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OPTIMAL CONTROL OF TWO-DIMENSIONAL SYSTEMS*

MAURO BISIACCOT anp ETTORE FORNASINIE

Abstract. Necessary and sufficient conditions for the existence and the uniqueness of the solution of
the optimal control problem of discrete-time linear time invariant two-dimensional systems are determined.
Given a system that satisfies these conditions, the optimal control law is obtained using an algebraic Riccati
equation with coefficients in the polynomial ring R[z]. Since the feedback implementation of this law does
not preserve the causal structure of the system, suboptimal control laws are also discussed that lead to a

weakly causal two-dimensional system.
Finally, some important connections between optimal control in an 1, setting and L. stabilization are

investigated.
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1. Introduction. Underlying a study of a two-dimensional system is often a motiva-
tion to improve its dynamical behaviour.

Recently, some authors [1]-[3] concentrated their efforts in two-dimensional state
space models stabilization by means of feedback compensators. Their synthesis objec-
tive being to obtain a prescribed stable closed-loop characteristic polynomial, the
approach they followed is reminiscent of the classical one-dimensional pole placement
method. However, the pole placement design usually exhibits a poor control on the
short-term system response, since it essentially affects the asymptotic evolution.

In this paper we take a different approach and concentrate our study on design
procedures that are based on the minimization of a quadratic cost functional J. The
two-dimensional system, which is the end result of this optimal design, is not merely
internally stable, but satisfies additional requirements on the state and input evolutions
that are summarized by the structure of J.

The class of discrete time two-dimensional systems we will consider has as a
prototype the linear model described by the state updating equation [4]

(1.1) x(h+1, k+1)= A, x(h, k+1)+ Ax(h+1, k) + Byu(h, k+1)+ Bou(h+1, k)

where x(h, k)e R" and u(h, k)€ R™ are the local state and the input value at (h, k)
and A,, A,, B,, B, are real matrices of suitable dimensions.

Assuming that the initial local states x(i, —i) have been assigned, the state dynamics
is completely determined by the input function u(-, - ). Our prime concern in the next
section will be to pose in precise terms the optimum LQ problem for the system above.
In fact, if no constraint is imposed on the structure of the infinite set of initial local
states we might expect that initial conditions contribute per se an infinite value to the
corresponding cost functional. It turns out that a satisfactory theory requires us to
assume that both the space of allowed initial conditions and the space of input functions
are [,.

Within this framework, a fundamental property is the one that reduces the existence
and the uniqueness of two-dimensional optimal control to a pair of rank conditions
on two-dimensional polynomial matrices. This result constitutes a nontrivial extension
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of the corresponding one-dimensional polynomial criteria based on PBH controllability
and reconstructibility matrices.

One further point of contact with the one-dimensional theory is that the optimal
control can be expressed in a linear feedback form, so that the resulting closed-loop
system is also a linear dynamic system. In this respect, however, a deep difference
arises, since one-dimensional optimal control law preserves the original causality
structure of the system, while two-dimensional causality is completely lost. This is
essentially due to the fact that the optimal control value at (h, k) depends on an infinite
number of local states that are not located in the past of (h, k).

The main tool for solving the problem is a special extension of the algebraic
Riccati equation, whose coefficients are polynomial matrices in one variable. When
the solvability conditions are satisfied, this equation admits a unique stabilizing solu-
tion, which induces a feedback matrix analytic in an open neighbourhood of the unit
circle.

The analyticity property is extremely important in two respects. First, it allows us
to obtain the optimal feedback law using the coefficients of a Laurent series expansion.
Second, it naturally calls for an approximation procedure that provides a suboptimal
control through the truncation of the above series.

A noteworthy advantage is that this suboptimal control stabilizes the closed-loop
system while preserving a weakly causal two-dimensional structure, that recursively
generates the feedback input values.

The I, approach followed in the paper is mainly motivated by the necessity of
guaranteeing that the optimal control problem is a meaningful one. Usually, when
dealing with the internal stability of two-dimensional systems, a more general approach
is taken into account [5], since an L. constraint is the only requirement imposed on
the set of initial conditions. The control law we obtained by solving the [, optimal
control problem still holds in an [ setting and, interestingly enough, the [, stabilizability
criterion, based on the rank of a two-dimensional polynomial matrix, provides a
necessary and sufficient condition for [ stabilizability also.

2. Problem formulation. Denote by
Go={(ij):i+j=k}, k=0,1,2,---

the kth separation set in Z x Z. For purposes of future manipulation, it is useful to
single out the restrictions of the input function u(-, -) and the state evolution x(-, *)
to the separation sets and to consider such restrictions either as bilateral sequences or
as Laurent formal power series in one variable. So, the restrictions of u(-,-) and
x(-, ) to 6, will be denoted by the sequences

(2.1) U, ={u(-i, k+i);icZz},
(2.2) Xo={x(—1 k+i),ieZ},

or by the series

(23) U ()= T ul—i, k+i)g),
(2.4) )= T x(—i k+D)¢"

1==92C

In the following, sequences (2.2) will be called global states.



584 M. BISIACCO AND E. FORNASINI

For each initial global state X, on the separation set €, and each input function
u(-,-), we introduce the quadratic cost functional'
(25) J(ua ‘)c‘(l):: Z [XT(hek)Qx(hs k)+uT(l?5 k)Ru(hs k)]

h+k=0

with R >0 and Q =0. The optimal control problems we aim to solve are the following:

(i) Given X,, derive conditions for the existence and the uniqueness of an input
u( -, ) that minimizes the cost J.

(ii) Whenever these conditions are satisfied, explicitly compute the optimal input
and the corresponding value of J

It is apparent from the structure of J that admissible input functions must belong
to the space 3°(R™) of R™-valued functions u(-, -) defined on

Zr={(h ke ZxZ:h+k=0}=1] %

k=0
and satisfying the finite norm condition

fu(-, 3= Y u'(h k)u(h, k)<co.
h+k=0
Furthermore, we are only interested in state dynamics x(-,-) that belong to
I2P(R"). Although this condition is not necessary for guaranteeing the finiteness of J
in case Q is singular, it fulfills the natural requirement of imposing a stable pattern
on the admissible state evolutions. In fact, x(-, <) el3” implies that the associated
global states X, satisfy

o0

(2.6) |[-°f;|\§?:7 x (=i, t+i)x(—i, t+1i) < o0,

=—0

2= [x(-5 3

X,

J

(2.7) i)

i

showing that |X,||— 0 as ¢ 00
Just putting t =0 in (2.6), we argue that the allowable bilateral sequences of initial

conditions must belong to [L(R"). In this way, the optimization problem we aim to
solve is completely couched in an [, setting.

It is well known that the infinite time least squares problem for stationary linear
one-dimensional dynamical systems may be treated analytically via the algebraic Riccati
equation. The questions of the existence and uniqueness of a stabilizing optimal
solution, however, can be settled a priori, without explicitly solving the equation. In
fact, a necessary and sufficient condition for both properties is that the polynomial
matrix

(2.8) [[-Aw Bw]

has full rank for any w in the closed unit disk and the polynomial matrix

Q
s 2]

has full rank for any complex w in the unit cirle [6], [7]:

vi={we C:|w|=1}

! Throughout the paper, 7 means transpose, V' conjugate, and * conjugate transpose.
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[n two-dimensional optimal control problems, the existence and uniqueness
properties of a two-dimensional stabilizing control still reduce to rank conditions on
polynomial matrices in two variables and the optimal control law is obtained via an
algebraic Riccati equation whose coefficients are polynomial matrices in one variable.
A precise statement of the main results is given by Theorem 1.

Tueorem 1. The following facts are equivalent:

(1) OS (optimal solution). For each global state X, in 1,(R") there exists an j==
solution of the optimal control problem, i.e., there exists an input u(-, ) in 3°(R™) such
that x(-, ) belongs to 13°(R") and the corresponding value of J is minimized.

(2) RC (rank conditions). The two-dimensional polynomial matrix

(210) [I_A]Z]_AZZE Blzl+8222]
has full rank on the set

M={(z,,2)e CxC:|z;|=|z| =1}

Zs

and the two-dimensional polynomial matrix

.
2.1
( , |:IA121_A222
has full rank on the unit torus
=1}

(3) AREz (algebraic Riccati equation). The following polynomial algebraic Riccati
equation:

P(z)=Q+(A{+ Az )P(z)(A,+ A,z)
(2.12) —(AT+ATz7"YP(2)(B,+ B.z)[R+(B] + Bl z " )YP(z)(B,+ B>z)]™'
X (BlTJr B,z DWP(z)(A,+ A,z)

T=f{ %, ) ECRC &=

Z

in the unknown matrix P(z) admits a unique solution in an open annulus that includes

Y1, with the following properties:
(i) P(e’*)= P*(e™)=0, forallw [0, 2].
(ii) The matrix

(2.13) K(z)=—[R+ (Bl +BIz ")P(z)(B,+B,z)] (B} +Biz “YP(z)(A,+ A,z)

is analytic in an open annulus that includes vy, .
(ii1) The matrix
(2.14) M(w)=(A,+ A, e™)+(B,+ B, e™)K (')
is asymptrotically stable for all w in [0, 27].

Moreover, whenever the above conditions are fulfilled, the input u( -, - ) considered
in OS is uniquely determined by the stabilizing feedback law

+oo
(2.15) ulh, k)= 3% Kx(h+i k—1i)
where the matrices K; are the coefficients of the Laurent series expansion

(2.16) K{zy= E!K,z'ﬁ

i=—0C
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The implications OS— RC of the above theorem will be proved in § 3 and the
implications RC->AREz—=0S in §4. In § 5 an [. extension of some results will be
given, while in § 6 a suboptimal solution is discussed, which seems quite attractive
from the implementation point of view.

3. Necessary conditions for [, solvability. An obvious necessary solvability condi-
tion of the I, optimal control problem is that for any initial global state X, in L5, there
exists some input u(-, -) in [3” that provides an [3” state evolution.

Denoting by %(X,) the affine variety of all inputs in 12” with this property, the
above requirement is formally restated as

(3.1) V(X)) #D VX el,.

It is intuitively clear, however, that the existence of input functions inducing finite
values in the cost functional does not necessarily imply that the infimum of J(X,, )
is effectively attained for some input function in 7(X,). So we expect that additional
conditions, besides (3.1), must be fulfilled to guarantee the existence of an optimal
control in 7'(X,). .

The following theorem shows that in some sense it is meaningful to discuss
separately the existence of 137 state evolutions and that of optimal controls. Actually,
the first problem is connected with the rank of the matrix (2.10), whereas the second
depends on the rank of both (2.10) and (2.11).

The results of the theorem that provide necessary conditions for solving these
problems will be supplemented by those of § 4, showing that the same conditions are
also sufficient. Thus an elegant check is available for the feasibility of two-dimensional
optimal control which constitutes a nontrivial extension of the results already available
in the one-dimensional case.

THEOREM 2. If V' (X,) # & for all initial global states X, €1, the polynomial matrix
(2.10) has full rank for all (z,, z,) in M. If moreover, for each X,el,, there exists an
input ug, € V(X,) such that
(3.2) F(&Eosu) =2J(Eosth) Yue¥(Xq),
then the polynomial matrix (2.11) has full rank for all (z,, z,) in F/: _

Proof. Suppose that (2.10) is not full rank at (z}, z3) = (b e’ bel™)e M.

Then there exists a nonzero vector ve C" such that
(3.3) oT(I—-A,20—A,z3)=0, v (B,zY+ B,z9) =0.

We now introduce the following initial global state X,€l,:

X,={x(i,—i)=0 fori#0;x(0,0)=v}

and suppose that there exists an input u(-, -) € [2” whose corresponding state evolution
x(-, ) is in [5°. Since 0 < b =1, the functions u, and x;, defined by

(3.4) up(h, k) =u(h, kK)b""", h+k=0,
(3.5) x,(h, k)=x(h, k)b"*", h+k=0,

are in 12P and x, represents the state evolution determined by X, and u when A,, A,,
B,. B, in (1.1) are replaced by bA,, bA,, bB,, bB,. Therefore, taking the double

Fourier transforms of u, and Xx,

(3.6) Up(w,, wa)= Y uplh, k) g~y g iher
h+k=0
(37) )?h(wl: C‘)Z) = z xb(h, k) e il’lcui e—,kq_;z’

h+k=0
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it is easy to prove that
(3.8) v=[I—-bA, e 1 —bA, e "]% (w,, w,) —[bB, e ™1+ bB; e "]ii,(w,, ,)

holds almost everywhere in [0, 277) x [0, 27 ). Letting

_[a—bA] e™—bAT e“"?)v}
(39) a(wl:o wl)'_ { {*bBr ejml_bB;" ej(uz)v
{ (wlz wz)}
(wla L!)z)

premultiplication of (3.8) by v™* gives
Ja(wl, f“’z)“j

= 2

”Uilgi <a(m,, @), [:H;,(Gh, 0:)2):|>§ Ha((ﬂl; w>) lz : ‘

Tplw,, s 2
which in turn implies that
(3.10) ”ﬁb(wl , @>) g/

Since a(®!, 95) =0, it is easy to obtain a quadratic upper bound of the following
form:

§+ ||£!J(w1 s {I)g)”g; ”ﬂ

2= M[(@,— 971"+ (0= 95)7]

Ha(&)] 3 (1)2)
and inequality (3.10) can be replaced by
2/ M[(0, = 97+ (0~ 93)°].

(3.11) IIL?h(w,,wz)i]%ﬂlfb(w],w:)\lé"’%ilv

The right-hand side of the above inequality being not summable on [0, 27) X
[0, 277}, we have that the same is a fortiori true for the left-hand side. This contradicts
the original assumption that u,(-,-) and x,(-,-) were 13” functions. In fact that
assumption implied, by Parseval’s Theorem, the summability of both #, and %, on
[0,27) %[0, 2).

Note that in the above proof a complex valued global state X, was considered.
However the conclusion of the theorem is correct even when only real global states
are allowed: we have just to analyze the dynamics that correspond to the real or
imaginary part of X,. _

The proof of the second part of the theorem is quite long and will be omitted for
sake of brevity. It may be found in [8]. a

4. A Riccati equation for two-dimensional systems. It is very well known that the
algebraic Riccati equation plays a crucial role in the solution of one-dimensional
optimal control problems. In this section we will derive a Riccati equation for two-
dimensional systems that provides a closed-loop optimal solution to the problem of
minimizing the quadratic cost functional J defined in (2.5).

As a matter of fact, the actual evaluation of the minimum cost and the explicit
computation of the optimal input function lead us to study the existence of a particular
solution of the Riccati equation, which we characterize in terms of positive definiteness
and analyticity.

Let us first start with a preliminary analysis of the open-loop system dynamics in
terms of Fourier transforms. We assume that X, and 1, belong to I,. Then, by equation
(1.1) all global states X,, r=1,2,--- are in [, and the Fourier transforms

Nw)= T uli+th —h)e ™
(4.1) N

flw)= Y x(t+h—hye ™

h=—x
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have components in L,[0, 27]. Letting

Alw)=A,+e™A,, B(w)=B,+e¢™B,,
equation (1.1) can be rewritten as a first-order recursive equation
(4.2) £(0)=A0)X(0)+ B(o),(0),

whereas Parseval’s and Beppo Levi’s Theorems allow us to express the cost functional
in the following form:

E= T (@) F.ﬂef(w)Q?e,(wHﬁf‘(w)Rwa)d“’

20 R o[,
—(:zw)'[ L [f(w) ?c?(w)]{o Q][%Ei)}dw

Suppose that the [3” norms of the input function u(-, -) and of the state dynamics
x(-, ) are both finite, i.e.,

nu<-,->n§—(zw>-'J

0

x(, 2= @m) j

Then, for every Hermitian matrix f’(w)z P*(w) with elements in L..[0,27], we
obtain the following identity:

(4.5)

(4.3)

27T o
A

Z 1#(w)1,(0) do < o0,

(4.4)
()X, (0) do <.

0

18

1

Il

0=4(w)Plw)2o(w) - § £¥(0)P(0)3 ()

4 EO[ﬁf(m)éﬂm+i‘,*(w)A*(wnﬁ(w)[ﬁ(w).%f(w)+é(w)ﬁ,(a»n

=% () P(0)Xo(w)

B B*(0)P(w)B(w) B*(w)P(w)A(w) 1,(w)
EPALHCEHC ”[A*(mﬁ(w)é(m) A*(w) B(w)A(w) - P(w)}[?%,(w)]

Integrating (4.5) between zero and 27 and adding the resulting identity to J, we
obtain

(4.6) b @yt J T [¥(w) £¥w)]

where

(4.7) ﬁ<w>-—f[R+é*(w)ﬁ(w}ém)rlé*(w)ﬁ(m(m

(4.8) 5(0)=1,(0) - K(0)X,(0),

(0)=—Plw)+ Q+A*(w)P(w)A(w) ~ A*(0) P(w)B(w)
% [R+ B*(w)P(0)B(w)] " B*(w) P(w)Aw).

~—

U‘hﬁ

(4.9)
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Clearly, if we are able to choose I—A’(w) in such a way that E‘(w) is zero almost
everywhere in [0, 277 ], then (4.6) reduces to

e
27 oo

‘]:{277)_] J‘m“ )A((’)’(w)ﬁ(w}%o(w) dw+(2ﬂ)ul J & §(w)
o 0

Xx[R+ B*(w)P(w)B(0)]5,(w) dow

and the minimum value of J

(4.10) Tin=(27)" J i (w)P(0)Ey(w) do

0
is attained using the closed-loop control given by
(4.11) l,(0) =K (w)X,(w).

The conclusion we have drawn so far depicts the situation in a way that may
convince us of the intuitive reasonableness of the result. However, some caveats are
in order, since the validity of the procedure depends heavily on the existence of ﬁ(w)
and on the fact that both the input and the state dynamics given by (4.11) and (4.2)
belong to 157,

More precisely, the solution of the optimal control problem outlined above makes
sense if we are able to give a positive answer to the following questions:

(1} Is there any solution P(w)* *(w) of the equation E(w}—O i.e., of the
w-dependent Riccati equation (AREw)

P(w)=Q+A*w)P(w)A(w)— A*(w)P(w)B(w)
X[R+ B*(w)P(0)B(0)] 'B*(w)P(w)A(w)?

(ii)) Among these solutions is there any solution ﬁ(m) that provides, through
(4.7), a feedback matrix K(w) mapping L,[0, 27 ] into L,[0, 277]? This requirement is
necessary for guaranteeing that the feedback law (4.11) (reinterpreted in the time
domain) always transforms an [, global state X, into an [, input sequence 1I,.

(iii) In particular, does (AREw) possess any (Hermitian) solution that ensures
asymptotic stability of the closed-loop system, in the sense that, for any X,<1,, the
resulting global states sequence {X,} can be viewed as an element of 12”? Note that
this condition is needed in order to have a feedback input (4.11) that belongs to ¥(X,).

For every fixed w in [0,27], (AREw) is the algebraic Riccati equation of a
one-dimensional system over the complex field. So, if the rank conditions of Theorem
1 are fulfilled, for each w in [0, 27] the equation has a unique positive semidefinite
solution P(w)— P”c w), that makes the one-dimensional closed-loop system matrix

(4.12) [(w)=A(w)+ B(w)K (w)

asymptotically stable [7].

Clearly P(w), viewed as a matrix function of w, satisfies the first question we
raised above. Actually, it provides a solution that also satisfies questions (ii) and (iii).
However showing this property deserves an accurate investigation of the analytic
structure of ﬁ(w). A first result in this direction is provided by Theorem 3, which

shows that the map
(4.13) P:iy,» C"": e’ > Plw)

admits an analytic extension to a suitable open annulus including y,, and the extension
P(z) satisfies (2.12).
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THEOREM 3. Assume that the matrices (2.10) and (2.11) are full rank for any
(z,,z,) in Al and in F, respectively. Then the equation (2.12) admits a (unique) solution
P(z) that fulfills the following conditions:

(i) P(z) is analytic in an open annulus that includes the unit circle y,.

(ii) For all w in [0,27], P(e’) coincides with the unique Hermitian positive-
semidefinite stabilizing solution ﬁ(w) of (AREw).

For the proof, see the Appendix.

To completely answer questions (ii) and (iii), we need to discuss certain important
properties of the solution P(z) obtained in Theorem 3 that shed some light on the
structure of the optimal feedback law and on its stabilizing character.

(1) Because of the analytic nature of P(z), there exists a Laurent series expansion

+o0
(4.14) P(z)= Y Pz"
h=-—c0

that converges in an open annulus including y,. The coefficients P, of (4.14) are real
matrices that satisfy the conditions

(4.15) p,=P’,, h=0,1,2,-"-.

The proof of this property depends on the following lemma.
Lemma 1. Let P(z) be the solution of (AREz) considered in Theorem 3. Then

P(z)=P7(z™")
in a suitable open annulus that includes vy,.

Proof. For all w € [0, 27], the matrix P e? ™= ﬁ(w) is a solution of (AREw). On
the other hand, taking the transpose of both sides of (AREw) and substituting @ with
—w we check easily that P (e ) is still a solution of (AREw). So P(e’)and P" (e )
are both Hermitian positive-semidefinite solutions of (AREw) for any w in [0,27].
Because of the uniqueness of the stabilizing solution, proving that these solutions
coincide reduces to show that the matrix

(4.16) Alw) = B(w)[R+ B*(0)PT(7)B(0)] ' B*(0)PT(e ™) A(w)

is asymptotically stable for any o in [0, 27]. This is again obvious, since the conjugate
of (4.16) is f(—w), which is asymptotically stable by hypothesis.

Thus P(z) and P7(z ') are analytical in an open annulus that includes 7, and
assume the same values on v,. By the identity principle of analytic functions, this
implies P(z)=P7(z™") for any z in the annulus. 0

We therefore have (4.15), as an immediate consequence of the lemma. Moreover,
in (4.14) the Hermiticity of P(e’) gives P,=P*,, h=0,1,2,---.

The above equalities and (4.15) imply P¥, = P’,, which proves the realness of
all matrices P,.

(2) The coefficients P, in the expansion of P(z) decay exponentially as |h
increases, i.e., there exist M >0 and A € (0, 1) such that

(4.17) || <MA",  heZ
(3) Since P(e’) is positive semidefinite for any w in [0, 2],
R+ (BT+BJz ")P(z)(B,+ B;z)

is invertible for every z€ vy, and, by a continuity argument, for every z in an open
annulus that includes v,. Hence the matrix

K(z)=-[R+(B/+Bjz ")P(z)(B,+ B,2)] (Bl + B3z ")P(z)(A;+ A,z)
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extends analytically K (w) in the annulus and therefore admits a Laurent power series

expansion

[= o}

(4.18) K(z)= ¥ K,z"
h=—-x
Clearly, the feedback law (4.11) is well defined, since it associates an input
i [(w)e L,[0,27] to every global state k' [(w)e L-[0, 27]. This provides a positive

answer to question (ii).
We conclude at once from these properties that the state dynamics x(-, ) and

the corresponding input function u(-,-) are, for any initial global state X, in [,
elements of 137, which is all we need to answer question (iii). Actually, the Lyapunov
equation

(4.19) Viw)=T+1*w) V(o) ()

admits a unique positive-definite solution, given by the sum of the following pointwise
convergent series:

Vi)=Y [(w)"T(w)"
h=0
Furthermore, the linearity of (4.19) and the uniqueness of its solution for every
w in [0, 27 ] imply that the matrix ‘{A/(cu) is a continuous function of @ and hence its
spectral radius p(w) is uniformly bounded by some positive p.
Combining all these properties and applying Beppo Levi’s and Parseval’s
Theorems, we obtain

x(-, )3= § I1%,)3= 2m) " § J | ) (w) T (0) X y(w) do

t=0 t=04J0

— (2m) j () V(@) Zo(w) deo = p Eo|12.

0

So x(-, ) and, obviously, u(-, ) belong to 13”

Tying together the results of Theorem 3 and its consequences, discussed at points
(1)-(3), we have that the implications RC - ARE - OS in Theorem 1 are completely
proved.

To conclude this section, we wish to investigate some important consequences of
the time domain structure of the optimal control law

(4.20) wh k)= 5 Kx(h+ik—i).

[=—0C

Clearly the input value at (h, k) linearly depends on the whole sequence of local
states on the separation set including (h, k). So, the quarter plane causality is completely
lost in the closed-loop system.

As the coefficients K; decay to zero exponentially, it is reasonable to expect that
a suboptimal control law could be achieved by truncating the infinite series (4.18) and
hence by using a finite number of local states in the feedback law (4.20). This will be
discussed in detail in the sequel. Here we only remark that the input (4.20) actually
minimizes the cost functional, whose value is given by
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2

Join(X0) = 2m) ™" J 2i(0)P(0)E(w) do

8]

= Z xT(haih)Ph—kx{ka _k)

h k=-—cc
=[-=x"(1, ~1)x7(0,00x"(=1,1) -+ ]
I I
WPy Py Pyl | |x(1,-1)
P, Py Pr. x(0,0)
“Po Py Py | x(-1,1)
L, & B I
Remark. In case the system is autonomous (i.e., B, = B,=0), the stabilizability
condition (2.10) reduces to
(4.22) det (I —A,z;,—Asz,) #0

(4.21)

for|z,| =|z.| =1 or, equivalently, to the internal stability of the one-dimensional matrices
A+ A, e’ for all  in [0,27]. Note that the stability of A,+ A, e’ for all w is
equivalent to two-dimensional internal stability [5] and hence to det (1 — Az, — A,z,) #
0 in the unit closed polydisk 2, ={(z,, z,): |z)| =1, |z,| =1}.

Under the same hypothesis, (AREw) reduces to the w-independent Lyapunov
equation for two-dimensional systems and (4.21) gives the Lyapunov function associ-
ated with its free dynamical evolution [5].

Zs

5. 1. stabilization. The feedback law (4.20) we obtained in the previous section,
using an [, spaces approach, is well defined even when the initial global state X,

belongs to an L. space
(5.1) %ol = sup | x(h, —h)]l, <.
he s
Actually, the exponential decay of the matrix sequence {K,} as i > +00 implies
that (4.20) converges for all bounded sequences of local states, which shows that 11,
and X, are in I for any 1 = 0. Now it seems quite natural to ask whether the closed-loop
asymptotic stability (4.20) realized in the I, case is preserved when L. initial global

states are allowed.
Here asymptotic stability means that x(h, k) converges to zero uniformly as

h+k—occ.
We first note that there exist positive constants M and A, 0< A <1, such that

IT ()|, <MA',  1=0,1,2,- -

for any w in [0, 247] (for a proof, see Theorem 5 in the Appendix). Let us assume that
all local states of X, are zero except for a single local state x. Then we have

(5.2) X =X ]2 < MA || x|,

~ Incase X, is an arbitrary L sequence, any local x(h, t —h) € X, is the superposition
of 1+1 contributions determined by the initial local states x(h, —h), x(h— 1, —h+
1), -+, x(h=1t,—h+1). Consequently,

(5.3) 1X |« =sup [|[x(h, —h+D]><(t+1)MA'|| X,
he Z

shows that the global states converge uniformly to zero.
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Note that the above discussion implies that an I stabilizing control does exist as
soon as matrix (2.10) is full rank on .. In fact, assuming Q = I, in the cost functional,
an 1, optimal feedback law is computable through the solution of (2.12) and, as the
above discussion shows, the same law provides an [, stabilizing control.

It turns out that the rank condition on (2.10) is not only sufficient but also necessary
for the existence of L. input functions that drive any initial global state X € [ uniformly
to zero. This is proved in the following theorem.

THEOREM 4. Assume that the matrix [ — Az, — Az Byz+ B,z,] is not full rank
for some (zY, 23) € M. Then there exists an initial global state X,€ ., with || X,
having the following property. For any sequence {11,} with elements in 1., the corresponding
sequence of global states {X,} satisfies

(5'4) H‘{I’HC’Cz]: 121329."'
Proof. Let (29,23 =(pe’”, pe’™), 0<p=1 and define
f.L:: ej(ﬁ:- ﬁ]), F::A1+MA2, G:: Bi+,LLB2.

an:lg

Since the one-dimensional polynomial matrix [ —Fz G] is not full rank at
z=pe'”, the one-dimensional system (F, G) is not stabilizable. This implies that,
modulo a change of basis in the state space, the matrices F and G have the following

block structure:
F]l Fl?] I:Gl}
F= G=

and the spectrum of Fs, includes the eigenvalue y=p ' e,

Referring the local state space of the original two-dimensional system to the same
basis and partitioning its matrices conformably with the partition of F and G

Ap am) L B0
A:'_[A(.) (i) |» B, = B(,‘) s 1:1329
21 22 2
we have

(5.5) AL+ A =0, B+ uB¥ =0.

An easy inductive argument shows that the polynomial matrices (A, + A,£)" and
(A, +A8) " (B, + B,y¢£), r=1,2,- - - have the following form:

,_ (*) (*) }
5.6 A+AE) =| : 2]’
(5.6) ( £ {Mél)(f)(fﬂ) M(E)(E—p)+ Fx
F=] (*) }
5.7 A+ Ax¢)" (Bt Boé) =
(5.7) ( (Bt Bof) [N.._l(g)(f—m
where MY(£), MY/(£), N,_,(£), and () denote polynomial matrices with elements

i C[ £l
We now introduce the r-steps reachability matrix

(5.8) R, =[(B,+ By¢) (A +ALE)(B,+ B§) - - - (A1+A2§)r71(31+ B;¢)].

Then the global state X,(¢) that corresponds to an initial global state Xy(£), and
to inputs 1,(&), U,(&) - - - U, (&), is expressed as [9]

]'I r—-l ( g)

(5.9) X (€)= (A + A8) X (£)+ R.(€) :
Uo(€)
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Using (5.7), we rewrite the reachability matrix as

[r o SN ) }
@,_(5)_{0 (é—,u)f][No(f) N8 N, 1(6)])

which shows that the forced state evolution in (5.9) has the following structure:

(5.10) . ::[ ) ]
(E-p) T N(OU_ ()] L&)

1=0
To satisfy (5.4), we introduce an initial global state
% O o —hgh
(5.11) Xo(&)=| | L p7¢
h=-w

where v is a unitary eigenvector of F,, associated to the eigenvalue 7. Since Xo(€)(E—
w) =0, it is easy to see that the corresponding free state evolution in (5.9) is

. e ()
(5.12) (A, +A¢) ?(0(5):”)’ &u(ff)"": 5 I
Here (*) denotes some arbitrary bilateral formal power series.

Since Uo(&), U,(¢) -+ - U,_,(£) are bounded (i.e., [|U;].<o0, i=0,1,-+-,r—1),
X, (&) is also bounded. So, we combine (5.10) and (5.12) and get the inequality

[*]1 J
[ﬂ/”v Y m T E (g w)q(é)

Zy v X EH(E-p)g(E)]w

One additional consequence of the boundedness of 11;(£) is that the series q(&)=
Y, " we introduced in (5.10) is I, and therefore there exists a positive M such that
lgxll <M for all k in Z. ;

Now consider in (5.13) the coefficients of the series

o0

(5.13)

Yo 3w ma@= T g

k=—00 k=—00
It is immediate that u*g, = vy"+ u'q;_, —n*"g,, and summing over k yields
N-1 7 N
(5.14) Y &p =Nvy' +q,—u"gn_,
k=0

where N is an arbitrary positive integer. We therefore have

1
I8 =sup el = (3¢ el + e+ gl

1
(5.15) () Ul + g+ ™l
1\ I, , oM
| =~ ; Zp "o -Ngo+puNgn || Zp -
(%) | 5, aus* | 2070l = N gt a2 -2

and since N = 1 was arbitrary, [|X,(£)||- = p~"= 1. This shows that (5.4) holds indepen-

dently of the choice of the inputs 1; in ..
By the argument used in the conclusion of Theorem 2, the statement of the theorem

is correct even when only real global states are allowed. a
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Remark 1. When dealing with globally reachable two-dimensional systems, i.e.,
systems whose reachability matrix &,(&) is right invertible in R({), it has been proved
in [9] that every initial global state X, can be driven to zero in a finite number of steps,
irrespective of the rank condition of Theorem 4. Actually this does not involve a
contradiction, since the finite-time control considered in [9] was not restricted to use
only [ inputs. For instance, assumingin (1.1) A;=A, =1, B, =-B,=1 gives a globally
reachable two-dimensional system whose PBH matrlx (2.10) is zero at (29,29 =(1,1)e
. The global state

+oc

Xo(é) = Z;f fk
is controlled to zero in one step by the unbounded input
+o0 "
Mo(£) = =3, ke"

Remark 2. A sufficient stabilizability condition based on the rank of (2.10) has
been proved in [10] using different techniques and referring to dynamical models
where the local state at (h, k) linearly depends on all local states and input values of
the separation set €, 4_;.

In Kamen's paper, however, stabilizability means by definition the existence of a
stabilizing state feedback, whereas the stabilizability definition considered in the present
paper is essentially open loop. Actually, no a priori hypothesis has been assumed here
on the way the stabilizing input functions could be generated, and the possibility of
implementing the stabilizing control by a state feedback law is a theorem rather than
an assumption.

The major consequence of this approach is that open-loop stabilizability, closed-
loop stabilizability, and the full rank of (2.10) on .# are equivalent properties.

6. Weakly causal suboptimal feedback. The control law (4.20), we obtained
through the solution of (AREz), provides a state feedback that stabilizes (1.1) both in
the [ and in the 1 settings.

Although this approach is conceptually appealing, the difficulties when no approxi-
mation is used can be very great. We already noted that, in general, the input value
at (h, k) depends on the (infinitely many) local states x(h — i, k+ i), i € Z. So, implement-
ing (4.20) completely destroys the quarter plane causality of the original system and
produces a half plane causal two-dimensional system, whose updating equation is
required in principle to cope with an infinite-dimensional state vector. Moreover, to
determine the solution of (2.12) is by no means a trivial task. In particular, a difficult
problem that has no one-dimensional counterpart is that of obtaining the analytic
structure of the feedback matrix K(z) and computing the coefficients K; that provide,
in the time domain, the optimal feedback law.

We will give here two examples. The first shows how the solvability conditions
based on the rank of (2.10) and (2.11) reflect into the analytic structure of P(w) The
second gives an idea of some difficulties involved in the computation of K;s even in
dimension one.

Example 1. Assume as in (1.1) m=n=1and A,=B,=B,=1and A,=—1. Fur-
thermore, let R = Q =1 be the weighting matrices of J.

In this case the solution of AREz can be obtained in closed form as

14+/54+ 224277
22+z+z7YH

P(z)=
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Letting z=e’", we obtain a negative solution and the solution

- 1
P = .
(@) —1+V5+4cosw

The first cannot be taken into account, since we are looking for nonnegative
solutions only; the second is positive for all w in [0, 27 ], except at w = 7, where ﬁ{w)
diverges. Actually this is not surprising, because (2.10) is not full rank at (3, —1) € .
Hence a stabilizing optimal feedback law does not exist for some initial global state
in [,.

Example 2. Let us change only the sign of A, in the previous example. In this
case the unique positive-definite solution of (AREw) is given by

2
_\/1+16(1+c05 ) —(3+4cos w)

P(w)

and the corresponding feedback matrix is
4(1+cos w)
1+v1+16(1+cos )*

Iz'{w):

A plot of P(w) is given in Fig.1.
Since P(w) attains its minimum value at w = 7, we have

5]

Tl Bes) =0 f " B()Ey(0)] do = | %|2P(r)

0
and J,;, can be made arbitrarily close to the lower bound if we consider initial global
states whose spectral content is concentrated in a narrow neighbourhood of =

The computation of the Kj,’s depends on the evaluation of the following integrals:

K, = (2m)"" J‘27 4(1+cos w) cos (wh)
]: TT
i o 1+V1+16(1+cos w)?

Since infinitely many K,,’s are different from zero, the optimal feedback law (2.15)
cannot be implemented by a finite-dimensional device, and the resulting closed-loop
system is a half-plane causal two-dimensional system.

To overcome the storage and computation problems, it seems natural to investigate
whether, in the case (1.1) satisfying the rank condition of Theorem 3, the stabilizing
feedback matrix could be constrained to have all elements in the bilateral polynomials
ring R[z,z"']. An obvious advantage of this control law is that u(h, k) would only

1

e

Y

[¥]
5
€

Fic. 1
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depend on a finite number of local states, which makes the closed-loop system weakly

causal [11].
The question above can be positively answered. Actually, we will prove that the

bilateral polynomial matrix

N
Kn(z)= L Klz]
i=—N
obtained by truncation of the Laurent series (4.18) gives an (1, and I.) stabilizing state
feedback, provided that N is large enough. Furthermore, when N diverges and [,
initial states are considered, the corresponding cost functional Jy asymptotically
converges to the minimum value Jyy,.

To prove the first statement, recall that the coefficients K; exponentially decay as
|i| = co. This implies that Ky (e™) and the corresponding closed-loop matrix Fwlel”)
uniformly converge to K(e’’) and I'(e’*), respectively.

Denoting by p <1 the maximum spectral radius of I'(e’”) as w varies in [0, 27],
it will suffice to prove that for every o the spectral radius of I'n(e’) does not exceed
(1+ p)/2 for large values of N. It even suffices to prove that for every w the distance
between the eigenvalues of T y(e’) and those of I'(e’”) is less than (1—p)/2 for large

values of N.
By the Ostrowski Theorem [12], there exists a positive real & such that the distance

between the eigenvalues of 'y (e’) and those of I'(e’) is less than (1—p)/2 if
(6.1) IT(e™)—Tn(e™)] <8

for every w in [0, 277]. But the uniform convergence of I'y(e’) to I'(e’*) guarantees
that (6.1) becomes true as N diverges.

To prove that Jy converges to J,,;, we introduce a frequency-dependent quadratic
Lyapunov function that provides a very convenient integral representation of the cost

functional J.

LEmMMA 2. Assume that the feedback law (1,(w) = K(w)'-’c w) stabilizes the system
(1.1) in the usual 1, sense and denote by F{w) the conespondmg closed-loop matrix. The
cost functional associated to an initial global state Xo(w) is given by

2
(6.2) J=(27r)_1J‘ T (w)P(w)nk)(w) do
0
where }S(w) is the (unique) solution of the following Lyapunov equation:
(6.3) Plw) =" (0)P(0)[(0) +[Q+ K*(0)RK (0)].
Proof. By Parseval’s and Beppo Levi’s Theorems, the cost functional can be
represented as

= (g ¥ j [25(0) QX () + 1 (w) R, (w)] do

=(2m)" Jm.%zf(w) T (@) [0+ K *(w0)RE (0)](0)" () do.

Since f(cu_) is asymptotically stable for every w in [0, 2], it is easy to check that
the series

z ()" [0+ R *(0)RR ()](@)"

h=

converges pointwise for every w to the unique (positive-definite) solution of (6.3).
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As a consequence of the above lemma, we have

;-

(6.4) I =S =2m) ™ J i (w)[Py(w)- P(w)]E(w) do.

0

Here ﬁ(w) is both the stabilizing solution of (AREw) and the solution of the
Lyapunov equation (6.3) that includes the optimal feedback law K K (w) and the corre-
sponding closed-loop system matrix I‘(w) PN (w)isthesolution of a Lyapunov equation
that includes the truncation Kw(w) of the optimal feedback law and the corresponding

closed-loop system matrix Fh(w)
The matrix solution P( ) of (6.3), associated with the optimal feedback Iaw is

unique and its elements p;(w) continuously depend on the elements ofT(w ) and K (w).
Therefore the uniform convergence of KN(m) and I’\,(m ) to K( ) and I(m) implies
that P,\(w) uniformly converges to P(w) Using (6.4) we conclude that J, converges
to Jmm 0

The stabilizability condition we referred to in this paper
(6.5) [I-A,z,— Az, B,z;+B,z,] fullrankin
is weaker than the condition
(6.6) [I—Ayz;—Ayz, Bz +B,z] fullrankin P,,

which is necessary and sufficient [1] for the existence of a stabilizing state feedback
law that preserves the quarter plane causality of the closed-loop system.

Clearly, in the case where (6.5) holds and (6.6) does not, losing quarter plane
causality is the price we pay for achieving the closed-loop stabilization.

Although condition (6.5) is in general weaker than (6.6), if we assume B, =B,=0
both conditions collapse. Actually, in this case neither causal nor noncausal feedback
can stabilize the system, unless it is originally stable.

Appendix.
Proof of Theorem 3. Let P =[p;] belong to C"*" and introduce the map f:C x
C”XJT C’TXH g]ven by

flz, P)=P-Q—(A]+AJz7)YP(A, + A,z)
(A1) +(A/+A]z7)P(B,+ B,z)[R+(B+ BIz"")P(B, + B,z)]'
X (B + B,z "YP(A,+ A,z).

We therefore have that the problem of obtaining the solutions of (2.12) reduces
to that of solving, with respect to the matrix variable P, the implicit equation

(A2) flz, P)=0.
The proof will break up into two parts. The first is devoted to a local solution of
the implicit equation on the neighbourhood of an arbitrary point of the unit circle. It

will be shown that, given e’”, there exists a unique analytic matrix P.,(-), defined on
an open disk centered in e’”, that solves (A2) and satisfies the condition

Py(e™)=P(w).
The second part is concerned with the existence of a global solution of (A2). An

analytic continuation P(z) of the local solution will be provided on an open neighbour-
hood of v, in such a way that the condition

P(e™)=P(w)
holds for any w €[0, 27].
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As far as the local solution of (A2) is concerned, the definition of f’(m) implies
f(e*, P(@)) =0, so that, to apply the Implicit Function Theorem, we must check that
the Jacobian matrix of / with respect to the variables p; is nonsingular at fa Is(aj)).
Assume that the entries of P and the components of f(z, P) have been lexicographically
ordered, so that equation (A2) takes the following form;

fll(Z:plizp!'_’sl.'7p]n:p215‘l‘:pZHa”-spnn}:Oa
‘T‘Z: E) 2500 T ns s s Pans T T s Pan :O:
(A3) 20z, pris Prz Pins P2 P2 Prn)
ﬁm(zspilaplla'"sp]n:pZ]:"'spzna'"apmz):O-
Letting

I(z, P)=(A,+Asz) = (B,+ Boz)[R+(B] + B3z ")P(B, + Byz)]”’
x(By + B3z )P(A+A;2),

some elementary algebraic manipulations on (Al) yield the (i, j)th indexed columns
of the Jacobian matrix

3 P (3P
(A4) l:——rT(z“, P’)(f) ['(z, P).
ap;  9py ap;

In particular, if (A4) is evaluated at (e’®, P(&)), we obtain

d ~, -

(A5) 7f= efer,-T—F*(ca)eieij(a'))

ap;
where e, denotes the ith column of the n x n identity matrix and [(w) has been defined
in (4.12).

Thus, for i, j, r, s=1, 2,..., n, the entries of the Jacobian matrix are
afls = 7 - =
- 5(.*_«}(:’,;‘)*1 i‘.r(w)l j_s(w)

api
and its (r, s)th row can be expressed as
eT®el —(e]T*(@)®(e]T7(3)) = (e @) I ~T*(@) @I (@)]
This shows that the Jacobian matrix of f with respect to P is given by
(A6) I-1*(@)®T" (@)
and is a nonsingular matrix because of the asymptotic stability of {(@).

Before beginning with the “global part” of the proof, we need to investigate some
properties of the local solution. Since the closed-loop matrix

A

[(@)=T(e", Ps(e’))

is asymptotically stable, by a continuity argument P.(e’”) is a stabilizing solution of
(AREw) for any e’ in a suitable open arc a(@) of v, centered in e’

Thus both P,(e’™) and ﬁ(m) provide a stabilizing solution of (AREw) in a(o)
and, by the uniqueness of the Hermitian stabilizing solution of (AREw), it suffices to

prove that P,(e’), ¢’ in a(®), is an Hermitian matrix for concluding that

(A7) Plw)=P.(e™) Ye'eala)
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Actually, taking _the Conjrugate transpose of the identity f(e’, P;(e’)) =0, e’ in
a(@), we obtain f(e’, Pi(e™))=0, ¢’ € a(@). On the other hand, we have
Pi(e") = P*(3) = P(@) = Py ()
so that the uniqueness of the solution of (A2) in a neighbourhood of (¢/?, P()) implies
Py(e)=Pi(e™),  ¢*ca(@)nD(a)
where D(@) is a suitable open disk centered at e’®.

This last result has really been our main goal. We use it to associate with each
point e’ ¢y, an open disk D(®), centered in e™ and an analytic function P,(z),
defined in D(@) and satisfying P,(e’”) = P(w) on v,n D(®).

Extracting from the infinite open covering { D(w)},, €[0,27] a finite subcovering

of v, and piecing together all functions that correspond to it, we obtain a function
P(z) that is analytical in an open annulus including y, and that fulfills the condition

(A8) P(e’)=P(w) Voel0,27] a0

THEOREM 5. Let A( ):[0,27] = C""" be a continuous function and assume that
A(w) is asymptotically stable for any w in [0,27]. Then there exist M >0 and A € (0, 1)
such that

A (w)]|, = MA".

Proof. By the continuity assumption, there exists a real > 0 such that fi(m W1+68)
is asymptotically stable for every w.
Then the Lyapunov equation

Plw)=1+A%w)P(w)A(w)(1+6)>

admits a unique positive-definite solution

=00
A

Plw)=Y A*(w)'A(w) (1+58)%,

=0

which is continuous in [0, 27]. A
Let M~ denote the maximum spectral radius of P(w) in[0,27]and A =(1+68)"".
Then, for every v in C” we have

22 A7 A(w) 02,

p*Mz 0 Plw)v=Y [(1+8)'A(w)w
=0

which proves our assertion. a
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