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* ABSTRACT

In this paper some problems connected with the
construction of 2D compensators and cbservers are
analyzed. In particular we are concerned with alge-

. braic criteria and linear algorithms for selecting
2D stable polynomials which can be realized as clo-
sed loop characteristic polynomials of a 2D system.

I. INTRODUCTICN
Given a 2D system in state space form [l]

x(h+l,k+1) = Alx(h.k+l)+A2x(h+1,kl+

* Biu(h,k*1)¢82u(h+l.k) (1)

y(h,k) = C x(h,k)

with m inputs, p outputs and n state variables, one
of the fundamental control problems is to construct
4n asymptotic state observer and synthesize a state

feedback law that provides a suitable dynamical be-
haviour.

The general structure of the solution to this
problem comes cut from the analysis of a Bézout 2D
polynomial matrix equaticn and the state space rea-
lization of a matrix fraction description obtained
from the solution of the Bézout equation.

More precisely, introducing the following ma-
trices

T1-a zl—A1z:}
(& B} = it (2)
Clz, izl ; o |
and
= [1- . IB z +B_z
J?(zl.zz) E.r .».lz1 Azzzl 12,852,

which are the PBH test matrices for reconstructibi-
lity and controllability of (1), it has been proved
[2,3} that

i) it is possible to compute a state observer
whose estimation error e(h,k) converges to zero
as h+k goes to infinity if and only if0izy.2;)
is full rank for all (21'22) in the closed po-
lidisc
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P = Z .2 A - !
Amlzz) ezl <1, J2,len
ii) given any polynomial q(z,.zz) in the ideal ge-

nerated by the maxical order minors of (J(z

_ 145
the egquation

P zZ_)C+ i - = = ,
(zl' 2) Q(zl 22)(1 Alzl Azzzj q(zl 22)1 (4)

is sclvable. Moreover, if C(zl,z:) is full .
rank in 2, we can select alzy,z3) so that

the intersection ¥1q)N P, is empty. In this
case, any realization of

- -1
W - B o Bz )P P2 3
(zl 3 [_b(z1 Z)EBlzl* 5 2)i (zl zijq[z1 zﬁ
that satisfies the PBY controllability and re-

constructibility criter:a
totic cbserver.

» Provides an asymp-

iii) stabilizability by means of a dynamic state
feedback compensator is equivalent to the full
rank condition of #(z,,z,) for all (z,,2,) in

2.

iv} the equation
(Blzl*szzz)N(zl,zzl¢ (5)
+(I-A z -a' Mz , = i
( lz1 2zz)'ﬂ 2 zzj I p(z1 22)

is solvable for any polynomial p(zl.zziin the
ideal £ generated by the maximal order minors
of Alzy,z3). If Alz,2,) is full rank in P
we can choose pl(z,.,z5) that satisfies ¥(p)n
n?l =@. Given any state feedback compensator
that realizes the matrix function

N (6)
and satisfies the PBH controllability and re-
constructibility tests, the closed loop poly-
nomial is p(z,,z,)". so if plz;,2;) has no ze-
ros in P, then the above compensator makes
the whole system stable.

Clearly, i), ii) and iii), iv) are relative to
dual situations and the solutions are essentially
the same. Hence in the sequel we only refer to the
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synthesis of a stabilizing compensator with this
objective in mind, the following problems have to
be successively tackled:

a) check if the maximal order minors of _;?(zl,zz)
are devoid of common zeros in 5"1.

b) if one has a positive answer for a), compute a
polynomial pl(zy,z3) belonging to .# and having

no zeros in 91
c) solve the Bézout equation (5)

d) realize NIM'I by a 2D state space model that sa-
tisfies the controllability and reconstructibi-
lity PBH tests.

In the seguel, we shall introduce an algorithm
which enables to solve a) and b). The reader is re-
ferred to L2: and [3] for a complete solution of
c) and d}.

II. STABILIZABILITY
Consider the ideal

CRITERION
generated by the minors

of maximal order rﬁltzd,zz), 52(21'22’ ,...,ris(z],zz)
of the matrix {3) and compute their GCD clz;,z3).

Denote by .f the ideal generated by the co-
prime polynomials m](zi,z:.),....mstzl,zz),where
mitzl,zz) = mi(zl,zzl/ctzl.zzl G Lop@ime w8

Since ¥ (.?} {‘I..’A = El' )N 5‘1] v Ef #Fin ufl] , for
testing stabilizability 1t is encugh to check se-

parately

Y(c)ﬁE’?l = X (M
and

V'tf:ﬁé’l = (8)

As far as (1) Ls concerned, we can use standard
tests for 2D polynomial stability [41 In order to
check if (8) is satisfied, we shall introduce a li-
near algorithm that does not regquire an explicit
computaticn of ¥ S

Let G= (gl,gz,... ,gr) be a Grobner basis in
F# . Since ¥ (# 1is a finite set, the guotient
ring Rt:l,zEJ/J’ is a finite dimensicnal R-vector
space and its dimensicn is equal to the number of
monic monomials dl,c‘.z,... ,r:lk that are not multi -
ples of the leading power products of any of the.
polynomials gy ,G5/--++9p [5-1 . Note that this set
is empty if and only if the Grobner basis G con-
tains a non zero constant. In this case ¥1§) =&
and (8) is obviously true.

Assume now k > 0. Thus

. =4d .=d ,...d +F: =48
dl*’f. dl.dzhﬁ. dz, ¥ 5 L

can be assumed as a basis in 'RLI.IJZ?_]/}'.

consider the following maps
Z: m[zl,zz'J/an[zl.zzj/j rqrf—z qef  (9)
3)’2:m[zl.zzl/}"'R[a’-erz]/f:q*.f-*zzqtﬁ (10)

They are both well defined, commutative linear
transformations on lRi:zi,zz] /# and are represented
by a pair of commutative matrices My, My in mkﬂ{,
once a basis vyiVy, ...,y in IR® has been associated
with dl,dz,...,ak. Note that the smallest-.fl'l and
Z,-invariant subspace generated by dy =T 1s the who-
li space lR[zI,Zz—l /# . Thus M’l“M%UI, i,j€EMN, generate
R™.

The construction of M; and M, essentially re-

quires to express zldl and z-d;, 1=1,2,...,k, as

linear combinations of uTl ,d_z, rin ,a;_. This can be ac- :
complished by applying the normal feorm algorithm : by
with respect to G ESJ )#

The properties of #, as well as those of its =
variety ¥'(F), directly reflect into the structure
of the pair M,M,. Note first that the mapping

kxk
R—R O W 2 c:Ik

1s a monomorphism of & into RKXk, so that the image
set RIy 1s a subfield of RRXK isomorphic to K. Sin-
ce the matrices M; and M, commute each other and

with every element aly, 1t follows that the mapping

iz 20 ¢ & 2yl : MM (M M)
' =1, . ZT a : = .
P 12 ij i3 1 2 i3, 43 1 P b2

~o

is a homomorphism of ﬁl:zl.zﬂ into kak.

It is easy
to see that the kernel of the homomorphism 1s the

ideal J that is
p(zl.zzief = ptnl,Mz) =0 (11)

As a corollary of the theorem on common eigenvec-
tors for commutative matrices fl’:] , we have that

(a , 8)€Y (F) if and only if M; and M; have a com-
mon eigenvector v and

on the other hand, basing on the Frobenius
theorem on simultaneous triangularization of commu-
tative matrices, the variety ¥ () can be charac-
terized in the following way. Let '.T.‘1 = Etl(_“_-} and
T, = [t’(_Z)] be triangular matrices such that My =
= p-lTyP and My = P~lT,P for some invertible ma-
trix P in ekxk |

Then (a,B8) belongs to (. #) if and only if




By Lemma 2 the measure of the interval

A
o

£ Z)j )| <1}

r

2 + -
Ht( Vi t(!}]
rr

{(relo,1] :

satisfies the inegualities

2 1
meas(_f{’r) < 3 < ¥

p_-l

Since the minimum distance between Xi and Aj, i=1,
is 1/K, each interval contains at most one of the

Ay-
R
Hence at least one Ai, say AE, falls out Lff}
and the spectrum of P_ -
1
e - (M3 7 3 _
1. = - a-it = T i or=llne
r “rr 17 LF £r

Theorem | and the above cbservations make possible

to se: a procedure for checking (B) using the fcl-

lowinz sequence of steps:

STEP ! Compute the commutative matrices M. and M,
STEP . Compute a posltive integer g such that 5

doet not lntersect tnhne spectra of M.and M,
eTEi : Compute ;o and the i1nteger j
erep 4 Solve the Lyapunov equatlions:

T N i

p X P = X1 SR W) WO

1 £

The system i stapilizing 1f and only if at least
one cf the apove equations admits a positive defi-

nite sclution.

3. COMPUTATION QF A STABLE 2D POLYNOMIAL

Assume tnat the proceaure of section I has
been successful, which means that the system1ls sta-

bilizable.

—he aim of this secticn 1s to solve the pro-
blem mentioned at point bl in the Introduction,
that 1s the computation of a stable 2D pelyncmial
in .ﬁ . As we shall see, the technigues of the pre-
vious secticn constitute the basic tools feor obtai-
ning this goal.

Let P; be one of the matrices considerec at
step & 1in section 2, whose spectrun lies outside
the unit disc

B o= A M+ (1-A M
i 2

pe i

— L

Denote by &i{z)e R[zz the characteristic polynomial

of P; and intrcduce the polynomial

- j 3
h(zirzz) = ()\ 21"’ (1 —)\1)22 (16)

Recalling (11), it is easy to see that h(zl,ZZ)E.ﬁ.

since

0

"
"

4 (P))
h(Ml,MZ) il i
We have now to prove that h(zl,zjldefined in (16}
is 2D-stable. For, factorize Li(z) as a product of
crime factors:

R

roo(z=y)

r=1 r
and notice that !1r1> 1, r=1,2,...,k. Each factor
in the correspcnding factorization of hizy.25)

=) (14)

s
W

[

=7+ (1= )z

s our a stable 20 oslvnemial. In fact assume
factor in (14)

ozl e (1= )z3 = A
il 2 r
Then
3 e e 3 3,
AREIRACTS T U R -SRI RO € L T E >1
A L 2= T 102 v
proves that (:1,:“Jé;?,, since for any (I, .Zal 10

Once ht-,, ‘) has been obtained, a stable 2D poly-

nomial 1n ,; , 15 given by
(z ,z=.1 = clz ,= Ithiz ,2.)
P e -l

Note that by assumpticn _&k;.hai which 1s the a.cC.
3. of the maximal ordcr minors 1in {3} ; S+ Es)

saticfies (7) and hence 1s a stable 2D polynomial.

REMARK: If the entries of Aj.A~,B; and B~ belong to
a subfield X of the real field, the algor:thm given

above orovxdes a stacle polyncmial h(Z\;aw) in ¥
n K.hl,zzi i.e. a pelvnomial having coefficients

wn K.
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