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Abstract Necessary and sufficient conditions for the existence of a decoupling bicausal
precompensator for multivariable 2D systems are derived in stale space and frequency
domains,
In general, the decoupling problem for 2D systems can be solved by feedback
compensators if suitable injectivity assumptions are introduced on the input-state matrices,
The structure of dynamic compensalors is derived for this case and the 2D decoupling
problem with stability is solved.

1. INTRODUCTION

Since many years the decoupling problem constitutes one of the most allracling rescarch
topics in multivariable 1D systems theory. Besides several appealing consequences in the
applications, the intercst in this field relies on the .ana!ylicai tools that have been
introduced in developing the underlying theory. The decoupling schemes considered in the
literature have different characleristics, These include the topology of the interconnections
(based on the use of of precompensators, feedback compensators or compound strategies),
the dynamical characteristics of the subsystems that enter in the interconnections, the use
of state-space or input/output models and, finally, the algebraic structures (fields, rings)
which provide the framework where the systems are defined [1-5]. In most applications we
are required Lo solve al the same Lime the decoupling and the slabilizalion problems. In
these cases slate or output feedbacks have to be considered and only those schemes that
include dynamic compensators become relevant to the solution,

2D systems provide input/output and stale-space models representing physical
processes which depend on two independent variables. In some cases one of these variables
is time and the other represents a spatial dimension - as in the study of some classes of
distributed parameter systems and delay differential systems, while for other problems -
such as image processing — none of the independent variables can be sought of as time,
Typically they apply to lwo dimensional data processing in several fields, as seismology,
X-ray image enhancement, image deblurring, digital picture processing, elc. Also, 2D
systems constitute a natural framework for modelling mullivariable nelworks, large scale
systems obtained by interconnecting many subsystems and,in general, physical processes
where both space and time have o be taken into account [6,7].
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Recently the feedback control theory of 2D syslems allracted the interest of research
people and a greal deal of atlention has been deserved Lo problems related to stabilizalion
and characlerization of closed loop characteristic polynomials [8-11] Moreover Lhe
syctemalic application of 2D polynomial matrices lechniques allowed Lo extend the original
single—input/single-outpul analysis up to include multivariable 2D systems.

In Lhis paper we aim Lo analyze how 2D compensators apply lo noninleracling control
of mullivariable 2D systems and to find necessary and suflicienl conditions for Lhe
existence of a feedback law that makes diagonal and noncingular the closed loop transfer
matrix, We shall tackle this problem using MFD’s in two variables, applied to input/output
and state space models. It is worthwhile to remark that several equivalent strategics, based
on bicausal precompensalors, stalic precompensators and compensators, stalic
precompensators and dynamic compensators, can be implemented in gencrating
noninteracting controls for 1D syslems. In the case of 2D systems these strategies are nol
equivalent [14], since they allow decoupling of different classes of systems.

The stale equation of a mullivariable 2D system L = (A, , A, , B, , B, , C, D]
having m inputs and m outpuls are given by

x(hotke1) = Ax(he1k) = Agx(hk+1) + Bu(h+1k) + Byu(hk=1) (11)
y(hk) = Cx{hk) = Du(hk)

where u and y are the m-dimensional vectors of input and outpul values, x is an
n-dimensional local state vector and A, , A, , B, , B, , C, D are malrices of appropriate

dimensions. In Lhe lollowing we shall adopl the slandard convention thal a scalar sequence
{s(hX)} with nonnegative indices hk is associated with a formal power series Is(hk)z,"z,"
having nonnegalive powers in z, and 7, According to this convention, a proper (strictly
proper) rational function can be represented as a quotient p(z,2,)/q(2,%,) of coprime
polynomials with q{0,0)#0 (q(0,0)#0 and p(0,0)=0).

Therefore, the transfer matrix of I is the mxm rational matrix
W(z,2,) = CU‘AﬂFAz’"z]ul(Bﬁl‘Bzzzj*D (12)

whose entries are proper rational funclions in lwo variables. The syslem (1.1) is called
strictly proper if D=0 and #rcausalif D is an invertible matrix. It is immediate to see that

L is strictly proper if W(0,0) = 0 and bicausal if W(0,0) is an invertible matrix.

Because of the structure of 2D systems a number of different state feedback schemes
are allowed. The simplest of Lhese is represented by the stalic control law

u(hk) = Kx(hk) , K& R®™" (1.3)
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Comparing with static state feedback in 1D theory, the possibilities of modifying the
dynamical behaviour by applying (1.3) are much poorer [12].

If we consider 2D systems as 1D systems defined over a suitable polynomial ring, we
are lead lo introduce feedbhack conlrol laws of the following, form

N
ulhk) = I Kx(h-ik+i) , K, c¢R™" (1.4)
i=-N

In particular, the struclure (1.4) is obtained when we interpret in a 2D framework the
decoupling techniques presented in [4]. An obvious consequence of (1.4) is that the typical
2D quarter plane causality is not preserved and in general the resulling closed loop syslem
is weakly causal[1013),

In this contribution we are interested in defining control laws which can be generated
by 2D systems located in the feedback chain (2D compensators) and that give rise to
systems which still exhibit the original quarter plane causality. Consequently the control
laws we shall take inlo account are represented by the following recursive equation

N N
u(hk) = I; Hpulh-ik-j) + I; Kx(h-ik-j) , H, e R™"® K;c R®™" (15)
ij=0 ij=0
(i.j)2(00)

It is interesting to notice that if we try Lo solve separately the decoupling and the
stabilization problems for 2D systems, the dynamical feedback law (1.5) works successfully
even in cases where the slatic law (1.3) fails. This makes a significant difference with
respect to the ID case, where dynamic and static state feedback compensators have
essentially the came potentiality [3], when the solutions of these two problems are
separalely considered. Since in the sequel we will always use feedback control laws which
are "dynamic” and "causal”, we shall omit these attributes.

2. DECOUPLING BICAUSAL PRECOMPENSATORS: STATE VARIABLE
APPROACH

In this section we are concerned with Lhe exislence of a decoupling bicausal
precompensator for a strictly proper 2D system I = (A}, A,,B,,B,,C) represented by the
state updating equalions (11}, As we shall see, the condilions that will be derived are only
partially reminiscent of those obtained in [1] for 1D state-space syslems. In fact the 1D
decouplability condition can be expressed as a rank condition on a constanl matrix, which
allows to construct a decoupling static feedback law, while the decoupling compensators for
2D systems are dynamical systems and the decouplability condition is expressed in terms
of algebraic properties of a polynomial matrix in two indeterminates,
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To shorten our notations, we write A = Az ~ Aglp and 8 = Bz, + By
Let

d =mnij: CAB#0, ;=0 L -l vE d, ~1

Clearty, the existence of d., g, . g ic guaranteed if and only if the syctem transfer
matrix W(z, 2,) ic nonsingular. Actuaily the nensingularity of W iz necessary 1o solve the

decoupling problem and in the zequel this condition will be always assumed.

Proposition 1 Lef Mg fe fhe mxm 20 polynomial malriz given by

CAh#
C,A% 8
M, = : (2'”

oAy

Then (he system can be decoupled by a decoupling brcausal precompensator if
and only 1f 1) there exists a constan! nonsingular matriz Qg such that MoQo = diag(e,
£y _Eg), where £, 1 = 1,2, .. m are Aomageneous 20 polynomals of degree d,+1; ii)

Mo 'C(1-A)"'8 15 proper rational.

proof  Acsume that i) and i) hold. Tt iz immediate to see that p = det Mgy is an
homoreneous polynomial of degree m - f.d, and that the i-th column of adjM, is an

homogensous polynomial vector of degree m -1 + T4, i=12...m
Consider the following series expansion of the transfer matrix

catre| |cad's
Coatrm | |Caht @

ClI-A)'® = g -~ S =My + M ~... (22)
| Cori-u | Car?=' 2
and premultiply both sides by Mo~ We obtain
My 1-A)"'® = p ' [(adjMo)M,g + (adiMoIM, + ... ] (23)

The degrees of the nonzero polynomials in the matrices (adjMo)M; = M. r=014

. are given by degpy” = m + r + Ld,
By assumption ii}, the left hand side of (2.3) admits a power series expansion
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My 'CI-A)'8 =g+ B, + . .. ‘ (24)

where 8, are homogencous malrices of degree i. Comparing (23) and (24) and equating the

homogeneous terms of the same degree, we have (adjMy)M, = pp, and hence P, =
p~'(adjMo)M,g = I This implies that the matrix

Mo 'CI-A)"® = [+, «p,+... (25)
is a bicausal transfer matrix. Recalling assumption i), by (2.5) we have

Cl-AY'S{I+ p + P+ .. I"Q = MoQy = diagle,, &, .. €a)
which shows that [T+, « g, + .. .]'Q, isa decoupling bicausal compensator.

Conversely, suppose that there exists a decoupling bicausal precompensalor with
transfer matrix U = U, + Us , where U, is a nonsingular constant matrix and Ug is a

strictly proper rational matrix. Then
ClI-AY'8(Ug+Us) = diag(6, , & , . . 6) (26)

where &, are proper rational functions.
Denole by &; the homogeneous polynomial of minimum degree in the series expansion

of 6, and equate the minimum degrce homogeneous rows on both sides of (2.6). We obtain

cal x|
Cahw
Ug = diagle ;... &g}

CpA'~8

Therefore the property i) holds with Qq = U,
It remains to prove property ii). Consider a MFD of the transfer matrix given by

C(I-A)"'8 = N{I+Dg)™" (27

where N = N@, satisfies the condition ii) of Proposition | and Dg(00) = 0, Let A :=

diag(fy, fiy . . . Aign) and rewrite N in the form N = & « P. Then the above condition
implies that in N -

= AI+A™'P) the matrix fraction A™'P is strictly proper. By (2.2) and
(2.7) we have " ‘
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Mo+ My + My + .. (28)
= NQu'(1+Dg)™ = N{I+Qo™"DsQa) Qo™ = All+A™P)(1+ Qo "DsQo) Q™

and hence My = AQy™.  Thus, premulliplying (28) by Mg™ we sce that the matrix
Mo 'C(1-A)"8 = Qull+A'P)(1+Qe"DsQo) Qo™

is proper raLional,

3. DYNAMIC FEEDBACK DECOUPLING

To carry through Lhe analysis of the feedback decoupling scheme for a strictly proper
2D system I = (A, A2,B,,B,,C), an important remark is that the application of dynamic
stale feedback together with static precompensation produces transfer matrices that can be
oblained also using suitable bicausal precompensators.

In Fact, let K(z,2,) and Qo be the transfer matrices of the compensator and the
precompensator respectively. Then the transfer matrix of the closed loop syslem is given
by

W(z,,7,) [{I—K{zu,zz)(f"l\l"sl"Qu} (31)

and the term in squarc brackels can be viewed as the transfer matrix of a bicausal
precompensator, )
A significant differcnce with respect to 1D systems is that, given a bicausal
precompensator U(z,,2,), the 2D transfer matrix WU needs not be implementable using a
dynamic stale feedback compensator and a static precompensator,
This is illustrated by the following example. Consider the system I =
(A, A;,B,,B,;,C) given by

o ol

Since the Lransfer matrix of ¥

7, 0t =]
Wiz,7,) =
10z ||z 1

salisfies condilion ii) of Proposition 1, there exists a decoupling bicausal precompensator.
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Its transfer matrix is easily computed and is given by

1z |
22 1
However we cannot decouple the system adopling slate feedback and static

precompensalion, since in Lhis case il is nol possible Lo find a conslant nonsingular @, and
a proper rational K(z,2,) that make the matrix (3.1) diagonal.

Ul 2,) =

Our aim is now lo find structural conditions on the malrices of the slale model (1.1)
which guarantee that a decoupling bicausal compensator U(z,,2,) can be replaced by a
feedback compensator K(z,,2,) and, possibly, a static precompensalor Q,.

These condilions correspond to assuming that, for any bicausal U(z,z,), there exist
proper rational K(z,,z,) and nonsingular Q, that solve

Wiz, 22)U(z,25) = C(I-A-EK(zl.zzD"BQo (32)

For this, substitute in (32) Uy + Ug for U and the series expansion CB + CAN +
CA’8 + . . for W. Then, looking for a solution of {3.2) in terms of K(z,2,) and Q,, cne
starls by choosing Q, = Uy . Since

C(1-A)"8(1+UsUg™) = Cl1-A-8K(z,,7,)]"'8 = C(I-A)"¥([I-K(z,,2.)1-A)'8]"  (33)
we are reduced to solving the following equation in K(z,,3,)
(1+UsUs ™)™ = I - K(z,,2,01-A)"'8 ' (3.4)
Introduce a realization § = (K,,K,,ﬁl,ﬁz,al} of the left hand side of (3.4) and let
l’%’(z,,zz] = Kz, I-A)' A=Az + Az 8= Bz + By,

Therefore the search for a causal K(z,,7,) that solves (34) reduces to find a causal
K(z,2,) that solves

CU-3)'8 = Rz, 2,8 (35)

We shall show that, if the matrix [B, | B,] is injeclive, there exists a causal solution
of (4.5). Tn fact in this case there exists a left inverse L of (B, | B;] and the matrix F :=
[B, | B,]L salisfies
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F B, | By = (B, | B] (3.6)
or, equivalently, F(Bz,+B,z,) = Byz,+B,z,.

This implies thal a solution of (35) is given by the proper rational matrix K(z,2;) =
-C{I-A)"'F so that

K(z,,25) = ~C(1-A)'F(I-A) (37

constitutes the transfer matrix of a causal decoupling compensator.

The injectivity does not impose any constraint on the structure of the transfer matrix,
since any 2D transfer matrix admils a realization with [B, | B,) injective [9]. So, when

dealing with the decoupling problem slarting from the state space equations, we will always
assume (B, | B,] be injective. ‘

Example Consider the 2D system f-given by

[ -11 0] 0000 117 00
A=|l0-100 A,=[-1000 B,=(01 B,=|00
0000 0o0cCo 00 10
L0 00 0] 10 0-10 00 01
M 1 0 0]
C_.
L0 00 1]

The transfer matrix of ¥ is

W(z,2,) = C(I 'Ali’q‘Aﬁ"?]—l[Bﬁ’w +Byt,)

T+ 2,7+, 222,257 Qz,éz,tzlz,
= 1—7.12-7.‘7:2 1-2,"-2,7,
2
L T 73
The matrix

My = C8 =

salisfies properties i) and i) of Proposition L. In fact, assuming
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1 -2
Qo =
0 1
the matrix MoQ, is diagonal and My™'W is proper rational.
A decoupling bicausal precompensator is then given by

t-22-52, ~047,+7,
A » 1
U=W'MQ = — —
1+2,+22,~23,7
B(l-3"-22,)  1ez,+22,-3,

In order to simplify computations, it will be convenient to modify the precompensator
by postmultiplying its transfer matrix by 2 diagonal bicausal factor

: 0
T o 1-3,2-232,
0 1

In this way U = UT is still a decoupling bicausal precompensator for ¥ and

- 1oz, +2,2,-7," 2-2,-2,
25 1

is a polynomial matrix. The feedback decoupling scheme includes a static precompensator
Up = Qo. For applying (3.7) to obtain the transfer matrix K(z,,2,) of a causal dynamic
compensator, a realization (E;,AZ,B,,B,,C,I) of

- 142,422, +2,3,-1,° -%,-2,
D =
~% 1

is needed. It is immediate to verify that the realization given by



satisfies E‘:[l—K,z,—ﬁ,z,]"(ﬁ,zrrggzzl 4 1= Uu!
In this cxample the malrix F is given by

~ A { -2 2 -4
F= [B| | Bz] [Bi [ Bz}" = [ -|
0o 0 -1 0

so that

o [ 2+22,-1 7,+2 22,-2 1
K(z,,2,) = —C(I-A)'F(I-A) = [
0 0 1 0

4. STABLE DECOUPLING

In the previous seclion we have shown how Lo realize a noninteracting control of a 2D
syslem using dynamic compensalors.In general, the decoupled system we obtain needs not
to be internally stable for all choices of the decoupling compensator. So, it is important Lo
decide if, given a 2D system, therc exist stabilizing decoupling compensators and then lo .
have procedures for their construction,

In this section we will show that, if the system is stabilizable and there exists a
noninteracling control, il is possible to select a decoupling compensator which stabilizes the
closed loop system,

More precisely, lel the system (1.1) salicfics the following condilions:

(i) stabthizabilrty conditron: the matrix [I-Agz-A,z,  By2+Byz,] has full rank for all
(zy,7,) belonging to the unitary polydisk £ = {(z,,2,): Iz £ 1, [z)} £ 1}

(i) decouplabitaity conditron- (i) and (i) of Proposition 1

Then the class of stabilizing compensalors contains compensators which are decoupTing
(Ter the system (1.1)). This property depends on the following facts:

L. the slabilization by state feedback preserves the decouplability of the system

2.1l an internally stable system is decouplable, il can be decoupled without loosing internal
stability

The proof of the first fact is immediate, since the matrix M, defined by (21) and
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relative Lo the original system coincide with the matrix M, that corresponds to the closed
loop cystem. So that both systems szatisly condition i) of Propasition 1. As far as
condition ii) of Proposition 1 iz concerned, it is sufficient to note that the transfer matrix
W of the feedback system differs from C(I-A)'8 in a bicausal multiplicative factor, so

M™W, ic proper rational since M™'C(I-A)"8 is.

To prove the second part, observe Lhal, if U is a decoupling bicausal precompensaltor,
A = WU is a proper rational diagonal matrix. Now let h be the L.cm. of the denominators
of the elements of U™, Then also Uh™ is a bicausal decoupling precompensalor and
W(Uh™) = Ar™, ‘

Consequently, we can assume in (34) that the matrix (I-UUg™™ = UU™ is
polynomial and that its realization T = (K,,KZ,E,,E,_E_D] salisfies Lhe cond:tion
dcl(l—xlzl—ﬁzz,} = 1. In this case the transfer matrix K(z,,7,) of the compensator, given

by (38), i a polynomial matrix.
In order Lo oblain an internally stable cloced loop system, we construct a coprime

realization of K(z,,z,), ie. a 2D system I = (A,,A,,B,,B;,C,D), where the matrices

[I‘Klzl‘xzzz E,zl-—l_Szzz]

'[1—7\[:1-&%]
¢

are full rank for any (z,,2,) in C x C [9,11].

and

The state space model resulting from the feedback connection of I and I is internally
stable, as a consequence of the following properties:
— the plant I is internally stable
- the compensalor ¥ is a coprime realization of a polynomial matrix. Therefore
det{l-A z,-A,z,) = 1, which implies that Tis internally stable
- the closed loop system is externally stable, since its transfer malrix is the
product of the stable matrix W(z,,2,) and the polynomial matrix U(z,,z,)
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