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ABSTRACT The parity checks of a 2D system are shown to constitute a free module over the ring of
polynomials in two variables, whose generators are easily computed from a suitable MFD of the system.
Given a specific parity check, an efficient realization technique is presented, that provides a state space
model of the corresponding residual generator. Finally, some connections with 2D observers theory

are discussed.

1. Introduction

Over the past decade several contributions to the problem of
failure detection have been presented in the literature [1-4].

All failure detection methods considered so far use re-
dundancy among the measured variables of the plant. Re-
dundancy relations fall in two classes: direct redundancy
exploits the relationships among instantaneous outputs of
sensors, while temporal redundancy takes advantage of the
relationships among the histories of sensor outputs and ac-
tuator inputs. In both cases, the signal generated by the
detection process - the residual - depends on the difference
between the measured and expected values of the plant out-
put. In the absence of a failure, a zero residual should testify
the normal behaviour of the plant.

This paper deals with the solution of the failure detection
problem for 2D systems. 2D systems constitute a relatively
recent area of research, and the results concerning the 2D
failure detection problem are quite scarce in the literature
[9]. The input and output signals that are processed in 2D
failure detection are defined on the discrete plane Z x Z or,
more frequently, on a suitable half-plane of Z x Z. Moreover,
since quarter plane causality is assumed, the output value at
(#,7) only depends on the input values and initial conditions
of the system on the set {(h,k) : h < i,k < j}.

Failure detection based on direct redundancy only keeps
into account the outputs of the sensors at the single point
(1,7). In this case the causal structure of the system is not
relevant and the detection problem can be tackled along the
same lines as in the 1D case.

Viceversa, when considering temporal redundancy, the
difference between the causality structures calls for a spe-
cific treatment of the 2D case. As one can expect, because
of the shift invariance property the residual generation pro-
cess is naturally represented by doubly indexed MA models.
Consequently 2D residual generators can be implemented by
2D systems that realize MA models .

The paper is organized as follows. In section 2 we ana-
lyze the structure of the redundancy relations that underlie
2D parity cheks. This leads to a representation of parity
checks as elements of a free module over the ring of polyno-

mials in two variables, whose structure is completely speci-
fied by a finite set of generators computed from the matrix
fraction description (MFD) of the system. In section 3 we
assume that a specific parity check has been given and we
present an efficient state space realization procedure of the
corresponding residual generator. In the last section some
connections between 2D observers theory and the residual
generator structure are investigated.

2. 2D parity relations

Consider a 2D system (plant), represented by the state model
(6]
x(h+1,k+ 1) =Ax(h, k+ 1) + Agx(h + 1,k)
+Bju(h,k+1)+ Byu(h+ 1,k) (1)
y(h,k) =Cx(h,k) + Du(h, k)

where x is an n-dimensional local state vector, u is an m-
dimensional vector of known inputs, y is a p-dimensional
vector of measured outputs and A;, Aq, By, Bs,C, D are ma-
trices of appropriate dimensions. Assume further that C' is
full rank, which rules out direct redundancy among the in-
stantaneous values of the sensors.

The transfer matriz of (1) is given by

W(zl,zz) = C(I — A1z — Az.’.'z)_l(Blz]_ + Bzzz) + D (2)

A parity relation is a linear combination of a finite window of
present and lagged values of u and y, that is identically zero
for any location of the data window in the discrete plane
if no failures occur in (1). Therefore the parity criterion is
invariant with respect to two-dimensional shifts and hence
is associated with a 2D moving average model.

Let us first assume that the plant undergoes a free state
evolution starting from an initial global state

Yo=Y x(i,—i)iz"
i€Z
Denote by

Y(z,22) = Y y(i,5)2iz = C(I- Arzn— Arz) ™ X0 (3)
i+i>0
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the formal power series associated with the output values
in the half plane {(i,7) : { + 5 > 0} and, for any (i, 7) and
v > 0, introduce the (142 + ... + (v + 1))p-dimensional
vector

volind) = [y - v5) ¥ G-v+1,5-1) ...

T
Y GG —v). ¥T 6 - 15) ¥, - 1) ¥76,5)]
(4)
Clearly y,(3, j) represents the output data contained in
a v-th order triangular window with vertices (1,7), (¥ — v, 7)

and (4,7 — v).
Let
" (21,22) = [q1(21,22)  @al21,22) . gp(21,22)]

be a polynomial row vector and let Qy + Q; ...+ Q, be its
representation as sum of homogeneous terms. Assume now
that

o (21, 23) = q¥ (21, 22)C (I — Ayzy — Agzg)™t (5)

be a polynomial matrix of degree v — 1, so that the degree of
g7 (21, #2)C and, by the rank assumption on C, the degree s
of ¢T(z1, 22) cannot exceed v.

Since the degree of the nonzero homogeneous terms of
g7 (21, 22)Y (21, 22) is less than or equal to v — 1, we have

QsYysir +... Y146+ QY =0

for any k > 0. Denoting by q‘-T_ii the coefficients of 212 in
Qitj, the (1+2+ ...+ (v + 1))p-dimensional real vector

T
v=[o..0lahaly;...ah|...ahaf | o] (8

satisfies
VTYV(")V +k- ‘) =0, (7)

i.e. is orthogonal to the free output vector y, (i, v+ k—1) for
any k > 0 and for any 1. Clearly vT provides a parity check
on the free outputs space, in the sense that, if the product
(7) is different from 0, a failure has occurred in the plant.

The converse is also true; that is, given a (1+2+...+
(v + 1))p-dimensional vector v, orthogonal to the free out-
put vectors y, (f,v + k — 1) for any k > 0 and any 1, its en-
tries can be viewed as the coefficients of a polynomial vector
g% (21, 22) € Rlzy, 2)P and ¢T (21, 22)C(I — A12; — Azzg)~?
is a polynomial matrix.

So doing, we have obtained a complete characterization
of the parity checks which can be performed on the output
data contained in a v-th order triangular window. As v
varies, the above polynomial vectors ¢7 (21, 22) constitute a
free module of R[z1, ;)P which can be characterized start-
ing from a L.e.MFD M~!(21,29)N(21,22) of C(I — A1z —
Agz3)™!. The parity checks consist of the polynomial row
vectors 7 (21, 22) which make

q7 (21, 22) M~ (21, 22) N (21, 22)

to be polynomial. Since M~1N is coprime, by Lemma 5.3
in [7] this is equivalent to the requirement that

QT(Zl, 2)M (21, 22)

is polynomial, i.e. that ¢T (21, z2) belongs to the free module
S generated by the rows of M(z1, z3).

The parity checks previously introduced apply also when
the input of the plant is different from zero. This of course
requires that the free output evolution should have been
previously reconstructed from the actual input and output
functions. In this case the formal power series that repre-
sents the free output is given by

Freslpgn] @

with U(2q, 22) = EH-J'EU u(l‘,j)z{zg.

If ¢T (21, 22) is any row polynomial vector in §, the coef-
ficients (i, 5) of the series resulting from the discrete con-
volution

Y (21, 22)

T 7 1, 22
Fanst W] [y ©
are zero whenever ¢ + j > v, for some positive integer v.
So, the above convolution represents a residual generation
process, in the sense that r(f,5) # 0 for ¢ + 7 > v indicates
that some failure occurred in the system.

3. Realization of 2D residual generators

The aim of this section is to implement the residual genera-
tion process, introduced at the end of section 2, by means of
a 2D dynamical system driven by the inputs and the outputs
of the plant.

Let g7 (21, 23) be a parity check for (2), so that the matrix
(5) and, consequently, g7 (z1,22)W (21, 2;) are polynomial.
The application of the parity check to the formal power series
(8) representing the free output evolution reduces to apply
the row vector

97 (21, 22) = q7 (21, 22) [I ~W (=1, 22)] (10)

to the output and input data vector [ggl’?” So the
1,22
residual r(h, k) can be viewed as the output c;f a 2D system

Iy = (F1,F2,G1,Gy, H,J):
X'(h+1,k+1) =Fix'(h,k + 1) + Fx'(h + 1, k)

e [wein |+ [T 8]

r(h, k) =Hx'(h, k) + J mg ’,3]

(11)
driven by y(h,k) and u(h, k) and realizing the polynomial
vector g7 (21, 22).

Actually the residual r(h, k) generated by I, is the sum
of a forced term, that provides the expected parity check
on the pair y(h, k) and u(h, k), and a second term, that de-
pends on the initial conditions of £,, which are in general
unknown. However, since g7 (21, 2;) is a polynomial vector,
we can assume that the matrices Fy and Fy satisfy the con-
dition det(f — Fiz; — Fzzz) = 1. In this way I, is a finite
memory dynamical system [8] and the (undesired) second



term vanishes in a finite number of steps.

Assuming that the parity check ¢7 (21, 23) is applied to

output data belonging to the half plane {(¢,7) : ¢ + 7 > 0},
the degree hypothesis on p7(z),z;) implies that data pro-
cessing should be extended at least up to the terms appear-
ing on the v-th diagonal {(f,7) : i + j = v}. Hence the
parity check is reliable from the v-th diagonal onwards. We
aim to prove that X, can be realized in such a way that the
transient of r(h, k) due to nonzero initial conditions on I,
vanishes on the v-th diagonal. This shows that the existence
of a nonzero initial global state X§ for £, does not impair
the performance of the residual generator.
Consider preliminarly a polynomial transfer matrix L(21, 22)
of degree v > 0. Whatever realization we refer to, a pulse in
(0,0) gives rise to a nonzero output and hence to nonzero lo-
cal states on the v-th diagonal. So, bearing in mind that the
state updating equation introduces a single step delay be-
tween inputs and states, there exist values of x'(0,0) leading
to nonzero local states on the (v — 1)th diagonal. The fol-
lowing lemma states that there exist realizations of L(z1, z2)
whose free state evolution is zero on the diagonals with in-
dices greater than v — 1. So, by the above argument, these
realizations exhibit a minimum lenght dynamical memory.

LEMMA [9] The polynomial transfer matriz
L(Zl,zz} i~ Z L,’_{Ziz’g, L.;J' = Rpxm’ v>0
i+j<y
can be realized by a 2D system B, = (Fy, F3,G1,Gq, H,J)
whose free state evolution

X'(21,22) = E x'(h,k)2tzg = (I - Fiz1 — Foz) ™' X
h+E20

satisfies the condition x'(h,k) = 0 when h+ k > v.

We are now in a position to prove the main result of this
section.

THEOREM 1 Let ¢¥(21,23) € § and assume that (5) s
a polynomial row vector with degree v — 1. Then the par-
ity check associated with q7 (21, 22) ean be implemented by a
residual generator &, whose unforced motion x'(h,k) van-
ishes for h+k > v.

PROOF The row vector g7 (z;, z;) given in (10) is the trans-
fer matrix of the residual generator. By the lemma above,
there exists a realization X, of g7 (21, z2) having a free state

evolution which satisfies x'(h, k) = 0 for h+k > deg g7 (21, 22).

So we are reduced to prove that degg” (21, ) < ».

By (10), the degree of the polynomial matrix g7 (21, 22)
is the maximum between deg¢% (21, 2;) and deg ¢ (21, 23)-
[C{I — Ay21 — A223)"Y(Byz1 + Baz) + D).
Now the assumption deg pT (z1,22) = v — 1 implies

deg qT(zl,zg)C(I — Az — Azzz)‘l{Blzl + Byzg) < v
Furthermore, by the full rank assumption on C, we have
¢ (21, 22) = pT (21, 22) (I — A1z — Azz)CT (CCT) ™!

which gives deg ¢¥(z1,22) < v. Therefore degg” (z1,22) is
less than or equal to v. v
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As a consequence of the theorem above, the dynamical
system X, constitutes the best residual generator we can
expect when implementing the parity check associated with
g7 (21,22). In fact the free evolution of ¥, vanishes on the
diagonals C; = {(h,k) : h+k = ¢}, foralli > v. On
the other hand we process output and input values of the
plant I that are located on the diagonals C; for all { > 0.
Since the parity check utilizes a data set that belongs to
v + 1 consecutive diagonals, the output values of ; on €,
constitute the first set of residuals which are significant for
the parity check.

4. Connections with 2D observers theory

A residual generator can be regarded as a dynamic device
that, when connected to the plant inputs and outputs, gen-
erates a signal that goes to zero in a finite number of steps
if the plant operation is correct. Within this context, it is
apparent that the philosophy underlying the realization of
2D residual generators should be closely connected to 2D
observers theory, as presented in [5].

When 2D dead-beat observers are considered, the con-
nection is provided by the innovation signal, i.e. the dif-
ference between the plant output and the estimated output
CX(z1,2) + DU(z1,21), which constitutes itself a parity
check. To see this, note that the existence of a dead-beat
observer is equiva]ent to the possibility of solving the Bézout
equation

Q(zl,22)(l = A121 = Azzz) -+ P(Z]_,Zg)c = In (12)

over the polynomial ring R[z;,2;]. When a polynomial so-
lution (P, Q) is available, we construct a 2D transfer matrix

W(Zl, 2‘2) = [P Q(B1z1 + 32Z2) - PD] (13)

and any finite memory realization ¥ = (Ay, Ay, By, By, C, D)
of W is a dead-beat observer of . So, assuming X as the
initial global state of )3 the innovation

Y(zl,zz) —CX(Zl,Zz] = DU(Z]_,Z;;)

ba) g
=CQXo- C(I— A1z — Azzz)_ Xo

goes to zero in a finite number of steps. Clearly the 2D sys-
tem By = (Al,Az,Bl,Bg,CC ch- [I —D]) obtained by
modifying the readout equation of the observer, is a residual
generator.

A deeper insight into the problem of connecting 2D ob-
servers and residual generators via Bézout equation can be
gained if a modified transfer matrix is introduced before pro-
ceeding to a finite memory realization. In fact, consider the
transfer matrix between the plant and the innovation signals

CW-[I -D]

(15)
‘:[CP 1T CQ(Blzl + Bgzz) - CPD + D]

Clearly, to guarantee that (15) is polynomial we need
to obtain a solution (P, Q) of (12), such that both CP and
CQ are polynomial matrices. This shows that the polyno-
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mial solutions of (12), which give the transfer matrices of
dead beat observers, provide only a special class of residual
generators. In fact, using suitable solutions of (12), resid-
ual generators can be realized even in cases when the Bézout
equation has no solutions on the ring of stable rational func-
tions, i.e. when T does not admit asymptotic observers. In
the remaining part of this section we shall prove that

i) solutions (P, Q) of (12) always exist such that CP and
CQ are polynomial

i) a suitable solution of this kind provides the parity checks
generator M introduced in Sec.2.

In the following, A will be a shorthand notation for
Aj1z; + Agze and, modulo a coordinate change in the local
state space, C' will be assumed as [, 0]. By partitioning
@, P and A conformably, eqn.(12) becomes

(G Qe[ e 4[] o=t 0

and consequently CQ and CP will be polynomial if Q11, Q12
and P; are. It is clear from the structure of (16) that the
triples (QzI,sz,Pg) and (Qu,Qu,Pl) can be determined
independently each other and that the equations of the first
triple are always solvable on the field of rational functions.

Obtaining the second triple requires to solve the system

Qu(l - An) - QuAn+P=1I (17)
~Qufiz +Qu2(] — A2) =0 (18)

over the ring R[zy, z2]. The results are summarized in the
following theorem

THEOREM 2 Let Q1Q1s be a left coprime MFD of A12(I -
A32)7Y, such that @11(0,0) = I and let Py := I — Qyy(I —
A11) — Qu24321. Then

i) Qi1,Q12, Py solve (17) and (18)

i) the rows of the maitriz M := I~ Py generate the Rz, z,]-
module of parity checks.

PROOF First of all, notice that every l.c. MFD Q1@ of
A12(I—Azz) 7! satisfies det Q11 (21, 22)| det(I—A11) and hence
det QH(0,0) # 0. Premultiplying Q13 (21, zz) and ng(zl, 2’2)
by @11(0,0) ! gives a MFD that fulfills the hypothesis of the
theorem. Moreover @13, @12 and Py solve (17) and (18).
To prove ii), define N := [Q11 Qi2]. Then M™IN
is a left coprime MFD of C(I — A)~!. In fact M(0,0) =

I - P1(0,0) = I, so that M(z1,22) is invertible , and

MC-N(I - 4)

= [I- P - Qu(l - Au) — Quzén
QuAtz — Qua(I - Az)] = 0

Finally, any left common factor of M and N is also a left
commeon factor of Q11 and @12, which implies that M and
N are left coprime. 7y
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