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Sommario In questa comunicazione vengono discussi alcuni recenti risultati relativi
alla modellistica, la realizzazione e il controllo dei sistemi 2D, anche in connessione
con le attuali tematiche di ricerca.

1 Introduzione

I modelli 2D hanno cominciato ad attrarre I’attenzione dei ricercatori nell’area si-
stemistica fin dall’inizio degli anni 70 [1-6]. I motivi di tale interesse non sono ri-
conducibili ad un’unica matrice: in alcuni casi 'idea ispiratrice della ricerca & sorta
nell’ambito dell’elaborazione di dati bidimensionali con strutture di calcolo parallele,
in altri casi nella modellistica di processi parametrizzati da due variabili indipendenti
(e.g. il tempo ed una coordinata spaziale), in altri ancora le motivazioni, di natura es-
senzialmente teorica, riguardano I’analisi di dinamiche causali su insiemi parzialmente
ordinati e I'estendibiliti di nozioni sistemistiche “classiche” ad ambiti piu generali.

Le difficolta concettuali e formali della teoria 2D sono ben note: basii accennare
al fatto che molte definizioni e operazioni naturali o addirittura ovvie nell’ambito 1D
devono essere abbandonate oppure integralmente ripensate quando si opera in Z x Z.
E quindi intuibile che la teoria, lungi da una definitiva cristallizzazione sui risultati
acquisiti, offra numerosi spunti di ricerca in ogni suo capitolo.

In questa nota si discuteranno brevemente alcune prospettive di ricerca nei settori
della modellistica, della realizzazione e del controllo 2D, inquadrandole nell’ambito
di studi gid avviati e per i quali si dispone ormai di un insieme non trascurabile di
risultati,

2 Modellistica

I sistemi 2D sono modelli dinamici adatti alla rappresentazione dei legami fra segnalt
bidimensionali, descrivibili ciod come funzioni di due variabili indipendenti. Poiché



il supporto dei segnali 2D & il piano discreto Z x Z, si possono concepire molte
strutture d’ordine essenzialmente diverse per rappresentare gli ipotetici legami di
causa-effetto esistenti. A ciascuna di esse corrispondono modelli matematici diversi e
con caratteristiche non sempre confrontabili.

Da questo punto di vista si pud osservare che nei primi lavori la struttura causale
(tipicamente quella a quarto di piano o quella a semipiano) & stata assunta a priori
nel modello, come conseguenza di una particolare scelta dell’ordine parziale in Z x Z.

Pili recentemente [7-9] sono comparsi vari lavori nei quali si & cercato di evitare
una definizione a priori della struttura causale e dell’ordine parziale che la induce,
assumendo invece come punto di partenza per la determinazione del modello dinamico
I’insieme delle traiettorie del sistema.

In altri casi (10|, ispirandosi alla discretizzazione delle equazioni alle derivate
parziali, vengono assegnate condizioni sul segnale 2D lungo un contorno chiuso in
Z x Z. Nel calcolo della risposta la struttura causale bidimensionale non svolge allora
virtualmente alcun ruolo, perché la soluzione viene ricondotta alla evoluzione di un
sistema 1D.

I'modelli dotati di struttura causale a quarto di piano sono stati studiati dal punto
di vista ingresso-uscita nell’ambito della cosiddetta teoria dei filtrs 2D [11-15].

Larappresentazione ¢ fornita abitualmente mediante una funzione di trasferimento
razionale propria in due indeterminate, del tipo

W(an,z) = iz 5 (1)
14341 dii%1%

Dal punto di vista sistemistico gli aspetti pill interessanti della teoria dei filtri 2D
riguardano la stabilita BIBO e le numerose implementazioni circuitali delle equazioni
alle differenze associate alla (1), che contengono in nuce una rappresentazione di stato.
In proposito, costituiscono problemi tuttora aperti I'individuazione di condizioni ne-
cessarie e sufficienti per la stabilitd BIBO basate sugli zeri del numeratore e del deno-
minatore di (1) e la determinazione del numero minimo di ritardatori necessari nella
implementazione circuitale.

Quasi contemporaneamente ai filtri bidimensionali sono stati introdotti nella let-
teratura i modells di stato 2D. Un grosso ostacolo che si & frapposto all’ottenimento
di un unico modello & stata 'impossibilit di inferire in modo “canonico” dalla equiv-
alenza di Nerode [5,6,16] la struttura di un modello di stato di dimensione finita.

Si & cosi pervenuti, con procedimenti talvolta euristici, a strutture nelle quali
coesistono

1. stati locali, appartenenti a uno spazio vettoriale di dimensione finita, che deter-
minano singolarmente il valore del campione di uscita e che, insieme ad un altro
o ad alcuni altri stati locali, entrano nella equazione di aggiornamento di stato



2. stati globali Xo = {x(i,—1),s € Z}, che forniscono le condizioni iniziali su un
insieme di separazione di Z x Z. Essi appartengono ad uno spazio vettoriale di
dimensione infinita, che estende lo spazio delle classi di Nerode

Il pilt comune dei modelli di stato con causalitd a quarto di piano & il seguente
[17]:

x(h+1,k+1) =A;x(h,k + 1) + Agx(h+ 1, k)
+Bju(h,k+ 1) + Bou(h + 1, k) (2)
y(h, k) =Cx(h, k)

in cui i vettori x(h, k), u(h, k),y(h, k), appartenenti rispettivamente a R", R™ R?
forniscono il valore dello stato locale, dell’ingresso e dell’uscita nel punto (h, k) €
ZxZ.

Il modello (2), che per breviti indicheremo con I, = (4, Ao, By, B;,C), & del
primo ordine, dato che lo stato locale in {h + 1,k + 1) & fornito da un’equazione alle
differenze del prim’ordine. Esso & stato intensamente studiato sia nella forma generale
(2) che in alcune versioni particolari: la pill nota ¢ senza dubbio il modello di Roesser
[1-3, 18], in cui lo spazio di stato locale X & somma diretta di due sottospazi X" e XV,
di dimensione rispettivamente n; e n,, e le matrici del modello risultano partizionate
conformemente:

A A“’} [ 0 0 B 0
A=A M3 g By = B, = 3
1 [ K o |42 = |40 40 |: B o |'B2=|pP (3)

=

Le equazioni (2) si possono riscrivere nella forma

S0l ] [sen]+ (20 [u
bR =lc o) [50H ]

Di impiego meno frequente sono i modelli del secondo ordine per i quali una
struttura tipica dell’equazione di stato ¢ data da [5,6]

x(h+1,k+1) =A1x(h, k+ 1) + Aox(h + 1,k) + Aox(h, k)
+Bu(h, k) (5)
y(h, k) =Cx(h, k)
Sebbene le sue applicazioni siano limitate ai soli filtrs separabili, un modello del se-
condo ordine di particolare interesse & quello di Attasi [4], in cui le matrici A; e A,
commutano ed inoltre A;A; = Ag. Come si vedra nel paragrafo seguente, le ragioni

di tale interesse sono da ascriversi soprattutto al fatto che la teoria che lo descrive &
molto simile a quella valida nel caso 1D.



Di recente [7-9] si & affrontata la modellizzazione di dinamiche definite sul piano
secondo un approccio nel quale a priori non si stabilisce quali segnali giochino il ruolo
di ingressi e quali quello di uscite. Secondo questo approccio,un sistema 2D & costituito
da una famiglia 8 di funzioni definite sull’intero piano discreto, che rappresentano i
segnalt ammassibili (behaviours) , caratterizzate ciascuna dallappartenenza al nucleo
di una matrice polinomiale M (zy, 2) in due variabili

B={w= Z w,-,-ziz%:Mw=0} (6)
i,y

Associate all'ingieme B, che fornisce una rappresentazione esterna del gistema, si
considerano delle rappresentazioni interne, che fanno uso di variabili latents (o ausi-

liarie, nel senso che possono sempre essere eliminate dalla rappresentazione stessa).
Le variabili di stato costituiscono un particolare tipo di variabili latenti, che ri-
assumono la memoria del sistema rispetto ad una nozione di passato introdotta nel
piano Z x Z. Quando una descrizione di stato & possibile, ovvero quando la struttura
di 8 consente di introdurre le nozioni di passato, presente e futuro, B vien detto
markoviano. Poiché non esiste una diresione "naturale” per ’evoluzione in Z x Z,la

markovianita appare un concetto pill generale della usuale causalita a quarto di piano
ed & stata applicata all’analisi di dinamiche 2D non causali.

3 Realizzazione

Nel caso 1D, com’® noto, le realizzazioni minime di una data funzione di trasferi-
mento sono raggiungibili e osservabili, algebricamente equivalents, e riconducibili alla
relizzazione canonica di Nerode,

Questo quadro molto semplice & assolutamente inadeguato al caso 2D. Non si &
lontani dal vero affermando che il problema della realizzazione minima costituisce
tuttora il “collo di bottiglia” dell’intera teoria dei sistemi 2D e che a tutt’oggi non si
dispone di strumenti efficaci per investigarlo.

I concetti di raggiungibilitd e di osservabilita, sia riferiti allo stato locale che
allo stato globale, non sono utilizzabili per costruire una realiszazione minima 2D.
Infatti, se si calcolano modelli in cui sia raggiungibile e osservabile lo stato locale,
non si ottengono in generale modelli di dimensione minima [19,20]. D’altra parte
non tutti i modelli di dimensione minima sono globalmente raggiungibili e osservabili
e si verificano casi nei quali la minimizzazione non pud essere ottenuta mediante la
costruzione di un (inesistente) modello globalmente raggiungibile e osservabile [21,22].

ESEMPIO 1 La funsione di trasferimento W (z;, z;) = 22 + 22 non ammette alcuna
realizzazione globalmente raggiungibile e osservabile , qualunque sia il corpo sul quale
si costruiscono le matrici del sistema (2).

Nell’affrontare il problema della realissazione minima sono stati tentati diversi
approcci. Un primo approccio perseguito da vari autori nell’ambito dei sistemi a un



ingresso e un’uscita, ma che pud essere esteso senza complicazioni concettuali al caso
multivariabile, ¢ quello di associare alla risposta impulsiva del sistema una matrice
di Hankel e di applicare una opportuna versione dell’algoritmo di Ho. Data una
serie formale s = Z;,' 82123 nelle indeterminate commutative z, e 2o, la matrice di
Hankel ¥ (s) & una matrice infinita, indiciata sul semigruppo commutativo dei monomi
monici in due indeterminate. L’elemento della matrice in posizione (zi2},2"2%) ¢ il
coefficiente 8;44 ;+k. B stato dimostrato [23,24] che, salvo nel caso in cui s & lo
sviluppo di una funzione di trasferimento separabile, il rango di ¥ (s) & infinito, anche
se s & una serie ragionale. Cid rende alquanto problematica una implementazione
diretta dell’algoritmo di Ho per ottenere una realizzazione minima di una funzione di
trasferimento razionale.

Un metodo che si & utilizzato per aggirare tale difficolta [20] si basa sull’osservazione
che la matrice di Hankel associata ad una serie razionale non commutativa ha rango
finito e consente di ottenere una rappresentasione matriciale minima della serie stessa
mediante un algoritmo lineare. Pill precisamente, dato I’alfabeto {¢;, &2} e il monoide
non commutativo {¢;, £2}*, si consideri una serie razionale strettamente propria

o= Z (o, w)w

we{€1,€2}*\ {9}

nelle indeterminate non commutative £ e ¢z, e si associ ad essa la matrice ¥ (o),
indiciata in {1, £2}*, il cui elemento in posizione (w;, ws) ¢ il coefficiente (o, wyws).
L’algoritmo di Ho permette allora

1. di rappresentare la serie non commutativa o nella forma seguente

o(é1,&) = C(I — A1&1 — a262) "} (B1 &1 + Baé3) (7)

2. di ottenere una rappresentazione (7) nella quale le matrici A; e A; hanno di-
mensione minima 6(c)

Se 0 ha come immagine commutativa lo sviluppo in serie della matrice di trasferimento
W (z1,27), il sistema I; = (Ay, A3, By, Bs, C) costituisce una realizzazione di W.

L’ottenimento delle realizzazioni minime di W (zy, z3) richiede allora di ricercare
le serie razionali non commutative o(¢1,£;) che hanno W(z;,2;) come immagine
commutativa e per cui 6(o) & minima. L’algoritmo per ottenere I’insieme di tali serie
non commutative & intrinsecamente non lineare e mette in luce i seguenti fatti

1. la dimensione della realizzazione minima di W (21,22) dipende dal corpo sul
quale si costruiscono le matrici della realizzazione

2. due realizzazioni minime di W (z;, 2;) possono non essere algebricamente equi-
valenti. Cid si verifica quando I'algoritmo di Ho viene applicato a due serie non
commutative diverse, aventi entrambe W (2, 2;) come immagine commutativa.



ESEMPIO 2 La funzione di trasferimento

22122
W(z1,2) = 14z} + 22

ammette
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come realizzazione minima del tipo (2) sul corpo complesso. Si dimostra che sul corpo
reale W(z1, z2) non ammette realizzazioni dello stesso tipo in dimensione 2.

EsgEMPIO 3 [ sistemi

R P TR S

T I N P

sono realizzazioni minime delle medesima funzione di trasferimento, ma non sono
algebricamente equivalenti

Un approccio diverso allarealizzazione di sistemi 2D & stato messo a punto nell’am-
bito dei problemi di controllo [25] e si basa sul concetto di realizzazione coprima.

Data una matrice di trasferimento razionale propria W (2, z;) di dimensione pxm,
siano Ng(z1,22)Dg'(21,22) e Dp'(21,22) N (21,22) due rappresentazioni matriciali
fratte (MFD), rispettivamente destra e sinistra, di W. Quando le MFD sono coprime,
risulta (8] det D = det Dy ed & di particolare interesse ottenere relizzazioni nelle
quali il polinomio caratteristico det(/ — A;2; — Az2;) verifica la condizione

det(f — Ajz) — Ang) = det DR(Zl, 22) (8)

In tal caso infatti le realizzazioni sono prive di mods nascosti, che sono invarianti del
polinomio caratteristico ad anello chiuso rispetto alla scelta del compensatore. Le
realizzazioni che soddisfano la (8) sono dette coprime.

Gli algoritmi lineari esistenti per calcolare tali realizzazioni portano, in generale,
a sistemi di dimensione piuttosto elevata. E inoltre ancora aperto il problema di
stabilire se le realizzazioni minime sono necessariamente coprime.

I sistemi (2) e (5) realizzano, al variare delle matrici che vi figurano, ogni funzione
di trasferimento razionale strettamente propria. Quando si impongano particolari
vincoli strutturali sulle matrici del sistema si realizzano, in generale, classi particolari
di fungioni razionali.

e Il modello di Attasi [4] realizza tutte e sole le funzioni di trasferimento separa-
bili, cioé quelle in cui il denominatore fattorizsa come prodotto di un polinomio in z, e



di un polinomio in z;. Si dimostra che, data una funszione di trasferimento separabile
W (z1,2z), il rango della corrispondente matrice di Hankel ¥ (W) fornisce la dimen-
sione minima delle realizzazioni aventi la struttura di Attasi. Le relizzazioni minime
sono algebricamente equivalenti ed ottenibili con procedimenti lineari ricorrendo a un
algoritmo di Ho.

* Quando si consideri invece il modello (5) con i vincoli

Ao =0, A1 Az = A4, (9)

la classe delle funzioni di trasferimento realizzabili coincide [26,27] con I’insieme delle
funzioni ragionali che ammettono uno sviluppo in frazioni parziali del tipo

W (21, 22) = [no(zl, n)+ ) = ar::ifxf:lm)w]zlzg (10)

con degnj < v; e ng € Rlzy,25].

La costruzione di una realizzazione minima soddisfacente le condizioni (9) per una
funzione di trasferimento del tipo (10) pud essere ottenuta con un algoritmo lineare.
Infatti, se vale la relazione

W (21, 29) = C(I — A2y — Azz3) ' Bz 2,

con Ay Az = Az Ay, si verifica senza difficolta che

- " -1
1+ ;
W'(z1,22) = E w,-,-( ; J) 23
i

& esprimibile nella forma

ol

W‘(ZJ_,ZQ) = C(I — Alzl]'l(I = A222)_132122 (11)

Quindi W' & realizzata da un modello di Attasi con matrici A; e A, e per ottenere
una realizzazione minima con struttura (9) & sufficiente costruire una realizzazione di
Attasi di dimensione minima per W'.

o Non tutte le funzioni di trasferimento il cui denominatore fattorizza in polinomi
del primo ordine ammettono lo sviluppo in frazioni parziali (10). Quando si consi-
derano funzioni di trasferimento con denominatore fattorizzato in termini del primo
ordine, ma per il resto generiche, si pud ricorrere a realizzazioni, sia del tipo (2) che
(5), in cui le matrici A, A2 (e Ao) sono simultaneamente triangolarizzabili [27]. Non
si conoscono algoritmi di realizzazione minima per questa classe di funzioni.

4 Controllo

La struttura d’ordine parsiale che caratterizza la dinamica 2D del sistema (2) permette
di implementare una classe di schemi di retroazione piu vasta di quella utilizzata per
i sistemi 1D. Si possono infatti concepire procedure di controllo nelle quali il valore



dello stato e/o dell’uscita in (h, k) influenzino non soltanto i valori dell’ingresso in
istanti successivi ad (h, k), ma anche quelli in istanti che non sono in connessione
causale con (h,k). E chiaro che quando si fa ricorso a tali procedure, nel sistema
risultante ad anello chiuso viene perduta la causalita a quarto di piano, e cid pud non
essere accettabile quando vi siano motivi per non uscire dall’ambito causale nel quale
& assegnato il sistema da controllare.

Un’altra osservasione di carattere generale riguarda la natura, statica o dinamica,
degli schemi di retroazione impiegati. Nel caso dei sistemi 2D la soluzione della
maggior parte dei problemi di controllo si basa sull’introduzione di controllori dina-
mici causali, che realiszano legami stato/ingresso o uscita/ingresso rappresentati da
equagzioni ricorsive del tipo

u(h,k) =3 Hijulh—i,k—3)+ Y Kijx(h— i,k — j)

Esiste peraltro un caso, quello del controllo ottimo, nel quale P’ingresso in (h, k) &
generato attraverso una legge di controllo di tipo statico che coinvolge un numero
infinite di stati locali. Cid da luogo ad una serie di inconvenienti dal punto di vista
realizzativo, che possono rendere preferibile il ricorso a controllori dinamici causali,
anche se soltanto subottimi.

In questo paragrafo accenneremo alle strategie di controllo utilizzate per risolvere
i problemi della stabilizzazione, del disaccoppiamento e della minimizzazione di un
funzionale di costo quadratico.

4.1 Stabilizzazione

Per definizione, il sistema (2) & internamente stabile se per ogni stato globale iniziale
Xo = {x(s, —1),3 € Z}, con sup ||x(z,—1)|| < oo, ’evoluzione libera dello stato soddisfa
la condizione

lim x(h,k) =0
h+k—+00

Un compensatore stabilizzante per il sistema I, = (A;, Az, By, B2, C) & un sistema
2D I, che rende internamente stabile la connessione in cui L, retroaziona I;. Sifari
qui riferimento alla retroazione dall’uscita: i risultati relativi alla retroazione dallo
stato si possono ottenere come casi particolari, ponendo in (2) C = I,.

Le proprietd di stabilitd e di stabilizzabilitd si possono verificare analizzando
I’intersezione fra il polidisco unitario

Pr=A{(z1,22) : |za| < 1, |22 < 1}
e le varieta di opportuni (ideali di ) polinomi.

TEOREMA 1 [28-31] Il sistema (2) & internamente stabile se e solo se il suo
polinomio caratteristico det(/ — A;z; — Az2;) & privo di zeri in P;. Indicate inoltre



con V(R) e con V(0) le varietd degli ideali generati dai minori di ordine massimo
delle matrici polnomiali

R= [I — A1z; — Azzq Blzl + 3222] (12)
_ I- A]_Zl - AQZQ
A (13)

il sistema (2) & stabilizzabile mediante reazione dinamica dall’uscita se e solo se

V(R)UYV(O)nA =10 (14)

La condizione (14) & analoga ad una ben nota, valida per i sistemi 1D, basata sul
criterio PBH. C’¢ tuttavia una differenza peculiare fra i due casi, quando si vogliano
ottenere condizioni di stabilizzabilitd basate sulla matrice di trasferimento e sui “modi
nascosti” del sistema.

Infatti, per i sistemi 1D la stabilizsabilitd non dipende dalla matrice di trasfe-
rimento ma soltanto dalla stabilitd dei modi non raggiungibili e/o non osservabili.
Di conseguenza, ogni matrice di trasferimento 1D ammette realizzazioni (fra cui le
minime) stabilizzabili per reazione dinamica dall’uscita.

La situazione & del tutto diversa nel caso 2D, per la presenza delle cosiddette
stngolaritd di rango mella matrice di trasferimento. Data una MFD coprima sinistra
della matrice di trasferimento

W (z1,22) = Dp (21, 22) N (21, 22) (15)

la varietd V(W) associata all’ideale dei minori di ordine massimo della matrice
[NL D]

¢ un insieme finito (eventualmente vuoto), i cui punti sono detti singolarita di rango
di W. Esse non dipendono dalla particolare MFD coprima sinistra usata in (15) e
coincidono con i punti della varietd corrispondente associata ad ogni MFD coprima
destra. Poiché ogni modello di stato (2) che realizzi W (z;, 22) soddisfa ’'uguaglianza

det(] — Ayz; — Azzz))
det DL(Z]_,Zg)

V(R)UY(0)=V(W)uY( (16)

insieme dei punti critici per la stabilissabilitd, specificati dal teorema precedente,
include sia la varietd des modi nascosts V(det(I — A2y — Az23)/det Dy, (2;,27)), sia
la varieta delle singolarita di rango V(W). Ricorrendo ad una realizzazione coprima,
& comunque possibile ottenere un sistema 2D in forma di stato nel quale la varieti
dei modi nascosti sia vuota. La variet delle singolarita di rango, invece, non dipende
dalla realizzaszione; pertanto, se V(W) interseca Pj, nessuna realizzazione di W &
stabilizzabile.



Sono stati messi a punto [32] criteri lineari per verificare se V(W) interseca il
polidisco unitario, senza determinare esplicitamente le coordinate delle eventuali in-
terseszioni.

La stabilizzasione pud essere inquadrata nel problema piu generale (e difficile) di
assegnare mediante reazione dinamica il polinomio caratteristico del sistema ad anello
chiuso. Allo stato attuale, il risultato pii completo disponibile in letteratura riguarda
la assegnabilita della varietd del polinomio caratteristico (ma non la molteplicit3 dei
suoi punti) ed & formalizzato nel seguente

TEOREMA 2 [25,33] Sia data una realiszazione I; = (4i, A2, By, B,C) di una
matrice di trasferimento strettamente propria W = Dy (z1,22)Np (21, 22) con Dy e
Ny, coprime a sinistra, sia
det(] — Ay2z; — Az27)

det Dy, (21, 22)

e sia C una curva algebrica non passante per I'origine. Allora esiste un compensatore

L, per I, tale che C sia la varietd del polinomio caratteristico ad anello chiuso se e
solo se

h(zl,zz) =

C2 V(W)U V(h)

Dal punto di vista computazionale, una descrizione completa dell’insieme dei poli-
nomi caratteristici ad anello chiuso assegnabili costituirebbe un risultato indubbia-
mente pill utile del precedente. Nel caso in cui Ni e Dy, siano zero coprime, ovvero
V(W) = 0, non ¢ difficile dimostrare [34] che & assegnabile ogni polinomio multiplo
di h e con termine costante unitario. Non si sono ottenuti invece risultati conclusivi
nel caso in cui V(W) non sia vuoto. Limitandosi, come non & restrittivo fare, al
caso h = 1, il problema si riconduce a quello di caratterizzare quali siano i polinomi
ottenibili come determinante della matrice polinomiale

X Np
-Y Dp
quando Y X~! & una matrice razionale propria in due indeterminate.

Se non si pongono vincoli sulle matrici polinamiali X e Y, sembrerebbe naturale
congetturare che, al variare di X e Y, il determinanate della (16) descriva I'ideale dei

(16)

minori di ordine massimo di [ DR ] . La congettura & stata provata quando il sistema
R
ha un ingresso e un’uscita. B d’altra parte interessante notare che essa & falsa se

riferita a matrici polinomiali in tre indeterminate [35].

4.2 Controllo non interagente

Un compensatore dinamico in retroasione dallo stato ed un precompensatore statico
realizzano uno schema di controllo non interagente di un sistema X; com m ingressi
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ed m uscite se la matrice di trasferimento del sistema ad anello chiuso & diagonale e
non singolare. :

Come si vede sensa difficoltl, condizione necessaria per 1’esistenza di uno schema
di controllo non interagente & che si possa costruire un precompensatore bicausale
2D che disaccoppia X;. Poiché, diversamente dal caso 1D, questa condizione non &
anche sufficiente, si devono introdurre ipotesi aggiuntive sulla struttura di £; onde
garantirne la disaccoppiabilitd in retroasione. La pili semplice consiste nell’assumere
che la matrice (B, B] sia iniettiva.

I seguente teorema riassume i risultati finora ottenuti. I interessante ricordare
che la sua prova ha carattere costruttivo e permette di ricavare esplicitamente sia il
precompensatore bicausale che il corrispomdente schema di controllo disaccoppiante.

TEOREMA 3 (36] Sia I, = (A, Az, By, B2,C) un sistema con m ingressi e m

uscite e si consideri la matrice polinomiale

C1(A1z1 + A222)% (By 21 + Bazs)

Mo - Cg(Alzl + Az?q)d’(Blzl + Bng)

Cm(A121 + Az?q}d"‘(Blzl + Bgzz)
dove C; & la 1-esimariga di C e
d; = mm{J 3 C.-(Alz; + Azzg)d-‘f (B]_zl + Bng) # 0}
Allora ¥; ammette un precompensatore disaccoppiante se e solo se
1. Mg1C(I — A121 — Aaz3)~'(B12z1 + Baz) & rasionale propria
2. esiste una matrice costante non singolare Qo tale che MyQo & diagonale
MoQo = diag{e1, €2,-..,€m}
dove ¢, 1 = 1,2,...,m, sono polinomi omogenei in R|zy, 22| di grado d; + 1.

Nell’ipotesi che [B; Bs| sia iniettiva, le condisioni 1 e 2 sono necessarie e sufficienti
per ’esistenza di uno schema di controllo non interagente.

Se il sistema I; soddisfa le condizioni di disaccoppiabiliti espresse nel teorema
precedente e quella di stabiliszabilitd mediante reazione dinamica dallo stato, ovvero

ra.nk[I- A121 s AgZQ 3121 + .822’2] =n, V(zl,zg) € Pl,

& possibile progettare uno schema di compensasione in retroasione dallo stato che
disaccoppi il sistema ad anello chiuso, rendendolo (o lasciandolo) internamente stabile.

Un problema aperto & quello di individuare condizioni di disaccoppiabiliti median-
te retroasione meno stringenti dell’ipotesi di iniettivitd per [B; Bs|.
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4.3 Controllo ottimo

Il metodo per la sintesi del compensatore cui si & accennato nel par 4.1 consente
di ottenere sistemi ad anello chiuso il cui polinomio caratteristico abbia una varieta
C preassegnata. Tuttavia, ancor pill che nel caso dei sistemi 1D, & difficile inferire
dalla struttura polare del sistema informasioni utili sul suo comportamento a breve
o a medio termine: la forma della varieta e, cid che pit importa, la sua distanza dal
polidisco unitario, hanno effetto essensialmente sulla velocitd di convergenza a zero
della risposta libera.

In questo paragrafo affronteremo brevemente il problema del controllo da un punto
di vista diverso, che tiene conto dell’andamento “transitorio” a breve e a medio ter-
mine dei segnali di ingresso e dello stato locale. Cid si ottiene procedendo alla mini-
mizzazzione di un indice quadratico del tipo

J(u,Xo) = > [u(h,k)" Ru(h,k) +x(h, k)T @x(h, k)| (17)
h:ﬂ;o
con @ ed R maitrici rispettivamente s.d.p. e d.p., supponendo che lo stato iniziale
globale I, sia una sequansa in £;.

L’esistenza e 'unicita di una funsione di ingresso che rende finito, minimizzandolo,
I'indice J & legata al rango delle matrici (12) e (13). Qui peraltro, anziché il polidisco
unitario,sono coinvolti per la (12) I’insieme

M= {(21,22} eCxC: |21‘ = |22l < 1}

e per la (13) il toro unitario

Ti = {(21122) €eCxC: |21I =z izgl — ]_}

Se (12) ha rango pieno in M e (13) in T, allora [37] la legge di controllo che
minimizza I'indice J ha la struttura

+co
u(h,k) = > Kix(h+i,k—1) (18)
i==—o00
Nella (18) le matrici K; sono i coefficienti dello sviluppo di Laurent, in un anello
aperto che include la circonferenza unitaria, della matrice di funzioni analitiche

K(z) = —(R+ (BT +2'BT)P(z)(B, +Bgz))‘I(B}“+B.§'z-l)P(z)(A1 + Az2) (19)

e P(z) ¢é sul medesimo anello la soluzione analitica dell’equazione di Riccati

P(z) =Q + (AT + Al 2) P(2)(A1 + A2z) — (AT + AZ271)P(2)(B; + Bz2)
(R+ (BT +27'B)P(2)(By + B;2)) (BT + BY27*) P(2)(A; + Ag2)
che soddisfa la condizione
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P(e) = P*(“) > 0, Yw € [0, 27]

In particolare va osservato che la soluzione (18) ha la struttura di una legge di
reazione dallo stato che coinvolge, staticamente, gli stati locali appartenenti all’insieme
di separaszione passante per (h, k).

Salvo casi particolari, che sono tuttora allo studio [38], 1a (18) coinvolge un numero
infinito di stati locali nella determinasgione del valore dell’ingresso in (h, k). I problemi
aperti nell’area del controllo ottimo 2D sono molto numerosi e vanno dalla messa a
punto di algoritmi risolutivi per ’equasione di Riccati in z alla determinazione della
successione dei coefficienti K; nella (18) e degli effetti di un suo troncamento, dalla
introduzione di test per verificare le condizioni di rango su M e T a problemi di
carattere numerico legati all’enorme numero di iterazioni richieste nel calcolo delle
soluzioni.

Da un punto di vista pid generale, si pué criticare la struttura stessa, non causale,
della soluzione trovata e porsi il problema di ricercare leggi di controllo subottime,
implementabili con controllori, eventualmente dinamici, causali.
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