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ABSTRACT The recursive structure of 2D systems, which is naturally related to the
quarter plane causality introduced in the discrete plane Z x Z, plays an important role in
the definition of stale feedback laws and gives more possibilities Lhan in 1D case.

In this paper we shall consider the problem of stabilising a 2D system by a feedback
control law generated by anolher 2D system fed by the output or, as a particular case, by
the state of the given syslem.
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L. INTRODUCTION

The recursive structure of 2D systems is naturelly related to the quarter plane
causality introduced in the discrete plane Z x Z. The fact that in the discrele plane the
future and the past sets of a point do not cover the whole plane, plays an important role
in the definition of state feedback laws and gives more possibilities than in 1D case,

As s consequence, in 2D systems theory we have al our disposal more flexible
techniques for solving the stabilisation problem. OF course the problems are more involved,
essentially because the stability criterion of 2D systems relies on the shape of an algebraic
curve instead of the position of isolated singularities.

In this paper we shall introduce a stabilization technique based on a dynamic feedback
law which preserves the quarter—plane causality, More precisely, we shall consider the
problem of stabilizsing & 2D system by a feedback control law generated by another 2D
system fed by the output or, as a particular case, by the state of the given system,

The stabilization problem exhibits different aspects according to whether we deal with
input—output descriptions, in terms of transfer matrices in two variables, or with internal
descriptions, in terms of state space models. In both cases, however, a peculiar aspect of
the synthesis of stabilizing compensators is that it is not possible to freely assign the
variety of the closed loop polynomial, In fact, denoting by Ng(%,%,)Dr '(5,8,) 8 coprime
matrix fraction description of the transfer matrix, the closed loop variely is constrained Lo
include the set of points .5 where the minors of maximal order of the matrix [Np Dg]
simultaneously vanish. So, the sel & is constituted by all points of the closed loop
polynomial variety which are invarianl under feedback compensation,

The above constraint can be satisfied in a direct way when such points are explicitly
computed and do nol belong Lo the unit closed polydisc

In this case it is straightforward to determine a stable separable polynomial vanishing
on S so thal a suitable power of Lhis polynomial can be assumed as the closed loop
characteristic polynomial,

A dilferent approach is based on the implementation of finite lests for checking
feedback stabilizability without any explicit computation of & In this case a stable closed
loop polynomial can be assigned in such a way that the above constraint is automatically
satisfied. Keeping with the spirit of the second approach, the content of this paper is based
on some constructive methods of the polynomial ideal theory and in particular on a matrix
version of the Grobner basis algorithm,
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2. PRELIMINARY NOTATIONS AND STATEMENT OF THE PROBLEM.

A 2D system L = (A, Ay,B,,B,,C,D) is a dynamical model [1]

x(h+1,k+1) = Ax(h, k+1) + Agx(h+t k) + Byu(h, k+1) + Byu(h+1,k)
y(h,k) = Cx(h,k) + Du(h k)

M

where the focal state x is an n—dimensional vector over the real field R, input and output
functions take values in R™ and RP, A, A;,B,,B;,C and D are matrices of suitable

. dimensions with entries in R.
Assuming sero initial conditions x(i,~i) = 0, ¥1i £Z and denoting by

X(sy,39) = Eioizoxﬁ ' D&i’aj
Uz, 5) = [iq;ou(i.l'}‘ui‘zj
Y(B] -52] = ziquﬁ ri)‘litﬂl

the state, input and output functions, respectively, the rational (ransfer matris
W(s,35) = CI-Asi~Agsy) '(Bs+Bysy) + D
gives the input—output map
Y (3,30) = W(z,,32)U(5,3)
Denoting by

Ay, 2,) = det(I-Az—As,)

)

(3)

the characteristic polynomial of £, it has been shown [2] that [ is internally stable if and

only if the variety F{A) does not intersect ihe unit closed polydisc

B={(3,5) £ CxC : 5 S 1, |z S 1}

Suppose now that a 2D strietly proper (ie. D = 0) plant ¥ = (A, Ay, B;,B,,C) has

been given and consider Lhe feedback conneclion (see fig. 1) with a compensator L. =

(Fi,F2,G;,Gg,H,J)

'(h+1,k+1) = Fe(h, k+1) + Fox'(h+1,k) + Gyy(h k+1) + Gpy(h+1, k]
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y'(h,k) = Hx'{(h k) + Jy(h k) (4)
u(h, k) = y'(h k) + v(h,K)

where v(hk) is the external input at (hk)
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The local state ¥ = x @ x’ of the resulting closed loop system § updates according to the
following transition matrices

~ Ar"BlJC BlH e Ag"’B!Jc B!H
A= Ag = (5)
GC F, G,C Fy
and the corresponding closed loop characteristic polynomial of 5
&51-‘:] = det U‘ﬁth”ﬁa’:} (6)

depends on the matrices of the compensator, We say that a polynomial oz ,z,) is
assignadle if it can be assumed as the closed loop characteristic polynomial of the
feedback connection of I and I, , for a suitable compensator I

Given I, the set of assighable polynomials is & proper subset of R{s,s,] A first
obvious constraint on assignable polynomials is that the constant term must be one
Depending on the structure of £, further constraints can arise, relative either to the plant

transfer matrix or to the particular state space model that realises it.
Referring to that, our objectives are the following:

i) for & given plant, characterize the subset of assignable polynomisis

it} derive the conditions to be fulfilled in order that the subset above includes some
2D stable polynomials. In this case we say that ¥ is output feedback stadsliradle



]
i) in case ¥ is slabilizable, explicitely compute an assignable stable polynomial

iv) given any specific c(z,2,) in Rfz,1,] decide about ils assignability (or at least

the assignability of its variety F{c)) and then realige I

3. STRUCTURAL PROPERTIES OF 2D SYSTEMS : PBH CONTROLLABILITY,
RECONSTRUCTIBILITY AND HIDDEN MODES

Before embarking in the solution of these problems, some preliminary notions are
needed concerning systems structural properties that play a fundamental role in the
feedback analysis.

Our exposition will be as concise as possible and we refer to [3,4] for a more accurate
discussion and for the proofs.

Let
Wiz, 5) = NRDE(1 = DLﬁINL

be a right coprime and a left coprime MFD of the transfer matrix of the plant and denote
by 3(Ng,Dg) and by 3(D,,N.) the ideals generated by the maximal order minors of the

matrices [Dy Ni] and [NgT DgT] respectively.
Fact 1. j(NR.DR) = "(DLnNL)

So, there is no ambiguity on delining the fransfer matris 1deal W) as the ideal of
the maximal order minors associated with an arbitrary right or left coprime MFD of W.
The corresponding éransfer matriz variety &= V(3(W)) is a (possibly empty) finite set,
whose points are called the ranf simgularities of W.

Civen & 2D syslem Y in slale space form, we are allowed to recover the structure of
any coprime MFD of the system transfer matrix W. The converse, however, is not true,

since the knowledge of Lhe zero slate inputfoutput behaviour of ¥ does not provide a

complete information on the state space structure of L. In particular, W(3,,%,) uniquely

determines detDg (modulo some nonzero constant factor) bul does nol determine the

characteristic polynomial of I. This is easily seen [4] [rom the equation
Alzy,3,) = hlz,3,)det Dy (7

where the factor h in the right hand cannot be recovered from the transfer matrix.
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Introduce Lhe so called B controllabiirty and PBE reconsiructidrlity matrices
8= [[-Apg-Ag, Bz-Bg, | (8)

1- A m— Aggy
® = (9)
C

and denote by V[®) and V[®) the complex varieties of the maximal order minors in (8)
and (9) respectively.

Fact 2 M(®)uM(®) = V(hlu s (10)

This shows that h is a non constant polynomial if and only if ® and ® are not full
rank along some algebraic curves, which are associated with the irreducible factors of h.
The uncontrollable and/or unreconstructible modes (Asdden modes) refer to the irreducible
factors of the maximal order minors of ® and ® respectively.

By definition, a realization I of W(z,,5,) is coprime if ¥ is free of hidden modes (ie. if
h is a nonzero constant). As a maller of fact, there are many equivaelent definitions of
coprime realizations. These are summarized in the following Proposition

Proposition 1 Le/ T = (A, A,,B,,B,,C,D) ée a realization of Wz, 2,) and assume that
NpDr™ 15 a r.e MFD of W(a,,5,). Then the following facts are equivalent

1) det Dy = del(1-A 3,-A,3,)

1) ClI-Am-Agm)" and (I-Ag—Agsy) (Bis+Bss,) are right and left coprime
MFD’s respectively

m) Vigjuv(e) =5
1w/ L 15 a coprime reaiizaiton of W(s,,3,)

The question of the existence of coprime realizations for any proper transfer matrix
has been positively answered in [5]. Actually it can be proved somelhing more, ie. that

given a coprime MFD NpDgp™ of W(z;,3,) and a polynomial h ¢ R[z,,7,], a realization I =
(A, Ay,B,,B,,C,D) of W(z,,2,) exists such that A(z,3,) = hdet Dy



4. OUTPUT FEEDBACK STABILIZATION

Let W(z,,1,) and W,(s,2,) be the transfer matrices of ¥ and I, respectively, and
consider two MFD's PQ™ and X™'Y saltisfying

W(z,,5) = PQ™ |, detQ = det(I-Az—-A,2,) (11)
Wlg,85) = XY |, delX = deb(I-F\5,—F,2,) : (12)

Then the closed loop charactleristic polynomial (6) is given by
A5, 5,) = det(XQ-YP) (13)

On the other hand, any left MFD XY with X(0,0) = [ admils a realisation I, =
(¥,,Fq,G,,G;,H,I) that satisfies the condition

det X = det(I-Fy5,—F3,)

So, as (X,Y) varies over the sel of polynomial matrix pairs with X(0,0) = [ (13)
produces all assignable closed loop polynomials for the given plant I

Let E be the GCRD of P and Q Then
P=NgE @ =DgE (14)

and NgDg™ is a right coprime MFD of W(s,,3,) As a consequence of (7) and (13), we

have

delE = h{z,,3,) (15)
A(5,,5,) = hdet(XDg-YNg) (16)

The above formula clearly shows that h(z,,z,), which represents the hidden modes of

¥, is an snvarsand factor of 3(5,_22] w.i. to feedback compensation. In other words, as far
as fixed modes are concerned, 2D systems behave exactly in the same way as 1D sustems
do. However a deep difference belween 2D and 1D systems comes oul when we consider
the factor det(XDgp-YNg). In fact, this factor must vanish for any choice of X and Y on
the set S of rank singularities. Such restiction does not exist in the 1D case, where the
solvability of the Bezout equation XDg-YNg = I, and hence the complete assignability of
the polynomial det(XDgr-Y Ng), are consequence of the coprimeness of N and Dy,

The conditions that & vanishes on & and V{h) and that &(00) £0 represent the only
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constraints imposed by the structure of the plant on the closed loop polynomial variety, In
facl, given any algebraic curve € that includes F[h) w5 and excludes the origin, a

compensator L, exists such that ¥{a) = ¢ [5].

The most obvious conclusion is that V{h)nF, = Pand SnF = D are both necessary

stabilisability conditions for I,
These conditions are also sufficient, In fact, assume thal

5= (o, 8), (00, 8s), . . ., (o0, B}

satisfies Jog > 1, =1, 2, ...s |8l > 1,i=s+, s+2, ...t and let Fh)NA =R
Then the variety of the polynomial

cfz,,%) = h(s,,2,) Mia 2. o(B—00;) Micaat, ez, .. (8-83)
is an algebraic curve ¢ that

(1) does not intersect A
(2) includes MTh)us

We therefore have that a compensator I, exists such that € is the closed loop
polynomial variety. Clearly this compensator stabilizes the plant, since €nF =)

5. STABILIZABILITY CRITERIA

Stabilizability criteria are available, based on separate checks for the stabilisability
conditions

h)nA = P (17
WInA = D (18)

As far as (17) is concerned, we can use standard tests for 2D polynomial stability [6].
In order to check il (18) is salisfied, we shall introduce a linear algorithm that does not
require an explicit computation of § [7].

Let & = (g8, . . . &) be a Grobner basis in (W) Since & is a finite set, the
quotient ring R[sz,,5,]/3(W) is « finite dimensional R-vector space and its dimension is
equal to the number of monic monomials d;,d,,. . . dy that are not multiples of the leading
power products of any of the polynomials g,g,, . . . g; [8]. Note that this set is empty if
and only if the Grobner basis & conlains a non sero constant In this case = Pand (18)



is obviously true,
Assume now k > 0. Thus
ded =dy,dpvd=dy, .. dyed = dy

can be assumed as a basis in R[s,,5,]/3.
Consider the following maps

% Rz, 5,]/3 -+ R[s,%]/3:q+3 > 5q+3 (19)
% : R[s,%]/3 = Rls,5]/3: q+3 + 2,9+3 (20)

They are both well defined, commutative, linear transformations on R[s,5.]/3 and are
represented by a pair of commutative matrices M, , M, in R*™* once a basis v,,v,, . . .
vy in R® has been associated with d;,d;, . . . d; . Note that the smallest x, and
x,—invariant subspace generated by d, = 1 is the whole space R[8,,%,)/3. Thus M,'M,lv, ,

i, j & N, generate RY.

The construction of M; and M, essentially requires to express ;1_d. and 5,d, ,i=12 .
.. k as linear combinations of d,,d,, . .. dy . This can be accomplished by applying the
normal form algorithm with respect to &

Since the matrices M, and M, commute each other and with every element al,, it

follows that the mapping
plz,5,) = }:niﬂijﬁi“zj"" zl]a’lfMliMii = p(M;, M,)

is & homomorphism of Rz, z,] into R** Il is easy lo see that the kernel of the
homomorphism is the ideal 3(W), that is

plz,2,) € 3(W) & p(M,;,M,) = 0 (21)

As a corollary of the Frobenius theorem [9] on simultaneous triangularization of
commutative matrices,

SnP=p (22)

if and only if the pairs of eigenvalues appearing along the diagonal of the triangular form
do not belong to the unit polydisc A.

We can check (22) and construct a 2D stable assignable polynomial using the following
procedure:
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Step 1 Compule a real number p > { such that M, and M, are devoid of eigenvalues in

the open set {z £ C : 1 ¢ fal < p} . An algorithm for obtaining such a p has been presented
in [6].

Step 2 Lel j be the smallest integer greater than log(2k+1)/logp . Let A; = ifk, i =10, 1, ..
. k and define the matrices

Pi= AMy + (I-A0My ,i=0,1,.. .k
Solve the Lyapunov equations
PTXP;, - X =1 i=01,...k (23)

(i}

S does not intersect & if and only il at least one of the above equations admits a
positive definite solution,

Step 3 Assume that P; is positive definite for some i and denote by Afz) £ R[g] ils
characteristic polynomial, Then the polynomial

g(,52) = AAis+{1-N)z,) (24)

is a 2D stable polynomial in 3(W) and ¥Thg) is an assignable closed loop variety that
does not intersect £

It can be shown that hg' is a closed loop assignable polynomial for some positive
integer r.

To conclude this section, we briefly sketch the solution of problem iv) in section ii).
The procedure breaks up into three checks:

s  (00) ¢ Vo (25)
b) M) = ¥le) (26)
c) nw)e  ¥e) (27)

Checking a) is trivial and checking b) reduces to verify if h divides a suitable power of
¢ (for instance c**™). The last check can be algorithmically performed [4] once a set of
generators of 3(W) has been found. The computation of such a set is immediate if a
coprime MFD NgDg™ of the transfer matrix is available, In fact the maximal order minors
of [NgT Dg'] generate 3(W) and equation (17) yiels h.

Using a coprime MFD of W(z,3,) can be avoided if we refer to the slale space
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model and compute the matrices N and D in
W(a,,35) = [Cadj{I-A 3~ Agta) (Bys +Byz,)] (I det (I- Ay~ Agsy)) ' = ND™

The generators can be obtained by evaluating the maximal order minors {m;,m, . . .
m,} in [NT D] and then by eliminating their GCD d(z,,2,). Thus h is given by

h = det (I-A8,~Aqgs)/ det Dy = det (I- A 3~ Az3,)d(3,, 55)/ detD
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