA models in two variables.
Consequently a 2D residual generator in state space form can be synthesized as
a 2D system that realizes the MA model.

The paper is organized as follows. In Sec. 2 we give a fairly complete analysis
of the redundancy relations that underlie 2D parity checks. The first character-
ization of the parity checks expresses temporal redundancy in terms of
orthogonality conditions in suitable linear spaces. These are the images of
matrices which depend on the dimension of the triangular data window and
exhibit a structure that reminds of the local observability matrix introduced in
Fornasini and Marchesini (1978).

A further characterization of the parity checks is introduced in that section.
This leads to a representation of parity checks as elements of a free module over
the ring of polynomials in two variables, whose structure is completely specified
by a finite set of generators computed from the matrix fraction description of the
system.

In the last section of the paper we assume that a specific parity check has
been given and we present an explicit realization procedure of the polynomial
matrix in two variables that constitutes the transfer matrix of the corresponding
residual generator.

As well known, there are several different state space realization techniques
for a polynomial transfer matrix in two variables. In this context we are
interested in obtaining a finite memory realization whose unforced dynamics
goes to zero in a minimum number of steps. The reason for this requirement is
that the response of the residual generator provides exactly the parity check
only when the unforced response has vanished.

The realization given in this paper proves that the time interval required for a
“on line” implementation of the parity check by a minimum memory 2D system is
the same as for an “off line” implementation. Therefore the minimum memory
2D systems (which need not have minimal dimension) exhibit the same prop-
erties as minimal dimension 1D systems in the 1D theory of residual generation.

2. 2D parity relations

Consider a 2D system (plant), represented by the state model (Fornasini and
Marchesini, 1978),

x(h+1, k+1) = Ax(h, B+1) + Aox(h+1, k) + Biu(h, k+1)
+ Bou(h+1, k) (2)

y(h, k) = Cx(h, k) + Du(h, k)

where x is an n-dimensional local state vector, u is an m-dimensional vector of
known inputs, y is a p-dimensional vector of measured outputs and 4,, A,, B,
B., Cand D are known matrices of appropriate dimensions. Assume further that
C is full rank, which rules out direct redundancy among the instantaneous values
of the sensors.

The transfer matrix of (2) 1s given by
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Wi(z1, 22) = CI—A1z1—Az22) " (B12,+Byz,) + D. (3)

A parity relation is a linear combination of a finite window of present and
lagged values of # and y, that is identically zero if no failures occur in (2). This
should be verified for any location of the data window in the discrete plane,
which implies that the parity criterion is invariant with respect to two-
dimensional shifts and hence is associated with a 2D moving average model.

Let us first assume that the plant undergoes a free state evolution starting
from some initial global state,

&y = {x(i, —1): 1 € Z}.
Denote by

Y(z1, 25) = 2 (i, Dar'zs’ = CU—-Arz1—As2:) &, (4)
1+

7=0

the formal power series associated with the output values in the half plane { (s,
7): i4+7=0} and for any (z, j) and v=0 introduce the (1+2+4 --- +(v+1))p-
dimensional vector,

y (@, 7) A [y G—v, )y G—v+1, j=1) - y" (i, j—)|
e [9TG=1, DTG, F-D |76, DT
Note that y (¢, 7) represents the output data contained in a vth order
triangular window with vertices (z, 1), (i—v, j), (1, j—v).

Let now decompose Y(zy, z2), det(/—A,2;—A,z,) and adj({ —A 2, —Asz,)
as follows:

Y(Zl, Zz) = Y()‘l' Y1+Y2+ Skt
det([—-Alzl—Agzg) = 1+H1+H2+ +Hn,
adj(]—Alzl *AzZz) = I+M1+M2+ tee +Mn—1'
Here H;, =0, 1, ---, nare homogeneous forms in two variables of degree 1,
Y; and M;, =0, 1, --- are vectors and matrices whose elements are
homogeneous forms in two variables of degree 1.
So, recalling (3), we have :
(A+H+ - +H )Y+ +Yo+ -y =I1+M+ --- +M,_,, (5)
which implies

Yy .l a0 Bsa + =+ i et F By =10

for any k=0. Denoting by h;; the coefficient of 2,25/ in H,,; and introducing the
real (1+2+ --- +(v+1))p-dimensional row vector,
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wT ‘é [hnohn—l,l h’Un"” |h20h11h02|h10h’01|1]®[1 ] onnes 1]; (6)
N ]

. X p times
one gets the parity relation,

w'y (i, n+k—1) = 0. (7)

Clearly, w" provides a parity check on the free outputs space, in the sense
that, if the product (7) is different from zero, a failure has occurred in the plant.

As one can easily intuit, the convolution of the output series with the
characteristic polynomial det(/ —A,z, —A.z2), given by (5), does not constitute
the unique way for obtaining a parity check. Actually, let

q'(z1, 22) = [q,(21, 22) q2(21, &) o qp(zlr z3)]

be a polynomial row vector and denote by ¢"(zq, 22)=Q¢+&1+ -+ +Q; its
representation as sum of homogeneous terms. Assuming that

q" (21, 22)CU—Aj2;—Apzy)™ (8)

is a polynomial matrix of degree v—1, the degree of ¢"(z;, 22)C and, by the rank
assumption on C, the degree s of ¢"(z1, 2z2) cannot exceed v.

Since the degree of the nonzero homogeneous terms of ¢"(z1, 22) Y(z1, 22) is
less than or equal to v—1, we have

QY ip+ o + Q1Y 14+ QY =0

for any k=0. Denoting by q{}.'f the coefficient of z,°zy’ in Q;;, the (1+2+ -
+(v+1))p-dimensional real vector

v A0 0lqral, - 4,429 1902 1910901 | 200)" (9)

is orthogonal to the free output vector y (i, v+k—1) for any k=0 and for any L.

Note that as ¢7(z1, z») varies, the corresponding row vectors v” given by (9)
constitute a class of parity checks containing the vector w" defined by (6).

The converse is also true, that is, given a (1+2+ --- +(v+1))p-
dimensional vector », orthogonal to the free outputs yv(z', v+k—1) for any k=0
and any 1, its entries can be viewed as the coefficients of a polynomial vector
¢"(z1, 22) ER[21, 2217 and q" (21, 22)C(I—A,2,—Agz,) " is a polynomial matrix.

So doing, we have obtained a complete characterization of the parity checks
which can be performed on the output data contained in a vth order triangular
window. As v varies, the above polynomial vectors ¢"(z;, z,) constitute a free
submodule S of R[z;, z,}¥ which can be characterized starting from a left
coprime matrix fraction description (MFD) (Kung et al., 1977) M(zy, 22)N (21,
29) of C(I—Ayz,—A3z5)". The parity checks consist of the polynomial row
vectors ¢"(z;, z») which make

q'(zy, Zz)Mfl(Zl. 22)N (21, 22)
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to be polynomial. Since M~'N is coprime, by Lemma 5.3 in Kung et al. (1977),
this is equivalent to the requirement that ¢"(z,, z,)M '(z,, z,) is polynomial,
i.e., that ¢"(z1, z2) belongs to the free module generated by the rows of M(z;,
Zz)‘

Example 1.  Consider the 2D system given by

1 0 1 —
Al:l:].l], A2=|:0 g):l’ Bl

Bz_]:(l):l, C_[é(l)} D=

It is easy to check that

1*21 —22 222 = 2
—2‘1/2 1*21 0
provides a left coprime MFD of C(/—A,2z;—A,z,)"L.

Hence the parity relations are represented by the row polynomial vectors
given by

I

)

— o

h(zy, 22)[1—21—22|225] + k(z1, 22)[—21/2|1=2,], h, k € R[zy, 2].
An alternative complete characterization of the parity checks can be given in
the time domain by exploiting a generalization of the observability matrix.
Define inductively the following matrices (Fornasini and Marchesini, 1980):
Ay w UAz = A
AIOLU Ay = Ay’
A1r+1 w s+1A2 — A](Alr w s+lA2) o AZ(AIH’I w SAZ)
and note that the contribution of the state x(0, 0) to the output value at (7, s) is
given by C(A;" w *A,)x(0, 0).
The output values belonging to the triangular window with vertices (i,

v—i+k), (i—v, —t+k+v)and (i, —i+k) only depend on the local states on the
segment with vertices (z, —7+£k&) and (i—v, —i+k+v) and are expressed by

x(i, —1+k)
x(i—1, —i+1+k)
vy, v—it+k) =0 ;

x(i—v, —i+v+k)

where @ is the p((v+1)+v+ .-+ +1)Xn(v+1) matrix given by
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0 0 0 0 C
0 0 0 & 0
C 0 0 0 0
_@‘ — -
0 CAIV_] CA1V72 18] IAZ e CA1] Lt V72A2 CA2V71
CAlv_l CA1V72 L IAZ CA1V73 UJZAZ CAZ‘F] 0
L CAll’ CAIV71 LlJlAz CAIV—Z LL.IzAz e Cfl]_1 (nN] V—1A2 CAZV 1

A parity check v relative to the output data contained in a vth order
triangular window must satisfy the condition

vy, v—i+k) =0, k=0, =0, %1, £2, - (10)

for any initial global state . Hence v belongs to the orthogonal complement of
Im(@) and vice versa any vector in Im(# )+ is a parity check.

Clearly, the dimension of Im(#) linearly increases with v, while the
dimension of Im(¢)! is proportional to v* or, equivalently, to the number of
output values contained in the window we take into account.

The parity checks previously introduced apply also when the input of the
plant is different from zero. This of course requires that the free output
evolution should have been previously reconstructed from the actual input and
output functions.

Denote by u,(i, ) the (1+2+ --- +(v+1))m-dimensional input vector

u, (i, ) A [uG—v, DulGi—v+1, j—1) - u™(i, j—v)]|
s | u"=1, Hutl, 7-1) w6, DY,
and let y (i, ) be the corresponding output vector.
Starting from Eq. (1) and using lengthy but simple computations, it is easy to
show that the free output vector can be written in the form

yv(t‘; J") - (:g/uv(i! j)y (11)

where % is the following block triangular matrix

Fu
Fa Fay
Y = F31 F3z Fsa
Fv+1.1 FV+1,2 FV+1.3 N Fv+1.v+]

The diagonal blocks of % are given by

F,, = diag{D D --- D}
i P

i times

and F, ;_, are block matrices of the following form
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0 CAM'B, CAM?wlA,Bi+CA'By---  CA'B,
Fh,h_-}e - CAlk_lB] CAlng Ll 1A281+CA1}£7182 e CAzkAle
CA,*'B; CA*? wA;Bi+CA*'B; -« CA*'B, 0

In this case the parity check condition (9) is replaced by
vy, —i+v+k) — Yuli, —i+v+k)] =0

for any £=0 and any 1.

An analogous procedure applies when a formal power series approach is
used. In this case the formal power series that represents the free output is
given by

=W, 221 2 jj;] (12)

with
Uzi, 22) + 2 u(i, )z'zy.
i+7=0

If ¢"(z1, 2z») is any row polynomial vector in the submodule S, the coefficients
#(1, 7) of the series resulting from the discrete convolution

Y(z1, 22)
a1, 220 | —W(zy, 2 ! 13
q'(z1, z2)[ | (z1 Z}J[U(21, ) (13)
are zero whenever i(+j=v, for some positive integer v. So, the above
convolution represents a residual generation process, in the sense that r(i,
7)#0 for 1+7=v indicates that some failure occurred in the system.

3. Realization of a 2D residual generator

The aim of this section is to realize the residual generation process
introduced at the end of Sec. 2 by means of a 2D dynamical system driven by the
inputs and the outputs of the plant.

Let ¢"(zy, z») be a parity check for (2), so that the matrix (8) and,
consequently ¢”(zy, 2z2)W(z,, z2) are polynomial. The application of the parity
check to the formal power series (12), representing the free output evolution,
reduces to apply the row vector,

£g7(zy1, 22) B q'(z1, 22)[I| —W(zy, 22) 1, (14)
to the output and input data vector,

Y(z1, 22)
Ulzy, z9) |

So, the residual »(k, k) can be viewed as the output of a 2D system X,=(F,,
Fy, Gy Gy Hy ]),
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x'(h+1, k+1) = Fix'(h, k+1) + Fox'(h+1, k)

= Gl[y(h, E+1) ] . Gz[y(h+1, k) ]

wlh, k+1) ulh+1, k) (15)

v(h, k) = Hx'(h, k) + j[y(h’ k)]

wulh, k)

which is driven by y(k, k) and u(h, k) and realizes the polynomial vector g"(z;,
Zz).

Actually the residual »(k, k) generated by X, is the sum of a forced term,
that provides the expected parity check on the pair y(k, %) and u(h, k), and a
second term that depends on the initial conditions of X, which are in general
unknown. However, since g”(z,, z5) is a polynomial vector, we can assume that
in X, the matrices F; and F, satisfy the condition det(/—Fz;—F3z;)=1. In
this way X, is a finite memory 2D dynamical system (Bisiacco, 1985), in the
sense that there exists a positive integer p such that, for any initial global state
&y, the free state evolution,

X(z1, 22) =, 2 x(h, Rz "z,"

is zero for h+k=pu.

So, after a finite number of steps, the (undesired) second term vanishes and
the output of X, provides the correct parity check.

Equation (8) shows that the parity check ¢"(z;, z») requires that processing
of output data determined by &, should be extended at least up to the terms
appearing in the vth diagonal { (7, 7): :+7=v}. Hence the parity check is reliable
from the vth diagonal onwards.

We shall prove now that X, can be realized in such a way that the transient of
r(h, k) due to nonzero initial conditions in £, vanishes on the vth diagonal. This
shows that the existence of a nonzero initial global state &, for X, does not
impair the performance of the residual generator.

Consider preliminarily a polynomial transfer matrix ¢ (z;, z,) of degree v>0.
Whatever realization we refer to, a pulse in (0, 0) gives rise to a nonzero output
and hence to nonzero local states on the vth diagonal. So, bearing in mind that
the state updating equation introduces a single step delay between inputs and
states, there exist values of x(0, 0) leading to nonzero local states on the
(v—1)th diagonal.

What will be proved in Lemmas 1 and 2 below, is that there exist realizations
of € (z1, z2) whose free state evolution is zero on the diagonals with indices
greater than v—1. The above arguments clearly show that these realizations
exhibit a minimum length dynamical memory.

Lemma 1. The transfer matrix Qz,°z5/, @ ER?*™, i+j>0, can be realized
by a 2D system 2= (F,, F,, G1, G2, H, J) whose free state evolution, given by

X(z1, 22) =h+§20x(h. k)zi"z2o" = (I—F2,—F32,)7' &,

satisfies the condition x(h, k)=0 when h+k=1+j.

Proof.  There is no restriction in assuming ¢>0.
Let first consider the scalar case m=p=1. The following realization
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[0 1 ! 5
00 1 ; :
L0 0 |
1 1 |
Fi=190 0 0 | y g = 1!
_________________ }-—-—-H_- e e S [
| 1
0 L0 0 | 1
| !
. 00 0 J (16)
ixj
[0
0
G,=1| - |, Gy=0, H=[0 0--1], J=0
0
@
satisfies
(F}Zl +F222)1‘+j = (.
Let now assume p=1 and m>1, so that
Qz1'zd = lg, q, q,lz1'27. (17)

Then a realization of (17) can be obtained assuming £, F» and H as in (16),
G and /=0 and

G1:
49 4 - 4,

Finally, when p and ¢ are both greater than 1, so that

41 G1a 0 gy,
Q21i22j — | 9n qzzn:” - , (18)
qpl qu R qpm

the realization (F,, Fy, G, G, H, J) given by
FL:I‘@®F1, FZZIP®F2, Hzfp®H, J=O,
0
0
G, =Q® - |, G, =0
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satisfies
(F121+F2z2)' 7 = 0.
Lemma 2. The polynomial transfer matrix
@21, 2z2) :HJZEUQijZ]iZZj, Q;ERY™,  v>0

can be realized by a 2D system X=(F, Fs, G1, G, H, J) whose free state
evolution satisfies the condition

x(h, k) =0, ht+tk=w.

Proof. Clearly J=Qu. Moreover, for any (i, j)#(0, 0), consider the
realization G = (F,@) F,%0 G G G40 HED0) of Q,52,'24/, obtained
as in Lemma 1.

The matrices F;, Fy, G1, G2, H of arealization of Q(z;, z,) are given by the
parallel connection of %7, i+j=wv. In particular

Fi= @i,jFl(i'j)s Fp = ®i,jF2(i’j)

satisfy (F1z;+Fqz,)"=0.
We are now in a position to prove the main result of this section:

Theorem 1. Let ¢"(z1, z2) €S and assume that
Pz, z2) é q"(z1, 22)C(1’—1‘{1121—Azzz)f1

is a polynomial row vector with degree v—1.
Then the parity check associated with ¢"(z;, z») can be implemented by a
residual generator %, whose unforced motion x'(h, k) vanishes for h+k=v.

Proof. By Lemma 2, there exists a realization X, of g"(z;, z,) having a free
state evolution which satisfies x'(h, kB)=0 for h+k=degg'(z;, z,). So we are
reduced to prove that

deg g'(z;, z2)=v.

By (14), the degree of the polynomial matrix g'(z;, z,) is the maximum
between degq’(z1, 2z,) and degq’(z;, z2)W(z21, 2)=degq’(zy, 22)[CU—Ay2,
*A222)71(8121+3222)+D].

Now the assumption degp’(z1, z2) =v—1 obviously implies

deg q'(z,, 2;)CU—Ayz1—Ayzy) (B2, +Bazs) < v.

Furthermore, by the full rank assumption on C, we have

g (z1, 22) = p7(21, 22) (T —A 2, —A22,)CT(CCT)!

which gives degq™(z1, zz2)=w.
So degg’(z1, z2) is less than or equal to v.
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As a consequence of the theorem above, the dynamical system 2, consti-
tutes the best residual generator we can expect when implementing the parity
check associated with ¢"(z1, 2»). In fact the free evolution of %, vanishes on the
separation sets

&= {(h, b): h+k = i}

for all i=v.

On the other hand, we process output and input values of the plant X that are
located on the separation sets &, for all {=0. Since the parity check utilizes a
data set that belongs to v+1 consecutive separation sets, the output values of
2, on &, constitute the first set of residuals which are significant for the parity
check.

Example 2.  Consider the parity relation,
q"(21, 22) = [1-21~2,]22;] (19)
of the 2D system introduced in Example 1, whose transfer matrix is

222(1ﬁ221)

W(er 22) = l: 21(1_21)

](1—2z1—22+z12+22122)_1-

We therefore have that the transfer matrix of the residual generator s
associated with the parity relation (19) is the polynomial matrix

gT(El, 22) = {']T(Zl, Zg)[I_W(Zl, 22)] = [1—21—22|222|—222]. (20)

Note that the residual generator X, has
—1 output, that is the residual of the fault detection
—3 inputs, i.e., the 2 outputs and the single input of the plant X.
The realization procedure described in Lemmas 1 and 2 consists in three
steps:

Step 1:  Decompose g"(z;, 2») as follows:

[1 0 0]+[-1 0 0]z +[-1 2 -2z
— Q((J,()) + Q(I,U)zl 4§ Q(O’l)ZZ.

gT(Zlv 32)

Step 2:  Assume J=0Q"? and realize separately QV'?z; and Q> Vz,,

Q1 Vg — 30 PO — g, F9 = 0],
Gl(l.O} =[-1 0 0], GQ(I,O) =[0 0 01,
H®® = 1],

QO Vz, » OB POV 0], Fy 0 = [0],

GOV=10"0 0, GOV=[-1 2 -2
H = [1].
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Step 3:  The matrices of the parallel connection of =% and I,

F;i o Fi(l'O}EI-)Fi(U'U — |: 8 8 :I! i = I, &,

Gy -1 0 0 G, 00 0
Gr=]go»|=| o000 ®27|cov|7| -1 2 -2}
H — [H(I,[J) H((},l)] — [1 1]

and J=Q*?=[1 0 0] provide a minimum memory state space realization of
the residual generator.

Final remark:  So far, we assumed C to be full row rank, which excludes
direct redundancy among the sensor outputs of the plant.
If rank C=p'<p, there are p—p' rows of C that linearly depend on the others
and p—p’ linearly independent vectors in the orthogonal complement of Im(C).
Denote by U€RP?7*? 3 constant matrix whose rows generate Im(C).
Then, if the sensors operate correctly,

Uly(h, R)—Du(h, k)] = UCx(h, k) = 0

must hold for any (k, k). Consequently p —p' instantaneous parity checks can be
implemented on the behaviour of the sensors by exploiting direct redundancy
among the outputs.

The procedures for obtaining the dynamic parity checks considered in Sec. 2
still apply, provided that a suitable selection of p’ independent outputs has been
performed. This can be formally accomplished by using a matrix T € R?"*? that
selects p’ independent outputs or, more generally, any matrix 7T € R?' *? such
that TC has rank p'. The fault detection procedure previously described applies
then to the p'-output plant 2'=(A4,, As, B, Bs, TC, TD).
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