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ABSTRACT

The separation property that characterizes the dynamics of Markov chains is
extended to a class of discrete 2D models where the time support, given by the
discrete plane Z X Z, is partially ordered by the product of the orderings. The paper
analyzes the matrix representation structure of the probability transition map in a 2D
Markov chain and some properties of the associated characteristic polynomial in two
variables. These allow one to show how the long-term behavior depends on the
intersections between the variety of the characteristic polynomial and the distin-
guished boundary of the unit closed bidisk.

1. INTRODUCTION

Consider any finite homogeneous Markov chain with n states S, S,,...,S,.
The transitions from one state to another occur at times ...,0,1,..., and the
probabilistic picture of possible changes at each step is provided by a
stochastic matrix A € R}*". Once we know the probabilities

[x:(1) x(2) o 2 (2)]=x(2)

of the various states at time t, the probabilities after one step are the
components of the row vector

x(t+1)=x(t)A. (1.1)
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So, knowing the outcome of the last experiment, we can neglect any other
information we have about the past in predicting the future. This separation
property, embodied by Equation (1.1), makes it quite natural to look at
Markov chains as to a special subclass of positive linear dynamical systems
that evolve autonomously on the set

X—{xERi

)E x,,=1} (1.2)

h=1

of n-dimensional probability vectors.

During the last few years a considerable research effort has been devoted
to dynamical patterns that evolve in the discrete plane ZXZ, partially
ordered by the product of the orderings

(r.s)<(h,k) iff r<h and s<k. (1.3)

The causality constraints that (1.3) paturally induces on the dynamical
patterns imply that the configuration attained at (h,k) only depends on
configurations and input values at (r, s) < (h, k).

Autonomous 2D systems [1-3] constitute the easiest nontrivial instance
of these dynamical behaviors. Here the local configuration x(h +1,k +1)
is linearly determined by the nearest past configurations x(h,k +1) and
x(h + 1, k). We therefore have the following first-order updating equation:

x(h+1,k+1)=x(h,k+1)AP +x(h +1,k)A®, (1.4)

where x is an n-dimensional real-valued row vector and AV, A® are n X n
real matrices.

In some way, the separation property we have already recognized for
Markov chains is inherited by the system (1.4) in a two-dimensional environ-
ment. Actually, the computation of the local configuration at (h+1,k +1)
doesn’t require any information about system history in the “past cone”
{(r,s)<(h+1,k +1)}, with the exception of the nearest points (h,k +1)
and (h + 1, k).

So, although no particular probability meaning is associated with the local
vector x in the general theory of 2D systems, it seems rather natural to obtain
a 2D theory of Markov chains by introducing suitable constraints in Equation
(1.4). These must guarantee that any pair of probability vectors x(h,k +1)
and x(h +1,k) leads in turn to a new probability vector at (h + 1,k +1), so
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that the components of x(h + 1,k +1) can be viewed as probabilities of the
various states at point (h + 1,k +1).
_ Quite recently multidimensional Markov models (hidden Markov mesh
random fields) have been considered in the image-processing literature, with
the purpose of developing coherent approaches to problems of both image
segmentation and model acquisition [4]. The problems that will be addressed
in this paper are quite different. Our main interest will consist into a
system-theoretic description of 2D Markov chains and an outline of some of
their internal properties.

The first property is that conceming the algebraic structure of the
matrices A A® of transition probabilities. It essentially states that the pair
(A A®) can be written as (aP,(1— a)Q), where P and Q are stochastic
matrices and 0 < a < 1.

The second property is a remarkable restriction on the variety 7 (A) of
the characteristic 2D polynominal

A(zy,%5) =det(I—A(1)z1—A(2)z2). (1.5)

It will be shown that #(A) intersects the unit closed polydisk &, only at
some points of its distinguished boundary 7.

A third result comes under the heading of model analysis and establishes
a remarkable connection between the intersection 7(A)N .7, and the
long-term behavior of the probability vectors x(h, k). An interesting question
we shall answer in this context is the following: does there exist a probability
vector w such that x(h,k) approaches w as h +k tends to infinity? This
result provides a significant qualitative conclusion that can be inferred about
the behavior of a 2D Markov chain even though the values of the parameters
may not be known precisely.

2. THE STRUCTURE OF A 2D MARKOV CHAIN

By a 2D Markov chain .# with n states S,,S,,.... S, we will mean:

(1) an autonomous 2D system
x(h+1,k+1)=x(h,k+1)A?D +x(h +1,k)A® (2.1)

of dimension n, with the property that x(h +1,k +1) is a probability row
vector for every pair of probability row vectors x(h, h +1) and x(th+1,k);
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(2) a sequence of initial probability vectors
Ly ={x(h,k)|(h,k) € €, x(h,k) € X}, (2.2)

where

€o={(h,k) €ZXZ|h+k =0} (2.3)

is a separation set in Z X Z, and x,(h,k), i=1,2,...,n, denotes the probabil-
ity that S, is the state of the system at the initial point (h, k).

The pair (A", A®”)) determines the probabilistic behavior of the system,
once the probability distributions are given at every point of €. Note that
the shape of the separation set could have been chosen quite differently from
(2.3); however, assuming € o to be a diagonal straight line in Z X Z will
simplify much notation in the sequel.

A basic question concerning Equation (2.1) is the following: if x(h, k +1)
and x(h +1,k) are probability vectors, but otherwise arbitrary, under what
circumstances can one be certain that the new vector x(h + 1, k + 1) will also
be of the same type? A first partial result is the following:

Lemma 2.1, Let P and Q be n X n stochastic matrices, and consider any
real number a in the interval [0,1]. Then AV =aP, A®=(1—a)Q are
matrices of a 2D Markov chain.

Proof. We only need to show that vaP+w(1—a)Q is a probability
vector whenever v and w are. This is clear, since vP and wQ are probability
vectors and X is a convex set. =

A natural question arises whether the structure considered in the above
lemma is in some sense canonical for 2D Markov chains. In order to study
this problem, we need a preliminary result, concerning the uniqueness of the
representation (2.1). Actually, giving an n-state 2D Markov chain .# essen-
tially reduces to assigning a one-step transition-probability map

T XXX->X (2.4)

via the restriction to X X X of a suitable linear map from R” X R” into R™. So
it is reasonable to ask whether the linear map that produces 7 is uniquely
determined by 7. Otherwise stated, we want to know if the pair of n X n
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matrices (A, A®) that realizes 7 in (2.1) is unique. This is answered in the
following lemma.

Lemma 2.2. Assume (AD,A®) is a pair of nXn matrices of a 2D
Markov chain 4 with n states that realizes the transition map (2.4). Then,
for any matrix M with all rows the same vector, the pair (A + M,A® —M)
realizes the same transition map. Vice versa, if (AV,A®) and (AM,A®)
redlize (2.4), then there exists a mairix M with all rows the same vector such
that

AD=AD+M, AP=A®P-M. (2.5)

Proof. Let v be any probability vector and M € R™*™ any matrix of the
following form:

ey g a,
a,  ay a
M= [ @ =l (2.6)
1 o a,
It is easy to check that
vM=[a a ... a, |

is independent of v € X. As a consequence, given any pair x(h, k +1),
x(h + 1, k) of probability vectors, the updated vector satisfies

x(h+1,k+1)=x(h,k +1)A® +x(h +1,k)A®
=x(h,k +1)[AD +M] +x(h +1,k)[A® —M].

Therefore (AV +M,A® —M) and (AV,A®) give rise to equivalent 2D
Markov chains.
Vice versa, suppose that

x(h, k +1)AD +x(h+1,k)A® = x(h,k + AV +x(h +1,k)A® (2.7)
holds for any pair of probability vectors x(h,k +1),x(h +1, k). Letting

M = AD — AW
N=A® —A®, (2.8)
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and
[0 0 1 0]
x(h,k +1)=e¢.= ith place ; i=1,2,....n,
L —_— i
ro 0 i 0]
x(h+1,k)=ej= jth place , ji=12,...,n,
g S i
from (2.7) we have
eM+e,N=0, t,j=1,2,...,n. (2.9)
This shows that M has the structure (2.6) and M = —N. 5]

As a consequence of the above lemma, given a 2D Markov chain with n
states, there are infinitely many chains equivalent to it (i.e. that realize the
same probability transition map). The equivalence is expressed by Equation
(2.5), where M belongs to the space of matrices n X n with all rows the same
vector. We are now in a position to prove that each equivalence class
includes at least one 2D Markov chain represented by a convex combination
of two stochastic matrices.

Tueorem 2.1. A 2D Markov chain with n states can be represented as

x(h+1,k+1)=x(h,k+1)aP+x(h+1,k)(1-a)Q  (2.10)

where P and Q are n X n stochastic matrices and 0 < a < 1.

Proof. Suppose
x(h+1,k+1) =x(h,k +1)AD +x(h +1,k)A® (2.11)

is a 2D Markov chain. Let M denote a matrix with structure (2.6) and

By Lemma 2.2, the 2D Markov chains (2.11) and

x(h+1,k+1) =x(h,k +1)AY +x(h +1,k)A® (2.12)
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with AV = AW 4+ M, A® = A® —M realize the same transition-probability
map. By construction, A® s nonnegative and every column of it includes at
least one zero element. Hence A® is nonnegative too. In fact, assume by
contradiction that some element A® is negative, and consider any zero
element in the jth column of AY), say 1%3 = (. Thus the ith entry of

ehKa)-i-ejK@) (2.13)

is negative, and (2.13) cannot be a stochastic vector, because its ith entry is
negative. Consequently AT? 20, 1 7= L2 e i

Since for all pairs of probability vectors v(", v the sum of the entries of
vOAD 4 y@A@ g one, i.e.

Y (vUAD), + T (v@A@), =1, (2.14)
i=1 i=1
we have
Y (vIVAD) . =a wi e X,
i=1
Y (vOA®),=1-a W®eX (2.15)

i=1

for some a€R. Moreover, a and 1— a are nonnegative because of the
nonnegativity of AL and A®, which amounts to saying that a belongs to the
interval [0, 1].

If we define

I, incase a=0

P"{X(l)/a in case a#0,

and

incase a#0,

I incase a=20,



108 ETTORE FORNASINI

we easily see that both P and Q are stochastic matrices. Thus (2.10) is
proved. &)

Remark.  The above theorem completely clarifies the class of dynamical
models described by Equation (2.1). Actually we may visualize the process
which moves from states S; at (h,k +1) and S, at (h +1,k) to some state at
(h +1,k +1) according to the following rules:

(1) The probability vectors x(h,k +1) and x(h + 1,k) are thought of as
giving the probabilities for the various possible starting states. Then an
experiment in two stages takes place at (h + 1,k +1):

(2) The first stage of the experiment exhibits two possible outcomes, e.g.
O(h+Lk+1)=0 and 6(h+1,k+1)=1, with probabilities ¢ and 1— a
respectively. The random variable 8(h +1,k +1) is independent of 6(I,m)
forall ({,m)#(h+1k+1)

(3) At the second stage a state transition occurs that uniquely depends on
the state at (h,k +1) if 8(h+1,k+1)=0, and on the state at (h +1,k)if
6(h +1,k +1)=1. The process moves from S, at (h,k +1) into S, with
probability P, and from S, at (h+1,k) into S,, with probability P

In the sequel a chain in the form (2.10) will be called a canonical 2D
Markov chain and will be denoted as .# = (a,P,Q). This implies a slight
abuse of language, since the equivalence classes need not include a single
canonical chain, as shown by the following example.

ExamrLE 2.1. The 2D system

x(h+1,k+1)=x(h,k +1)H§§ ;;g} +x(h +1,k)[;j§ 126]
(2.16)

is a canonical 2D Markov chain with two states. Indeed, its matrices can be
rewritten as

J=aP, i[l 0}=(1—a)Q.

2|3

Wk |
(S

Computing the matrix M as in the proof of Theorem 2.1, we find
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and the pair

g | 3 0] (1-a)Q—M=— T (o)
2lo 1) 2|s 2 '

gives a canonical 2D Markov chain equivalent to (2.16). Note that, assuming

P l '_1
M_[l —1]’

we still obtain a 2D Markov chain equivalent to (2.16):

10/12 —9,/12 C[-172 1
14/12 8/12}’ (I_G)QfM[ye 7/6}

(2.18)

aP=M'=[

Clearly (2.18) is no longer canonical.

To conclude this section, we wish to investigate what matrix structures
are allowed for 2D Markov chains when the dynamics of the probability
vectors is one-dimensional. That is, we want to characterize the pairs
(AD, A®) that provide (canonical and noncanonical) 2D Markov chains
equivalent to the following ones:

x(h+1,k+1)=x(h+1,k)A® (2.19)
or
x(h+1,k=1)=x(h,k +1)AY. (2.20)
Clearly, a 2D Markov chain equivalent to (2.19) or to (2.20) has matrices
AV=M, AP=AD-M (2:21)

or

AD=AD MA@ =M, (2:22)

where M is an arbitrary n X n matrix with all rows the same vector.
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The converse is also true. Indeed, a 2D Markov chain where A" or A®? is
a matrix with all rows the same vector is equivalent to (2.19) or to (2.20).
Therefore (2.21) and (2.22) provide the most general structure of 2D Markov
chains with one-dimensional dynamics.

If we concentrate our attention on canonical 2D Markov chains only,
some restrictions on the structure of M are needed in Equation (2.21), to
guarantee that A?) and A® constitute a convex combination of stochastic
matrices. First, requiring A"’ = M implies that in

1

1
M=a| . ([Pn P2 " P, (2.23)

1
a must belong to the interval [0,1] and [p, p, - p,] must be a probabil-
ity vector. Further restrictions on M depend on the requirement that A® be
a nonnegative matrix. For, if &, = min, AT;? j=1,2,...,n, denotes the mini-

mum entry of each column of A®), we must have

ap; < 9; (2.24)

and consequently

a< ), 8, (2.25)

On the other hand, if 0<a < 2,0, there exists a probability vector that
satisfies (2.24), and the corresponding matrix M provides, via (2.21), a
canonical 2D Markov chain. Thus (2.19) does admit many equivalent canoni-
cal 2D Markov chains if and only if all entries of some column of A® are
strictly positive. Obviously, the same result holds for AY in Equation (2.20).

Remark. A stochastic n X n matrix A®) with a strictly positive column
exhibits strong spectral properties. For, suppose A%® >0, i =1,2,..., n. Since
the corresponding 1D Markov chain with n states is allowed to jump from
every state to the state S, in one step, S, belongs to the unique ergodic class
(5] of the chain. We order the states with S, first, followed by all those
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associated with the ergodic class and finally by those associated with tran-
sient classes. If the states are ordered this way, the transition matrix can be
written in partitioned form

@_|E 0] o
A [R ol (2.26)

The transition probabilities within the ergodic class are represented by the
submatrix E, whose first column is strictly positive. This inhibits the ergodic
class from being periodic. Therefore, if (2.19) is equivalent to a canonical 2D
Markov chain .# = (a,P,Q) with 0 < a <1, then A® has the eigenvalue 1,
which is a simple root of the characteristic equation [6]. The magnitudes of
the other eigenvalues are less than 1.

3. 2D CHARACTERISTIC POLYNOMIAL

When viewed in terms of its probability vectors evolving in ZXZ, a 2D
Markov chain is a 2D system whose system matrices are given by a convex
combination of a pair of stochastic matrices. Thus it is expected that the
strong spectral properties of stochastic matrices will play a central role in the
theory of 2D Markov chains. Indeed this is true, as we shall see when
considering the long-term distribution of states and the existence of stable
probability configurations.

To analyze these asymptotic phenomena, it is convenient to introduce the
so-called 2D characteristic polynomial and to study in some detail the
algebraic variety of its zero set. It is well known that this topic forms
the framework for much of the internal stability analysis of general 2D
systems [2, 7]. Here, however, the peculiar structure of AV and A® induces
some a priori constraints on the polynomial variety, which will be of use in
the next section.

Consider a canonical 2D Markov chain with n states .# = (a,P,Q), given
by Equation (2.10). The polynomial in two indeterminates

A(z,,2,) =det[1— az;P— (1—a)z,Q] (3.1)

is called the characteristic polynomial of .#, and the solutions of the
corresponding equation

A(z,,2,)=0 (3:2)

constitute the variety #(A) of the chain.
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It is possible to derive a simple set of conditions on the structure of
A(z,, z,), that depend on the stochastic nature of P and Q. Let us consider
the subspace of R" consisting of all row vectors whose entries sum to zero:

)E v, = 0}. (3.3)

N=={v=[”1 vy " v, ]eR”
i=1

N is an invariant subspace [8] relative to the matrices P and Q. For, given
any v € N, we have

M =
M =

v,=0

i (VP)J‘= i (i UiPij) =

n
U; Z Pij=
i=1 i=1 i=1

1

1

i
and analogously

Zn: (vQ),;=0.

i=1

Let (r,,ry,...,r,) be a basis for R such that (r},r,,...,r,_;) is a basis
for N and r, a probability vector. After introducing the nonsingular matrix

e (3.4)

any vector vER" will be represented by the n-tuple ¢ =[¢, &,
8,1=vT~! in the new basis. Moreover, the linear transformations repre-
sented by P and Q in the standard basis will be represented by

. P 0
P=TPT‘1—[AH X } (3.5)
P21 P22
and
R 5 0
Q=TQT‘I={?” . } (3.6)
QZI Q22

in the new basis.
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The components @, t,, ..., @, of the probability vector r, P with respect
to the new basis

r,P=wr +wr,+...+wr,
are the entries of [P,, P,,]. Since we have
n n n-—1 n

Y o By = _Z ; (1), + _Z (,r,)

i=1 i=1j=1 i=

-
I

I
1
&
]
o
+
g

we see that P,, and, by the same argument, Q,, are equal to 1. As a direct
consequence of the block triangular structure of P and Q, the characteristic
polynomial of .# = (a,P, Q) factorizes as

A(z1,2,) =[1—az, = (1~ a)z,] det[In—l —az, P, — (1- a)zzéu]-
(3.7)

It must be emphasized that the characteristic polynomial of a 2D Markov
chain is not invariant under the equivalence (2.5) induced by matrices (2.6).
Actually, any matrix

M= [)u‘l M2 #’n]

reduces by similarity to

M=TMT—1=[O 0]

* Q

with = X"_,p;. Therefore the matrices aP+M, (1—a)P—M of any (not
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necessarily canonical) chain equivalent to .# are similar to

af’+Ifi=raf)“ 8
* a+ |’
(lﬁa)(i)—ﬁ= (I“G)Qll 0
I - 1—(a+uw) |

and the corresponding characteristic polynomial is
Ay(zy,2,) = [l—(a +u)z—(1-—a—p)z,
><de’c[In_l —az, P, —(1- a)zzéu] :
The results obtained so far are summarized in the following

Tueorem 3.1, The characteristic polynomial of a 2D Markov chain with
n states factorizes into the product of a first-order polynomial

hi(2.25) =1—az,—(1— a)z, (3.8)

and a polynomial hy(z},z,) of degree not greater than n—1. While h, is
invariant under the 2D chain equivalence (2.5), h, is not, and its orbit is
obtained by varying the parameter a arbitrarily over the real numbers. In
canonical 2D Markov chains, 0 < a < 1.

ExamrLe 3.1. Consider once again the canonical 2D Markov chain
(2.16). Its characteristic polynomial is

A(zl’zi) = (1_ ézl - %zz)(l'lezl _ézz)~

The equivalent noncanonical Markov chain (2.18) has exactly the same
characteristic polynomial. This shows that the condition 0 < @ <1in h(z,,z,)
is necessary but not sufficient to guarantee a 2D Markov chain to be
canonical.

Finally, the characteristic polynomial of (2.17) is

(l“ézl - %32)(1“ﬁz1 _%52)-
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Theorem 3.1 provides a first insight into the structure of the variety of a
2D Markov chain. Actually, if we consider the variety of the first-order
polynomial h,(z,,z,) in (3.8), we see immediately that

(D Q,De?(h)c?(A),
(2) if 0 <a <1, then (1,1) is the only point where #(h,) intersects the

unit closed polydisk
‘@1={(’Zl’z2)||zli“<=lr|324‘€1}' (3.9)
The next theorem below shows that, in the case where a canonical 2D
Markov chain is nontrivial (i.e. 0 < a <1), the intersections between the
complete variety of the chain 7(A) and the unit polydisk are restricted to the

distinguished boundary

T ={(21,73) ||z = 1z5| =1} (3.10)

of the unit polydisk.
TueoreM 3.2. Assume that in a canonical 2D Markov chain # =
(a,P,Q) both a and 1 — a are different from zero. Then the variety 7 (A) does

not intersect the unit closed polydisk &P, except at (1,1) and, possibly, at
some other points of its distinguished boundary .

Proof. Assume, by contradiction, that 7(A) intersects &, \ 7 at
(p,e', pye'®2). Thus there exists a nonzero v € C" such that

v=vape ' P+v(l—a)p,e2Q,
and consequently
e"'“’lv=v[ap]P+(lﬁa)pQBi‘”Q], (3.11)

where

©=w,—®,.
It is convenient to use the polar representation for the entries of v:

v=[p]eiﬁ‘ poe'fe .- pneiﬁ’*] (3.12)
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and normalize v so as to have

2 pn=1Ivh=1 (3.13)
h=]1

Let r; denote the hth row of ap,P+(1— a)p,e™Q, h=1,2,...,n, and
rewrite (3.11) as

ooy — ple"‘a‘r; s p2€i.32r2 4+ e+ pneiﬁnrn‘ (314)

Computing the [, norm of r; gives

n

lenlh= 2 [ap; X2 P +(1—a)p,e 2 O

k=1 k=1 k=1

n n
“<‘-ap1 Z Phk+(l_a)p22 Qhk ("121,2""73‘?’)
k=1 k=1

=ap;+(1—a)p,.

Since 0 < a <1, it is clear that all vectors r;, have an [, norm less than 1 and
therefore, in view of (3.14),

n il
vl =lle il < Y pulielh< Y p,=1,
h=1 h=1

which contradicts (3.13). %]

As an immediate consequence of Theorems 3.1 and 3.2, we have the
following

Cororrary 3.1.  The variety 7 (h,) of a canonical 2D Markov chain with
0 <a <1 does not intersect F,\ 7.

4. ASYMPTOTIC BEHAVIOR

As pointed our earlier, for certain types of 2D Markov chains there exists
a unique limiting probability vector, independent of the distribution of the
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probability vectors x(h, — h) on the separation set €. This class of chains,
which can be regarded as the 2D analogue of 1D Markov chains with a
single aperiodic class, has a deep but intuitive body of theory. The purpose of
this section is to present a fairly simple criterion for identifying these chains,
based on the structure of their characteristic polynomial.

Obviously, the case where 2D chains exhibit a one-dimensional dynamics
is already solved using the standard 1D theory. So, in the following develop-
ments we shall consider only canonical 2D Markov chains .# = (a, P, Q) with
0 < a < 1. Without loss of generality, we may also assume that the states of
the 1D chain associated with the stochastic matrix

A=aP+(1-a)Q

have been permuted so that all the ergodic states are listed before the
transient states. In other words, without loss of generality, we will assume
from now on that the above matrix is block triangular:

A={E g] (4.1)

where E and T are a stochastic and a substochastic matrix respectively,
representing the transition probabilities within the ergodic classes and the
transition probabilities among the transient states of a 1D Markov chain.
Clearly, the partition (4.1) carries over to P and Q, which will be written as
follows:

Py 0 Qu 0
P= = : 2
[le Pzz]’ % [Qzl sz} (42

Derinrrion 4.1, Let .# =(a,P,Q) be a 2D Markov chain, and &, a
sequence of initial probability vectors. A probability vector we X is a
limiting probability vector (LPV) of &7, if

lim  x(h.k)=w. (4.3)

h+k—+ow

If (4.3) holds for all sequences &, of initial probability vectors, w is termed
a global limiting probability vector (GLPV).
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As a direct consequence of the above definition, if w is a LPV of some
sequence &, it is also a LPV of the sequence

Zy={x(h,—h)=w, heZ)
We therefore have the following equivalent

DerintrioNn 4.1 Let .# =(a,P,Q) be a 2D Markov chain. A probabil-
ity vector w € X is a LPV if

w=w[aP+(l—a)Q]. (4.4)

The general strategy in studying the existence of a GLPV is to first derive
some constraints on the values of its entries. Then one shows that the variety
7(A) of the characteristic polynomial must be regular at (1,1) and, by a
perturbation argument, cannot intersect the distinguished boundary .7
except at (1,1). The above constraints on #(A) are finally converted into
sufficient conditions for .# having a GLPV.

Lemwma 4.1, Let w be a LPV of .# =(a,P,Q), and assume that in (4.1)
the matrix T has dimension r X r. Then the last r entries of w are zero.

Proof. Partition w conformably with the block triangular structure of
(4.1):

=Wy W] (4.5)

Then, by Definition 1’, the last r entries of w satisfy the following equation:

w, = w,T. (4.6)

Since the spectral radius of T is less than 1, w, = 0 is the unique solution of

Equation (4.6). ]

We recall that a stochastic matrix C and the corresponding 1D Markov
chain are fully regular if C has no characteristic values of modulus 1 other
than 1 itself and 1 is a simple root of the characteristic equation of C [6]. In
this case the Markov chain consists of a single ergodic aperiodic class.
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Lemma 4.2, Suppose that .# =(a,P,Q) admits a GLPV w. Then in (4.1)
the matrix E is fully regular.

Proof. Assume by contradiction that the ergodic states of (4.1) are
partitioned in at least two communication classes. Then, possibly after a
permutation of the ergodic states, E reduces to the following form:

E = diag(E,,E,,....E,), £tz 2,

where E, are irreducible stochastic matrices of dimension v, Xv,. Let
p;, € R* denote the unique probability vector such that p,E; = p;, h =1,2.
Thus both

and

[0 0| p, |0 --0}
A L%

125 Vo n—vy—Vvy

are left eigenvectors of A corresponding to the eigenvalue A, =1, and, by
Definition 1/, .# would have two distinct LPVs, which contradicts the GLPV
assumption. Thus the ergodic states of (4.1) constitute a single ergodic class.

Suppose now that the ergodic class is periodic, with period p > 1. Then
there exists a probability vector p € R" ™" such that

p,pE,...,pE“"1

are different each other. It is quite easy to check that, if the sequence of
initial probability vectors is

Zy={x(h,—h)=[pl0], heZ},
then

X, =2, iff k=h(mod p).
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This amounts to saying that .# undergoes a periodic evolution and rules out
once more the possibility of having a GLPV. 31

The following theorem is a direct consequence of the above lemmas.

TueoreMm 4.1. Let w be a GLPV of .# =(a,P,Q), and assume that in
(4.1) T has dimension r X r. Then the entries of w, in

0 9|

r

w = [Wl
are strictly positive.

Proof. Consider a constant sequence of initial probability vectors of the
following form:

Zy={x(h,—h)=][v;10], he Z}.

Then & ={x(h, —h +k) =[v]EIc |0], h € Z} is a constant sequence too. By
the GLPV assumption, [v,E¥|0] must converge to w as k increases, or
equivalently,

w,= lim v,Ef.
k— 4o

Since E is fully regular, E* has no zero entries for large values of k, and W,
is strictly positive. B

If the characteristic polynomial of a chain .# =(a,P,Q) has repeated
roots at (1,1), it is impossible to find a GLPV. The same happens if some
roots belong to & \{(1,1)}. To discuss the first property, we shall need the
following technical lemma:

Lemwma 4.3.  Consider the factorization of A(z,,z,) given in (3.7). The
following are equivalent:

(1) Ap=1 is a multiple eigenvalue of A =aP+(1— a)Q;
(2) when evaluated at (1,1), dA /dz, is zero;
(3) when evaluated at (1,1), dA /dz, is zero.
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Proof. Evaluating at (1,1) the partial derivatives of (3.7), one gets

A 3 A

— =—adet[1faP”—(1—a)QH], (4.7)
02 a.n

A . a

ry =—(1—a)det[lfaPH—(l—a)Q“]. (4.8)
2 la,n

Since 0 < a < 1, the condition dA /dz,|1.1y= 0 is equivalent to
det[1— aP), — (1—a)Qy,] =0,

which in turn is equivalent to assuming that A, = 0 has multiplicity greater
than 1. Thus (1) « (2) and, by a similar argument, (1) = (3). [ |

Tueorem 4.2. Let .# =(a,P,Q) have a GLPV. Then the variety 7 (A)
of its characteristic polynomial is regular at (1,1).

Proof. Suppose (1,1) be a singular point of 7(A). By Lemma 4.3,
A, =1 is a multiple eigenvalue of A, and consequently E cannot be fully
regular. This would contradict the existence of a GLPV. B2

We consider now the possibility that the variety #(A) and the distin-
guished boundary 7] may have intersections other than (1,1) or, equiva-
lently, the matrix I— az,P—(1— a)Q may not be full rank at (', e™2) #
(1,1).

Lemma 4.4.  Let P,y and Q,, be as in the partition (4.2) of P and Q.
Then the polynomial det(I— az,P,, —(1— a)z,Qy,] is devoid of zeros in the
unit closed polydisk.

Proof. Given a complex-valued matrix C, we denote by modC the
matrix which arises from C when all the elements are replaced by their
moduli. It is easy to see that, for (z,z,) € &,

mod[aslP22+(l—a)z2Q22] < aPy +(1-a)Qy,. (4.9)
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This implies that, for any eigenvalue y of az Py, +(1— @)2,Q,,,
lyl< R<1, (4.10)

where R is the spectral radius of aP,, +(1— a)Q,,. Actually, if aP,, +
(1— a)Q,, is irreducible, (4.10) is a classical result needed in the proof of the
Frobenius theorem [6]. The generalization to arbitrary nonnegative matrices
is obtained by a limiting process, since aP,, +(1— a)Q,, can be represented
as the limit of a decreasing sequence of positive (and thus irreducible)
matrices.

We therefore have that yI— az Py, —(1— a)z,Q,, cannot be singular if
(z,,7,) belongs to &, and |y| = 1. This proves the lemma. B

Lemva 4.5. Suppose that 1— az,P—(1—a)z,Q is not full rank at
(e'1,e'2)# (1, 1). If v=[v, vy, *** v,]€C" satisfies

v[I-ae P—(1-a)e™2Q] =0, (4.11)

then its entries sum to zero:

Y =0, (4.12)

Proof. Letting w = w, — w, and denoting by r;, h=1,2,...,n, the hth
row of aP+(1— a)Qe', we rewrite (4.11) as

g~ y= Y wit. (4.13)
h=1

Summing the entries of the row vectors on both sides of (4.3), one gets
n

e 1Y v= ) vy 2 [aPhk+(l_a)€inhk]
k=1

k=1 h=1

- hi vh[a-#(l—a)ei‘”],
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which implies
Y {eter— [a +(1-a)e™]}=0.
h=1

It follows that L} _,v;, =0, in view of the fact that, by assumption, either
w, #0or w#0mod 27. |

In view of Lemmas 4.4 and 4.5, our original assumption on the existence
of an intersection between #(A) and &, \{(1, 1)} can be restated as follows:
there exists a complex-valued nonzero vector

v=[v: vy T U] with Y v, =0
h=1
that satisfies the following equation:
v[I— ae P, —(1— a)e':Q,,] = 0. (4.14)

If we partition the probability vectors conformably with the block structure
of (4.2),

x(h, k) =[x,(h, k)  x5(h,k)],

and assume that the initial probability vectors satisfy x,(h, —h)=0, h € Z,
then the first n — r entries of x(+, -) evolve according to the equation of a 2D
Markov chain with n — r states,

x,(h+1,k+1)=x,(h,k+1)aP; +x(h+1,k)(1—a)Q,,. (4.15)

Suppose, for the moment, that in (4.15) all x;’s are allowed to be
complex-valued vectors, and consider the following sequence:

Zy={x\(h, = h) =ve'" he2) (4.16)

with @ = w, — w,. It is clear that the updating equation (4.15) produces at
(h,k), with h + k > 0, a vector x(h, k) = ve i@k and consequently the
vector sequence 2., on the separation set ¢, ={(h, k) h + k =m} is given

m m
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Sé/;n={xl(h, —h+m) = vei@hTien hEZ} (4.17)

Put another way, it is possible to recover &, from & via multiplication

m
—iwym

by e
When v is expressed in polar form

i [plefm pyefz oo pﬂ_rgfﬁ"-,],
the sequence (4.16) breaks apart into a real and an imaginary sequence:

L= AP+,

with

TR ={[prcos(B+hw) pycos(By+he) - p,_ cos(B,_, +ho)],
heZ},

Zd={[pysin(By+ho) pysin(By+he) - p,_sin(B,_, +ho)],
heZz}.

Since the transition matrices aP); and (1— a)Q,, are real-valued, assuming
' or @7 as initial conditions will produce separately.

9‘;3 = {[Pl 905(191 +hw —me,) p, cos( By, + hw — mwg)

“m

"'pn—rCOS(BnAr+hw*mw2)]’ hEZ},

92”01={[p15in(ﬁ1+ ho —mw,) pysin(B,+hew—mw,)...

p,_,sin(B,_, + ho—mw,)], heZ}

Owing to the assumption v # 0, a OR and 4 01 cannot be simultaneously



2D MARKOV CHAINS 125

zero. Furthermore, the property L,v, =0 implies that the entries of every
real vector of the sequences 2 and 92” R sum to zero.

Suppose now we start the cham from 97 R £ (. Then the sequences Qﬂ R
cannot converge to zero as m goes to mﬁmty Actually, if w, /27 is ratlonal
the sequences Qﬂ vary _penodlcal]y with m; if not, there are sequences
2R arbitrarily elose-fo ' for arbitrarily large values of m.

m
The above discussion is summarized in the following lemma

Lemma 4.6, Let det[I— az,P—(1— a)z,Q1=0 at (z,,z,) =(e™1, ')
#(1,1). Then there exists a nonzero sequence of real vectors

:{x(h,fh)z ” IO],heZ} (4.18)

——

n—r
and two positive real numbers | < L with the following properties: the vectors
we obtain from ', according to (2.10) satisfy

(D x,(h,k)=0,n—r<j<n
2) Z”ulx (h,k)=0,
(3) HQﬂ | = sup;, ¢ zllxCh, = h + m)ll.€[1, L].

We are now in a position to prove the main result of this section.

Tueorem 4.3. Let .# =(a,P,Q) be a 2D Markov chain. Then .# admits
a GLPV if and only if (1,1) is a regular point of ¥(A) and is the unique
intersection of ¥ (A) with the distinguished boundary 7.

Proof. To prove the necessity part, we only need to show that 7(A)N
J,={(1,}. So, assume that

w= w, |(}]
is the GLPV of .#, and suppose that 7(A) intersects 7, at (&'}, ¢'2) #
(1,1). Then n—r > 1 and, by Theorem 4.1,

m;’= min  w,, my:= min (1—w,)
I<sh<n—r l<shgsn—r

are strictly positive quantities.
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If we assume
Ly ={x(h,—h)=w,helZ)} (4.18a)
as a sequence of initial probability vectors of .#, we obtain
xX(h,k)=w (4.18b)

for any (h,k) with h + k > 0. Consider now the following sequence of initial
vectors:

I3
D=+ o= s (4.20)

with 2, and L defined in Lemma 4.6 and g = min(m,m,).

The perturbation term (n /2L)Z, is small enough to guarantee that all
vectors of the sequence 27/ are nonnegative. Moreover property (2) of
Lemma 4.6 implies that the entries of each vector in & sum to 1, so that
2y may be considered as a sequence of probability vectors. The corre-
sponding dynamical evolution of .# is obtained as the superposition of
(4.19), which provides a constant pattern in the half plane {(h,k):h + k > 0},
and (4.18), scaled down by u /2L, which does not converge to zero as
k + h — 0. This shows that w is not a LPV of &Z".

Conversely, suppose that (1,1)is a regular point of #(A) and #(A)N 7
={(1,1)}. Then, by Lemma 4.3, A,=1 is a simple eigenvalue of the
stochastic matrix A = aP+(1 — a)Q. This implies that there exists a unique
stochastic vector w satisfying (4.4), and hence a unique LPV. It remains to
prove that w is a GLPV. To this purpose, all we need is to express the
probability vectors as

x(h,k)=w+n(h,k), n(h,k)EN
and to show that every initial sequence
Ny={n(h,—h)In(h,—h)EN, heZ} (4.20)
evolves in the half plane {(h,k):h + k > 0} so as to satisfy

lim n(h,k)=0. (4.21)

h+k—+x
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Indeed, an arbitrary vector in N can be represented as a linear combination
of the vectors ry,r,,...,r, _,, introduced in (3.4):

n—1

n(h,k)= ) fi;r,

j=1

and the (n —D-tuples a(h, k):=[A,(h, k) Ay,(h,k) --- fAi,_(h k)] evolve

according to an (n — 1)-dimensional 2D system equation
a(h+1,k+1)=da(h,k+1)aP, +a(h+1,k)(1—a)Q,,. (4.22)
From the stability theory of 2D systems [7], we know that
det[ln_1 —az, P, —(1— a)zZQ“_] #0 V(z,2,) EF, (4.23)

is a necessary and sufficient condition guaranteeing fi(h, k) — 0 and, equiva-
lently, n(h,k)— 0. Since in (3.7) the factor 1— az, —(1— a)z, vanishes at
(1,1), our hypotheses on #(A) directly imply that the factor det[I__, —
az, P, —(1— @)z,Q,,] is devoid of zeros in .

This completes the proof of the theorem. [}
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