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Abstract The paper investigates some algebraic problems related with
the assignability of the closed loop polynomial of 2D systems and the
connections between the compensator synthesis and the solution of a
polynomial matrix row bordering problem. The possibility of extending
the algorithms to 3D systems is also discussed.

1 Matrix Fraction Description of 2D Systems

A 2D system in state space form £ = (43, A2, B1, B2,C, D) is a dynam-
ical model [2]

z(h+ 1,k +1) = Ayz(h, k+ 1) + Azz(h + 1,k)
+ Byu(h,k+ 1) + Bau(h + 1,k) (1.1)
y(h,k) = Cz(h,k) + Du(h, k)

where the local state z is an n-dimensional vector over the real field R,
input and output functions take value in R™ and RP?, Ay, Az, By, B2,C
and D are matrices of suitable dimensions, with entries in R. The proper
rational transfer matrix that provides the input/output map can be
represented using left or right matrix fraction descriptions (MFD’s) [3],
namely

W (z1,22) = C(I — A121 — A222) "' (B1z1 + Baz2) + D
= NR(zl,zg)DR(zl,ZQ)—l (1.2)

= Dy (21,22) "' Ni (21, 22)

Among the infinitely many different MFD’s of W (21, 22), we draw
particular attention to irreducible left MFD’s, that are characterized by

the following equivalent properties:
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1. D, = ED; and Ny = EN; imply that det E is a nonzero con-
stant;

2. the maximal order minors g¢i,4gz2,...,q. of [Dr Ni| are coprime
polynomials; :

3. the variety of the ideal I(q1,92,..-,9v) := J(Dr, Nr) is a finite,
possibly nonempty set.

Irreducible right MFD’s can be defined with the obvious changes.
The connections between irreducible right and left MFD’s are summa-
rized in the following

PROPOSITION 1.1 [1] Let NgDgp! = D' Ny be two irreducible
MFD’s of W(z1,22). Then, exzcept for a nonzero constant, the mazi-
mal order minors obtained by selecting the 11,12,...,%p-th columns in

Dy Nip] and the rows with complementary indices in Ne coincide
Dg

and, in particular,

det DR(zl,Zz) = det DL(Z]_,ZQ) (13)

As a straightforward consequence of proposition 1.1, the ideals J (Dr, Ni)
and J(Dg, Ng) coincide. The corresponding variety is invariant w.r.to
left and right irreducible representations of the transfer matrix Wz, 2z2)
and will be denoted by V(W). The points of V(W) are called rank sin-
gularities and correspond to the values of (21, 22) where the matrices

[Dr N.] and [gR] are not full rank.
R

REMARK In case of transfer matrices in three indeterminates, the
irreducibility of D; !Ny, as stated by property 1., is not equivalent to
the coprimality of the maximal order minors in D1, Ni| (see [6]). Also,
proposition 1.1 does not hold any longer, as shown by the following
example. The 3D transfer matrix

2z 23
W (21,22, 20) = [ 1+2z1 1+z ]

admits an irreducible left MFD DEINL =[1+ 21]_1[22 z3]. However,
no right MFD N Dg! with elements in R[zy, 22, 23] can be found such
that det Dgp = 1 + 2;. In fact, assume by contradiction that there exist
polynomials a, b,¢c,d, ¢, f € C[21, 22, 23] such that

W (21, 22,23) = | f][(: Z]_l



with ad — bc = 1+ 2;. Then we have
(i) ad—be=1+2 (i) ed — fe =22 (iii) af —be =23
which imply the following column bordering problem:

29 a b
det | 23 ¢ d|=014+z)+25+2] (1.4)
1+Zl —€ ‘—f

As it will be discussed in sec.3, this problem cannot be solved in R|[z1, 22, 23].

The characteristic polynomial of £ given by
A(Zl,ZQ) = det(I = A]_Z]_ = A22’2) (1.5)

enables one to deduce explicit results concerning the internal stability
of the system. This follows from the property that X is internally stable
if and only if A(2;,2) is devoid of zeros in the closed unit bidisk Pis

Given an irreducible MFD N RDEI of a transfer matrix W (zy,22),
the characteristic polynomial A(z, z2) of any state space realization of
W is a multiple of det Dg and the polynomial

h(z1,22) = A(z1, 22)/ det Dr(21,22) (1.6)

provides the so called “hidden modes” of the realization. It can be
shown [1] that any proper transfer matrix W admits a state space re-
alizations free of hidden modes (“coprime” realization), so that h is a
nonzero constant. More generally, any (not necessarily coprime) MFD
QP of W admits a realization whose characteristic polynomial coin-
cides with det Q. Rank singularities and hidden modes are connected
with the matrices of the so called PBH criteria of controllability and
reconstructibility

R=[I-Az1— Az Biz; + Baz; | 0= I_Alzé_ Azz2
(1.7)
Actually, denoting by V(R) and V(0) the varieties associated with the

maximal order minors of R and O, we have

V(R)uY(0) = V(h) UV (W) (1.8)



2 Closed loop characteristic polynomial assignment

Suppose now D = 0 in (1.1) (strictly proper system) and consider the
connection of ¥ with an output feedback compensator ¢ = (Fy, F», Gy,
Ga, H,J). The local state of the resulting closed loop system $ updates
according to the following transition matrices

fi _ Al—Bl.IC —Blﬂ A _ AQ—BQJC ".B‘ZH
L= G:C Fy ™ G2C Fy
(2.1)
and the corresponding characteristic polynomial is
A(Zl, 22) - det(I — ﬁlzl = 4&222) (2.2)

We say that a polynomial ¢(zy, 27) is assignable if it can be assumed
as the closed loop characteristic polynomial of the output feedback con-
nection of ¥ and ¢ for a suitable compensator X¢.

Given X, some questions arise at this point in a natural way:

1. what is the class of closed loop characteristic polynomials that can
be achieved by varying X¢ 7

2. to what extent can we modify the closed loop polynomial variety

V(A) ?

3. how can we decide if a given polynomial or an algebraic curve can
be viewed as the characteristic polynomial or the variety of an
output feedback connection of ¥ and ¢ 7

The MFD approach provides the natural setting for studying these prob-
lems. Let Q 1P and YX ! be two MFD’s of the transfer matrices of

¥ and X¢ respectively, and assume that

detQ = det(I = Alzl b AgZz)

2.3
det X = det(I — Fiz — F222) ( )

Then, recalling (1.6) and (2.1), the characteristic polynomial of 3 is
given by

A(z1,22) = det(QX+PY) = hdet(DLX+N_LY) = hdet ([Dr Ni] [‘;"})

(2.4)

Equation (2.4) provides three necessary conditions for the assignabil-

ity of a polynomial ¢(z1, 22) € R[z1, z2]. The first condition, ¢(0,0) = 1,
is obvious and descends from the definition of characteristic polynomial.
The second condition is that g(21,22) is a multiple of h(21,22). In fact,



by (2.4), h(z1,22) is an invariant factor of the characteristic polyno-
mial w.r. to feedback compensation. In other words, as far as the fixed
modes are concerned, 2D systems behave exactly in the same way as
1D systems do. A deep difference between 1D and 2D systems comes
out, however, when we consider the factor det(D X + NpY). Apply-
ing the Binet-Cauchy formula, we easily obtain, as a third constraint,
that g(21,22)/h(21,22) must belong to the ideal generated by the maxi-
mal order minors of [Dr, Nip| and, consequently, must vanish on the set
V(W) of the rank singularities. Such a restriction does not exist in the
1D case, where the solvability of the Bézout equation D X + Np Y = I,
and hence the complete assignability (except for the zero degree coef-
ficient) of the polynomial det(Dz X + NpY), are consequences of the
coprimeness of Dy, and Np.

The above conditions can be interpreted as constraints on the closed
loop polynomial variety, that is

(0,0) ¢ V(A)

A (2.5)

V(h) UV (W) C V(A)

Next theorem shows that (2.5) constitute the only constraints im-
posed on the closed loop polynomial variety by the structure of 2

THEOREM 2.1 [1] Let £ = (A1, Az, By, B2,C) be a realization of
the strictly proper transfer matriz W (21, 22) and let V(h) and V(W) de-
note the variety of hidden modes and the set of rank singularities. Given
any algebraic curve C that includes V(h) U V(W) and ezcludes the ori-
gin, there exists a compensator L¢ such that the closed loop polynomzal
variety V(A) of £ is C.

Theorem 2.1 has an important corollary concerning feedback stabi-
lization. Indeed the existence of a stabilizing compensator is equivalent
to the possibility of obtaining a closed loop polynomial variety that does
not intersect the unit closed bidisk. In view of the above theorem, we
need only to check that both V(h)NP; and V(W)NP; are empty sets. In a
sense, this provides a complete answer to the stabilizability problem and,
more generally, to the assignability of the closed loop polynomial variety.
From the computational point of view, however, it would be more useful
if a complete characterization of assignable polynomials were available.
As far as we know, there are only partial answers to such problem.

According to (2.4), the problem above requires to consider all proper
pxmright MFD’s Y X! and to evaluate the corresponding polynomials
det(DLX + NpY) in I(Dg, Nr). We distinguish two cases.

First, assume V(W) = §. Thus the matrices Dy, and N are zero



coprime and the Bézout equation
DX+ N Y =1 (2.6)

is solvable in R|[z,2;] using linear algorithms [3]. In order to obtain
h(z1, 2z2) as closed loop characteristic polynomial, all what has to be done
is to compute a solution of (2.6) and to construct a coprime realization
¥ ¢ of the transfer matrix Y X 1. If the closed loop polynomial we need
is a multiple of h, say A= gh, we consider a polynomial matrix M with
det M = q. Then (X,Y) = (XM, Y M) satisfies det(DLX + N Y) =g¢
and T¢ is a realization of Y X! satisfying det X = det(]— Fyz; — Fy23).
An alternative procedure leading to a compensator free of hidden modes
has been presented in [1].

The above procedure can be viewed as an extension to the 2D case of
some known results of 1D theory. The situation is completely different
when one assumes V(W) # @. As before, the polynomials det(Dy X +
NLY) assume the value 1 at (0,0) and belong to the ideal I(Nz,Dy).
However, in this case J(Nz, D) is a proper ideal of Rz, 2] and, in
general, it is not known if all polynomials in J(Ng, D1) have the form
det(DrX + NpY). The problem can be solved for systems having m
and/or p equal to 1.

Assume first p=1and let N, =[n; n2 ... ng,]. Since DI N
is irreducible and strictly proper, we have n;(0,0) =0, « = 1,2,...,m
and it is not restrictive to assume Dy, (0,0) = 1. Denoting by y1,¥2,...,
Ym the elements of Y, the equation

g=det(DLX + NLY) = XD+ Y yins

=1

is solvable for any ¢ € I(Np,Dp) with ¢(0,0) = 1. Moreover 1 =
¢(0,0) = X(0,0)D(0,0) implies that Y X! is a proper transfer matrix.

The case m = 1 can be solved along the same lines, using a right
MFD for the transfer matrix of X.

3 Column/row bordering techniques

In this section we show how the closed loop polynomial assignment can
be reformulated in terms of column (or row) bordering of a suitable poly-
nomial matrix in two variables. The key point consists in the observation
that, if DEINL = Np DEI are irreducible MFD’s, then det Dy, = det Dy
and, consequently, for any pair of polynomial matrices X and Y, we have

det(DL X + NLY) = det [ (3.1)



So, given a polynomial ¢(zy, z2), the search for a pair X, Y such that
det(DLX + NpY) = q is equivalent to column bordering the matrix
Nrg
Dpg
If V(W) = @ and g(21,22) = 1, the above problem corresponds to

up into a square (p + m) X (p + m) matrix with determinant gq.

column bordering gR
R

ity of such a bordering depends on some results of [1], that provide an
alternative proof of the Quillen-Suslin theorem for polynomial matrices
in two indeterminates.

If V(W) # @, the possibility of determining X and Y such that

det[X NR]:q (3.2)

up into a unimodular 2D matrix. The feasibil-

-Y Dpg

for all ¢ € I(Np,Dr) = I(Nr,Dr) can be viewed as a partial exten-
sion of the Serre conjecture. Actually, the Serre conjecture, proved by
Quillen and Suslin, is true for an arbitrary number of indeterminates,
provided that D and Ng are zero coprime [7]. In (3.2), Ng and Dg
are factor coprime, and this constitutes an extension of the Serre con-
jecture. However, it should be pointed out that the extension is false
when considering polynomials in three indeterminates, as shown by the
following counterexample,where the equation

X 41
det | _y 22 =224 22 + 22 € I(21,22,23)
23

cannot be solved in R[z1, 22, 23] [4].

There are two cases where the above conjecture can be easily proved.
The first of these corresponds to the column bordering up of a k X
(k — 1) matrix R into a k X k matrix, whose determinant is a preas-
signed polynomial q in the ideal generated by the maximal order minors
r1,72,...,7% of R. In this case, the solution consists in finding k poly-
nomials qi,92,...,qx such that ¢ = z?zl g;r;, and these are obtained
using the Grdbner basis algorithm. Except for the sign, the polynomials
g; are the elements of the column we were looking for.

In the second case we want to borderupacolumn R =[r; rz ... 1|7
into a k X k matrix whose determinant is a preassigned polynomial g # 0
in the ideal I(ry,r2,...,r5). As before, using the Grébner basis algo-

rithm we write g as ZLI r;q;, where, without loss of generality, r;q; is
assumed to be nonzero. Next, applying a linear algorithm by Lai and
Chen [5], we compute a right MFD UV ~! such that

(1] gz g3 ... a]=UV?



and det V = g;. Since we have

ri U T2
det | " v =detv(r1+UV‘1 E )
Tk Tk

qu("1+[CI1]_1[Qz e )

Tk

k
dari=g
i=1

the matrix [—VU] provides the solution of the column bordering prob-

lem.
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