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ABSTRACT The paper presents some applications of 2D system theory to
the problem of modeling siver pollution phenomena. The dynamical evolution
of the biological ozigen demand (BOD) and dissolved ozigen (DO) in an one-
dimensional river is represented under various physical assumptions.

1 Introduction

The unquestioned success of the state space methods in 1D theory mainly re-
lies on the solution of control problems based on explicit synthesis algorithms
for (static or dynamic) compensators. Along the same lines, one of the main
achievements of 2D theory is the formulation of feedback regulation procedures
based on the introduction of state space models that depend on two independent
variables.

The aim of this paper is to point out how 2D state space models can be
used in representing the river pollution process. The results we present have a
preliminary character. Further research will, it is to be hoped, do much to clarify
advantages and drawbacks of different 2D models, but we may feel confident that
the outlines at least are broadly visible. Actually, once a 2D state model has
been suitably validated, many results already available in 2D literature offer
promising applications in monitoring and control of river pollution.

To keep the paper within an acceptable size, we found it impossible to give
a detailed account of unidimensional continuous time Streeter-Phelps models.
Thun we only nelected from the current masa of literature some referencen [1,2],
that seem well suited for our modelling purposes.

2D systems are outlined in section 2, but the development of 2D theory has
been carried out only to the extent necessary for the subsequent sections. Thus
most important topics had to be omitted and the reader inclined to pursue the
subject further is referred to [3-5], which contain a large bibliography up to 1989.
Section 3 is devoted to a fairly detailed analysis of the problem of representing
pollution dynamics via 2D state space models, when longitudinal dispersion can
be neglected. Finally, a number of 2D models that incorporate the diffusion
process are discusged in section 4.

2 2D state space models

The first contributions [6-8) that discussed the problem of defining dynamical
systems with input, output, and state functions depending on two independent
variables appeared nearly 15 years ago.

In principle, they were motivated by the necessity of investigating recursive
structures for processing two-dimensional data. The processing has been per-
Ifnrmed for a long time using discrete filters, given by ratios of polynomials in
two indeterminates or by algorithms assigned via difference equations. The idea
that originated research on 2D systems consisted in considering these algorithms
(i.e., transfer functions and difference equations in two indeterminates) as ex-
ternal representations of dynamical systems and hence in introducing for such
syatems the concepts of state and its updating equations. It turns out that the
models obtained in this way are suitable for providing state-space descriptions for
a large class of processes which depend on two independent variables. Typically,
they apply to two-dimensional data processing in various fields, as seismology, X-
ray image enhancement, image deblurring, digital picture processing, etc. Also,
2D systems constitute a natural framework for modelling multivariable networks,
large-scale systems obtained by interconnecting many subsystems, and, in gen-
eral, physical processes where both space and time have to be taken into account.

From the very beginning, deep and substantial differences from the theory of
dynamical systems in one variable have ben evidentiated. These are due to the

mathematical tools to be used and, above all, to the concept of space itaelf. and
to the structure of state updating equations. In this case, there is no 'cancnllcal'
algebraic construction that provides an intrinsic meaning to a ﬁ.rlite dimensml.lal
state. Thus several state models have been introduced, with different recursive
structures, although they are generated by the same underlying idea that a
recursive computation is made possible by a finite dimensional local state and
that the complete information on the past is kept by an infinite sequence of local

states global state.
ituted by the discrete plane Z x Z. Usually,

y taking the product of the orderings of
it is convenient to refer to different

The support of a 2D dynamics is const
a partial order is introduced in it, b
the coordinate axes. Sometimes, however,
coordinates in Z % Z, using a trasformation as
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where M is a unimodular matrix in Z?%2. In these cases the partial order in
7 x Z may consist of the product of the orderings of the new coordinate axes

(see fig. 2.1)
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We associate with each point (h, k) in Z x Z a local state z(h, k) € R", that
determines the output value y(h, k). The updating of the local states is given by
a linear recursive equation, that involves local states and input values at some
points that precede (h, k), according to the partial order.

Depending on the delay structure of the updating equations, there are es-
sentially two different kinds of 2D state space models. First order models (that

include also Roesser’s models) are characterized by the following state space
equations:

olh+ 1,k +1) = Ayz(h k +1) + Agz(h+1,k)
+ Byu(h,k + 1) + Bau(h + 1,k) (2.2)
y(h, k) = Cz(h, k)

and second order models (that include Attasi’s models) by equations:

(h+ 1,k + 1) = Ayz(h, k + 1) + Agz(h + 1,k) + Aoz(h, k) + Bu(h, k)

y(h, k) = Cz(h, k) (2.3)

Slight modifications are sometimes useful; a couple of models in next sections
is based on a first order state updating structure, while the input-state map is
second order:

z(h+1,k+1) = Ayz(h, k+ 1) + Azz(h + 1,k) + Bu(h, k}

y(h, k) = Cz(h, k) (24)

However (2.4) can be also viewed as a particular case of (2.3), with Ao = 0.
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Local states that appear in the above equations do not exhibit the separation
property, in the sense that, giving a single local state at (h, k) is not enough for
computing the local states that follow z(h, k) according to the partial ordering.

Actually, obtaining the whole evolution of a 2D system requires to know all
local states that belong to a suitable infinite subset (:= separation set) of Z x Z.
Some examples of separation sets for systems having equations (2.2) are shown
in fig. 2.2.
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3 2D Streeter-Phelps model

In this section we aim to introduce and discuss 2D state space models that
describe the process of natural self-purification of a river. The underlying bio-
chemical hypotheses are the same as in the classical Streeter-Phelps model: mod-
ifications only account for the discretization of both space and time variables.

We shall assume throughout that the variations of BOD and DO concentra-
tions on the river cross sections are much less important than the longitudinal
ones. So we may confine ourselves to “one-dimensional” river models. One
further hypothesis, to be relaxed later on in this section, is that hydrological
variables, and in particular the stream velocity v, are constant all over the river
stretch.

The first stage in constructing a 2D model is to divide the river into elemen-
tary reaches of length Al The time step At and the elementary reach Al are
connected by At = Alfv, so that a water element centered in [ at time ¢ will be
centered in ! + Al at time t + At.

Let G(¢t, 1) and §(¢,!) denote BOD concentration and DO deficit (w.r. to the
saturation level} that exist in an elementary river reach centered in [ at time
‘t. Computing BOD and DO values at (t + At,!+ Al) is based on a discretized
balance equation, accounting for

@ the self-purification process, due to the degradation of the originally dis-
charged pollutants by bacteria. We assume that it decreases BOD concen-
tration of the same amount a,f(¢,!) At it increases the DO deficit

e the reaeration process, taking place ai the water/atmosphere interface.
The simplest hypothesis is that DO deficit is reduced by an amount given
by a8 (t,l) At

e BOD sources (effluents, local runoff, etc.) ing(:,-} and possibly reoxigena-
tion plants ing(-, -}

3.1 Models structure

Since longitudinal diffusion and dispersion are not taken into account, the values
of the variables at the point (hAt, KAl) of the discrete plane {(hAt, kAl) | (h,k) €
Z x Z} only affect the values at {{(h+{)At,(E+{)Al) | i€ Z.}, ie. along the
diagonal line passing through (bAt, kAl).

The resulting balance equations are easily obtained and have the following
atructure

B((h+ 1)At, (k+ 1)Al = [1 — a,At] {B(hAL, kAl) + Ming(hAt, KAL)} (3.1)

5((h + 1)At, (k + 1)Al) = a1 B(hAE, kAL At

+ [1 — agAt] {6(hAL, KAL) — Ning(hAt, kAL)) 23]
Letting
o _ [Blrat, kAN ] _ [ualh, k)] _ [ing(hAt, kAt
(k)= J(hAt,kAt}]’ wl By e [u;(h,kg “[;ngt(hm,km”

equations (3.2) are rewritten as a second order 2D model

xgb+1,k+1)=[1;‘;f‘ l_ngt]:(h,k}
(1 - @AM 0 3.3
+[ : ) _(l_azm)N]u(h,k) (3-3)

= Aoz(h, k) + Bou(h, k)

REMARK The above 2D model can be thought of as the juxtaposition of infinitely
many copies of the same 1D system, each copy being associated with a different
diagonal of the discrete plane. The elementary volume of water that at time
0 is in position kAl is characterized by a state £(0) := z(0, k) At time 1At its

position along the river is (k+1) Al and the corresponding state and input values
are written as £(f) := «(i, k + i) and n(5) := u(i, k+1).

So BOD concentration and DO deficit, as seen by an observer that moves
along with the elementary volume of water, are modeled by a 1D system of the
following form

£l +1) = Aok (s) + Bon(s) (3.4)
When using first order models, it is necessary to increase the dimension of
the state space. This is easily seen, since the BOD and DO impulse responses
exhibit a diagonal support, while the impulse response support of a 2D aystem
of dimension one is either the whole positive orthant or one of the coordinate
axes. Therefore two components are already needed in the local state vector for
representing the dynamical behaviour of one single variable.
Consider first the BOD evolution, and let

B(hAL, kAl)
e [ﬁ(hé!,{k +1)Al) {38)

be the local state vector at (h,k). Using (3.1), one gets immediately

0 ”] zp(h K +1)

zalh+ 1,k+1) = [1—a1At s

01 0 {3.6)
+ [n u] za(h+1,k) + [(1 ~a.At)M_] ug(h, k)
= Aipzalh k+ 1) + Azgzp(h + 1, k) + Bgaug(h, k)
where a second order delay appears in the input/state map.
Next, assuming
_ s(hart, kAl) .
zo(h k) = + [5(}.m, (k+ 1)Al) (3.7)

we obtain

fo 1
:ﬁ(h+1,k+1)=[1_gnm g]z,(h,k+1)+1o O]za(h-l-l,k)

¥ [aﬁ)t g] Tolfket 1]+ [—NUEMN)] i

= Asszs(h b+ 1) + Agszs(h + 1, k) + Apszp(h b+ 1) + Bﬁ"ﬂ(h:k(]
3.8

Tying together (3.7) and (3.8) we end up with the following medel
A

za(h+ Lk +1)] _ [Aue . 0 | [zp(h k+1)
[zg(h+l,k+1):| Aps A]_J [z,;(h,k+l) (3.9)
Ajy B !
+ [Aglg 0 ] [Ip(’l-‘-l,k,] + [B‘g (1] ] [u,(h,k}
0 Ans T (h + 1‘ k} 1] BJ ug (h, k)

Both matrices 4y and A; are nilpotent, with nilpotency index 2. Thue
Al A3 = 0if |§ — 5] > 1, which in turn implies that the evolution of sys-
tem (3.9) takes place along “discretized diagonal lines”, as shown in fig.3.1.
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fig.3.1

There are other methods by which one can proceed to build up a 2D state
space model. It would be tedious and unecessary to discuss here all of them;
we confine ourselves to illustrate the structure of a first order model, with local
states of dimension 2, which illustrates the advantages one gets if the coordinates
(h, k) of the points in the discrete plane are not directly identified with time and
space values of the physical model. This approach will prove to be fruitful in the
next section, where diffusion will be taken into account.

We assume that the pair (hAt, kAl) is associated with the point (a,b) € ZxZ
that satisfies

a=h-k, b=k (3.10)

So, the points of the separation set Cj, := {(a,b) | a + b = R} represent locations
kAl along the river stretch at the same time instant hAt and the points of the
set {(a,b) | b = k} = {(a,k)} represent time instants hAt = (a — k)At at the

same location kAl
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B(hAt, kAl 3
5{:;.»_“, kAt” = z(h - k, k) = z(a, b)
ing(hAt, kAl B
[inﬂhm,kmg = u(h — k, k) = u(a,b)

equations (3.1) and (3.2) give

z(a,b+1)=[1;‘2f‘ 1-2,‘3:]"“”’)’”['—([11“—0;?;1% u(a,b) (3.11)

The characteristic lines of the system are the vertical axes a = const.
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3.2 Initial conditions

In the continuous Streeter-Phelpa model initial conditions (i.e. the values of BOD
concentration and DO deficit at time ¢ = 0 for all ¢ > 0) as well as the boundary
conditions (i.e. the values of BOD concentration and DO deficit at [ =0 for all
¢ > 0) can be independently assigned. A different possibility consists in assigning
only the boundary conditions at I = 0 for all £ > ¢y (to € R or tp = —o0). In
this case the solution can be computed in the region {(t,!) | 1 > 0,t > to + I/v}

When the discrete 2D model (3.3) is considered, local states can be arbitrarily
assigned on the boundary of the positive orthant. There are also many other
possibilities: actually we are allowed to assigning independently conditions on
all the diagonal lines of the plane (exactly one local state on each dingonal). Any
one of the above sets of conditions is “reachable”, since it can be thought of as
produced by the application of suitable space/time distributions of BOD and
DO sources.

Some caveats are in order when assigning conditions for model (3.9). First of
all, the components of the local state specify the values of BOD concentration and
DO deficit at the same time instant in two consecutive spatial locations. Thus,
when local states are assigned as initial conditions on some line {(h,k) | h € Z}
or along the boundary of the positive orthant, restrictions should be placed on
the values of the states, so that the second and the fourth component of z(h, k)
are equal to the first and the third component of z(h,k + 1) respectively. So,
when initializing the 2D system (3.9), the physical meaning of local states allows
to consider only reachable arrays of admissible conditions.

One more aspect of the dynamical structure of the system, however, must be
considered if the assignment of the initial states is to be meaninful. Namely, the
state updating operation must not modify the original values of the given states
on the boundary. If some boundary points are in the future of some others, it
is patently inconsistent to compute the free state evolution by superposing local
state values, as determined by the rule z(h, k) = A1"u* 432(0,0). In fact, this
would possibly modify boundary values themselves. In this connection we shall
discues here the problem of computing the formal power series associated with
the doubly indexed sequence of states in two cases, seemingly the most significant
ones.

Suppose first that local states have been assigned on the boundary {(h,0) |k €
Z1}U{(0.k) | k € Z4} of the first orthant and input values on {(hk) | h >
0,k > 0,h + k > 0}. Due to the recursive structure of (3.9), the computation
of z(h,k), h >0, k > 0, only involves the initial local states {z(h,0), 0 < h <
h}U {2{0,k), 0 < k < k} and the input values {ulh,k) ,0<h<h 0<k<
E, h+ k > 0} as shown in fig. 3.3

Consider the formal power series

X(z1,22) 1= E z(h, k)zP 2%
hk>0

(3.12)

associated to the doubly indexed array of local states {z(h, k) }hk>0 and let
Xe(21,22) be the corresponding free evolution induced by the assignment of

local states on the boundary of the positive orthant. X¢(21,22) can be computed
agsording to

Xelz1,22) = Y z(h, k)zhat
hE>0

= 3 [Ayz(h— 1,k) + Agz(h, k — 1)] 2122
h,k>0

(3.13)

= (I — Avzy — Azz3) 7! [z.Al z z(i,0)2} + 224, E z(0,4)2

i>0 >0
On the other hand, forced evolution is easily obtained as

Xy(z1,22) = (I — Az — Ag!z}_lﬂz1z<gu(21,22) (3.14)

where U(zy, z3) := 35 x50 ulh, k)z} 2% is the formal power series associated with

the input sequence.
z(h,0) h

(B

fig.3.3

The second case we investigate constitutes a discrete analogue of assigning
BOD and DO values at some point of the river (e.g. at I = 0) for all ¢ in R. This
corresponds to specifying in model (3.9) local states on the line {(,0) | h € Z}
and output values on the half plane {(h, k) | k > 0}, and in computing z(h, k)
on the half plane {(h,k) | k > 0}. An obvious role of the nilpotency of 4; and
Az is to gnarantee that a single local state z(h, k) does not influence local states
on the diagonal lines that do not intersect the set {(h, k), (h — 1,k), (h+ 1, %)}.
The following equations reveal the importance of this property as determining
the free state evolution of the system

z(h,1) = Ayz(h — 1,1) + Azz(h,0)
= AjAzz(h — 1,0) + Ayz(h,0)
z(h,2) = AiAaz(h — 1,1) + Agz(h, 1)
= AAzAy Agz(h - 2,0) + Az Ay Agz(h — 1,0)

(3.15)
.T.Ullk) =AjAy... A1 Az :1:“! —k, U) + AzA Az... Ay :c('l —k+ 1,0)
2k terms 2k~1 terms
= AFw* A Agz(h — k,0) + A* P A Agz(h — k + 1,0)
As a consequence, when using the formal power series notation, we have
Xelzi,22) = E z(h,k)zi'z;
k>i
heZ
=3 [Aduwr " Agztef + At Aget k] Ap Y z(h, 0)2}
k>1 helZ

=13 (AW dgziza + A W Agza] Aazizl S (h,0)2}
vZ0 held .
(3.16)
Making the assumption that the BOD and DO levels on the 0-th river stretch
are independent of time, that is z(h,0) = 2, Yh € Z, it is straightforward to
obtain from (3.16) a steady state solution , given by

Xg(z,,z;) = E IA|v+ lm”ﬁg-hz: + Ag"Lu"Agnggzz';s;’ (3.17)
v>i
nel

The state vector in the k-th river stretch is the coefficient of any any monomial
332k in (3.17), iee. 2(h, k) = A4 Twk-14, + AFut-14,) 4,2

The assignment of initial states and the formal power series description of
local states dynamics in model (3.11) are similar to those for the model (3.9),
but simpler because no constraints are needed among initial states, We leave the
details to the reader.

To conclude this section we remark that an alternative to introducing a reach-
able set of boundary conditions always exists, and consists in considering input
sequences that force boundary conditions on a 2D system originally at rest (i.e.
on a river that is perfectly clean and aereated). In these cases, substituting
forced dynamics for boundary conditions is a matter of taste and/or computa-
tional convenience,

3.3 Space-dependent dynamics

Our original assumption in this section was that all river parameters do not
depend on . It is often the case, however, that certain parameters of the one-
dimensional model are strongly influenced by the geometrical and physical at-
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tributes of the underlying three-dimensional real model. Relaxing that assump-
tion can certainly enhance our capability of modelling river phenomena. So in
the remaining part of this section we suppose that the river velocity v as well as
the coefficients a; and ay possibly depend on 1.

It is not difficult to figure out situations where a dependence on { may arine.
Apart from the obvious ones, that refer to velocity variations, the dependence
of a; on | may be ascribed to an inhomogeneous bacterial oxidation (e.g. due
to thermal variations or to same bacterial species that locally prevail on some
others), while the dependence of az may be connected with turbulences, falls
etc., that induce some variations on the reaeration process.

While the time quantization interval At is kept constant, the length Al of
the elementary reaches will vary so as to satisfy in all cases the condition At =
Alju(l). More precisely, the river stretch will be divided into elementary reaches
Aly = [ln, Iks1], with Al, = u(lg) At, so that an elementary volume of water in
position Iy at time ¢ will be in position 41 at time ¢t + At. After introducing
two families of Ix-dependent coefficients ay(lx) and az(lx), we are in a position
to rewrite model (3.3) as follows

e R vl W EL O
M1 - ay(k)At] ] [up{h, k) (3.18)
* 0 N1 —ag(k)AL] | | us(h, k)
= Ao(k)z(h, k) + bo(k)u(h, k)
where the local state vector is defined by
£ ) = [?E:gi:ﬂ (3.19)
The 1D model (3.4) we associated with (3.1) and (3.2) becomes now !
" 1 - a(i)At 0 ;
flkt)= [ ul{i):‘gt e a;(i]At] £6)
M(1 — ay(i)At]M 0 ’ (3.20)
+[ I B —N[l—a,(.')m]] ni)
= Ao(§)£() + Boli)nli)
In particular, the free evolution of £(-) satisfies
E(i + 1) = Ap(i)Ap(i — 1)... Ao(1) Ap(0)¢(0) = (1) £(0) (3.21)
with
I_[|l—u1(v)At| 0
i) =1 i B2 t-1 i
S 11 - ea(mada(@ae [T[1-am)ag 11 - ax(v)ad]
=0 pu=Ff+1 v=0 p=0

The asymptotic behaviour of (3.21) can be deduced from the abrolute conver-
gence criterion for infinite products [9]. Actually, because of the inequalities
0<a(v)At <1, 0<a-2(r)At <1, anecessary and sufficient condition for
having lim;_ oo [IL_ol1 — a1 (¥)At] = 0 and lim; . 4o [[}, o1 — a2(r)At] = 0
is that both the following series

+oo too
Z‘”(”) and Lag{v) (3.22)
v=0 v=0

diverge.

We shall prove now that, when the series in (3.22) diverge, the term in position
(2,1) of the transition matrix ®(f) converges to sero as § — co. This shows that
the divergence both series in (3.22) constitute a necessary and sufficient condition
for the selfpurification of the river.

First of all, note that Ag(r) can be viewed as a diagonal block of a 3 x 3
stochastic matrix ®

1—a;(v)At 0 0
AWy = | ay(v)At  1-a(v)At 0 (3.23)

0 a(v) At 1

Therefore
(1) 2= AL} A (5 - 1) ... A1 (1) Al*H(0)
. 0 éulf) 0 0
) n]=[¢:(l‘) by of O
n 1

ZHOEEY o ) 1
is a stochastic matrix for all ¢ € Z;. Next, apply the recursive equation ¢g’{' i+
1) = az(d + 1) Atdo (i) + 95:(,‘;){1) to obtain the following identity

#5064 1) = as(i + 1) Atdar (5) + az (i) Aty (F— 1) +...+ az(1) Atd2,(0) (3.25)

a

The monotonic character of the sequence {d):l“](u)} and the inequality qS:(;:](u) <

1, Vv imply that the above sequence converges : lim, — 4 oo é;ﬁ) (v) = a1 €[0,1].

Now, taking the limit on the right side of 1 = ¢, (¥) + ¢21(v) + ¢£:)(u) as
v — +o0, and recalling that {$,,()}} converges to 0, we see that the sequence
{¢21(v)} converges to @2y := 1 - fay.

It remaina to prove that d;; = 0. Assume, by contradiction, ¢33 > 0. Then
there exista an integer vy such that ¢a1(v) > $a1/2, Vi > vy and therefore

o+i va+i
P+ 1400) > Y aa(v+ 1)Atda(v) > %m Y aa(v+1)  (3.26)
v=rg v=vg

Taking into account that 3~ az() diverges, we see that the sequence {¢§‘;' (v)}
diverges too, which is a contradiction, since @ is finite. We therefore have
#21 =0, and ®(i) — 0 as 1 — oo.

4 2D diffusion models

The 2D models considered so far do not incorporate (longitudinal) diffusion
and/or dispersion phenomena. As well known, introducing diffusion in Streeter-
Phelps equations gives rise to partial differntial equations that include the second
derivative w.r.to the space coordinate. Although 2D analogs of continuous diffu-
gion models may be obtained using a suitable discretisation procedure, we prefer
to start here directly from a discrete representation of the diffusion mechanism
and to set up a “first principles” derivation of 2D diffusion models.

4.1 Duilding an elementary model

Perhaps the simplest representation of the diffusion mechanism can be obtained
by introducing in model (3.1) additional terms that account for BOD and DO
diffusion between contiguous elementary reaches. Diffusion is therefore modeled
by assuming that the BOD concentration of the elementary reach centered in
{ at time t undergoes variations in At that are proportional to the differences

B(t, ¢ — Al) — B(t,1) and A(t,1 + Al) - A(t,1).
Correspondingly, equation (3.1) has to be modified as follows:
B((h + 1)At, (k + 1)Al) = 1 - o, At]B(hAL, kAL
+[1 — a18t)Ming(hAt, kAl) + Dp {B(hAt, (k — 1)Al) — B(hAt, kAL } At
+ Dg {B(hAL, (K + 1)Al) — B(hAt, KAL)} At i
4.1
Similarly equation (3.2) becomes
5((h+ 1)At, (k + 1)Al) = asAtg(hAt, KAL) + |1 — ez At]6(RAL, kAl

— |1~ aaAt]Nins(hArt, kAl) + Dy {6(hAL, (k — 1)Al) — 5(hAt, kAN} At

+ Dy (6(haAt, (k + 1)Al) - §(hot, kAl } At
(42)

Letting

BlhAt, (k — 1)AL) ] sl B [E(hﬁt,(k - 1)al)

aalh k) = "7 g hat, kal) §(hAt, kAl)

z(h, k) = za(h, k) @ z5(h, k)
one gets a 2D system in form (2.3):

0 0 0 0
DaAt 1-a3,4 0 0
a(h+ L+ 1) = [ 0“ i e
0 a; At DAt 1-8At
0 00 1] 0100
DsAt 0 0 O 0000
+ o 0 b o z(h,k + 1) + 000 1 z(h+1,k) (4.3)
] 0 0 DsAt 0000
0 0
M1 — a1At] 0 ug(h, k)
0 0 ug(h,k)
0 —N|[1 - azAt]
with
a, = ay + 2Dp, a3 = az + 2Dy (4.4)

4.2 BOD and DO distributions

Assume first that a unitary BOD pulse at (0, 0) constitutes the forcing input to a
river that is perfectly clean and aerated. This gives rise to a spatially symmetric
distribution of BOD, that extends at time hAt from the abacissa Al up to the
abscissa (2h — 1)Al, having hAl as a center of symmetry.

The general local state response can be described by a formal power series

-1
Xx1#) (21, 22) = (I — Aﬁ”’z. - Agng - Af,m.'ng) Bmz.zg

with
am_| 0 0 A (o 0
0 Dyt 1-aae|’ 0 DgAt]’
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A = [g é]’ B(m:[

The second component of X#!(z,, z;) provides the BOD impulse response

0
M(1 - a,At)

z12oM|1 — a1 At]

) -
2 (202) =T TG R (1 - 318t T DyAted)

eed
=M[1-a\At]eyz3 Y 2} {Dalt+ [1 - a1 At]zz + Dpastz2}"
h=0
and the values of the BOD concentration at time hAt can be found just by
considering the polynomial in R|z;] that constitutes the coefficient of z! in the

series above, i.e.
22{Dprt + [ — a1 At]2g + DpAtz3}* ' M|1 - a1 At

The power series representing the DO deficit distribution can be obtained
along the same lines. After introducing the following shorthand notations
d(z) = DsAt+ |1 - azAt)22 + Ds Atz]
b(2) = DaAt + |1 - aAt]2g + Dpdrtzd
L =[1—-a,At|Ma At
the DO deficit distribution iz given by the series expansion
21290 AL
— 21 {DsAt + [1 — 320t]29 + DsAtad}

_ zlsz
(1= 21d(23)) (1 — 21b(2a))

X (21, 22)

Xl('s)(zltzﬁ} =]

Suppose next that a time constant unitary input of BOD is applied on the
0-th reach of the river. Using the superposition principle, we represent the BOD
distribution as given by a power series in z;, with coeflicients in the ring R|[z2]]
of formal power series in 2

{#) 22\/-L % h \/— h g
X e SN = b i
3 {21, 22) 1= 2 b(z) h_z_ zy th 2 %23 (22)

Accordingly, it can be inferred that a steady state BOD distribution settles down
along the river, as represented by the series

+o0
VIn Y blz) = — (4.8)

The same reasonings show that the space/time represeutation of the DG
deficit is given by the formal power series expansion of

(#) 2L 2
X"z, 22) = 1 z
3 (21,22) (1 — zib(22))(1 — z1d(22)) hzz_:w !
Here we obtain the steady state DO distribution by expanding the rational func-
tion
Lz3
(1 = 218(22))(1 — 21d(22))

into a power series in R[[22]|.

(4.7)

4.3 Steady state distributions

The long term behaviour of the steady state distributions above are determined
by the root locations of the polynomials 1 —b(z;) and 1—d(23). Stability issues,
in particular, are connected with root locations w.r. to the unitary complex
circle. Since DgAt, DsAt, @At and @At are negligible w.r. to 1, it is easy to
check that the roots of 1—b(2;) and 1—d(z;) are external w.r to the unitary disk.
We conclude that, according to our physical intuition, stationary distributions
of BOD concentration and DO deficit converge to zero as | goes to infinity.

In order to get a more detailed information, we aim here to make a comparai-
son of BOD and DO steady state regimes with and without diffusion. Analyzing
the shapes of BOD and DO distributions along the river stretch, requires to in-
troduce first a partial fraction expansion of (4.6) and (4.7), and then to expand
each fraction into a geometric power series.

BOD distribution Rewrite (4.6) as follows

GﬂZg

X (z;) = _
& =g “ha (4.8)
with
P VL _i-aAt DAt
AT 1T DaAr LT 1S DaAt’ 2T 1= Dyat

Moreover, let

2

2
ol [t n. [
1 2 1 2
. 4.2 2144532
.| i) an 4|

If b, = 0, and therefore polluting materials do not undergo diffusion, the de-

nominator of (4.8) reduces to the first order polynomial 1 — iy 2;. Otherwise, it

factorizes as (1 — g122)(1 — B122), with py < Ay when Dy is small enough [10].
The partial fraction and the geometric series expansions of (4.8) give

). _Gop__, S
Ko Lea) % (1 — =k ! 1+2291)

poi=1—a A, =

+oo +oo
= Gpuma Y 2584 + Gpuza 3 (-1) 250}
i=0 i=0
with G, = Ga/(1-+51/p1) and Gp, = Ga/(1+ 1 /71). Therefore the BOD
concentration at the abscissa (i + 1)Al is

B (i + 1)A1) = Gpup} +Gpu(-1)'0} (4.10)
s |
and reduces to (-, (f + 1)Al) = Gapu} when BOD does not undergo diffusion
phenomena.

Some interesting conclusion can be drawn from these simple calculations.
Firat, since G, » Ggy, the BOD regime with diffusion can be viewed as rep-
resented by a decreasing geometric sequence with ratio [, perturbed by an
oscillatory term, whose amplitude, infinitesimal as § goes to infinity, is everywere
negligibly small. Second, when the model does not incorporate diffusion, the
geometric sequence converges to sero more rapidly { since g5y < Bi) and the
oscillatory perturbation disappears.

DO distribution The comparaison of the DO regimes with and without diffu-
sion require to introduce some more notations. Rewrite first (4.7) as

Gﬁ zg

)y - 4.14
X2'(22) = (75,2, —ha22) (1 — diza — azd) (o
with i
Cs = (1= Dpan)(1= Dsib)
and let

2

2
g 1= 1—agAt, fa:= d————T, Dg:=d—f-—~_T
1 2 1 2
— -1 1,‘ -r—l =11 1,‘1+4—-—\
d?[ + ]+4df dq[ + a2

When diffusion phenomena are neglected, the denominator of (4.11) is the
second order polynomial {1 - piyz3){1— piaz2) and in that case the partial fraction
expansion of (4.11) becomes

Gsz3 B a3
X (zy) = G273 ( = .
2 (=) pr—pa \1—zapy  1—22p2
The DO deficit at the abscissa (i + 2)Al
gt - it
8(, (i +2)Al) =G —2— (4.12)
123 ]

can be viewed as a function of the real variable ¢, whose maximum value is
attained when pit'Iny; = pit!Inpa. Denoting by |z] the integer part of the
real number z, the maximum value of the sequence (4.12) is attained either at

i = ln('““’) . (4.13)

Inpy /) B
]

or at iy + 1. Note that i, is a nonnegative number, as we may expect from the
physical assumption that the river is perfectly aerated at the abscissa I = 0 and
therefore pollutant injections at I = 0 increase the DO deficit on the subsequent
reaches, until the natural reareation balances the bacterial oxidative processes

. This leads to the important qualitativé conclusion that the seq (4.12)
is a discrete analogue of the sag profile of DO concentration in the continuous
Streeter-Phelps model. .

Suppose now that diffusion is not negligible, so that the denominator of (4.11)
factorizes into (1— Ay29)(1+£129)(1— fa23) (14 Paz3), with By < py and 3 < p3
(if Dy and Ds are small enough). Confining ourselves to the case when multiple
roots are excluded, i.e when

by d; by by dy dy
L S (LY PP a
ba dl# T b d; 1+4d'1‘
we have [lO]
X (23) :z;[Gmuﬂl _ GousPa |, G} va,vzs (4.14)
11—z 1-2zaf2 1420, 1420,

—
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Since p;/p; are negligible w.r.to 1, we are allowed to introduce the following
approximations

Gé Gﬁ 1
o ™ oy Ay — pa’ Gt 2 Caiy # "Dy — Uz fufiz
which give the partial fraction expansion (4.14) the simpler structure
X0 (25) s 22 [ Gs ( B B )
f1—fg \1—2201 1— 2282 (4.15)
Gy ( 2 vy ) '
A1z(P1 — 72) \1+220n 1+ 230
and allow to express the DO deficit at the abscissa (i + 2)Al as
. pitt - pl2 i G pi+d — pEtd '
S (i + 2)Al) = G Bl ()i A 4.16
(2l = Go = =+ 0 s o= Gas

The second term of (4.16) constitutes an oscillatory perturbation, that goes
to zero as § — oo, and is negligible everywere w.r.to the first term. The first term
has the same structure of the DO profile in models without diffusion. However
DO deficit dies out more slowly, which agrees with the parallel result on BOD
behaviour.

4.4 Modelling diffusion velocity

An implicit assumption in equations (4.1)-(4.2) as well in the corresponding
state model (4.3) was that the diffusion velocity is equal to the velocity of the
riverstream. This is also clear from support of the impulse response. A BOD
injection at time t = 0 on the origin of the space coordinates gives rise, for all t's,
to apatially aymmetric distributions, whose maximumn pointa lie on the diagonal
of the first orthant (i.e. on the support of the impulse response when diffusion
is neglected) and the initial point is steadily at the abscissa Al. This implies
that the backward propagation of the diffusion wavefront exactly balances the

advection velocity of the river.

! e ———— =
h (= time)

—e

k (= space)

fig.4.1

There are several ways for introducing 2D models where the diffusion and the
advection velocity do not coincide. Here we shall only present a sampling of these
methods and outline two conceptually different approaches to the problem. The
first approach is based on the intuitive assumption that more complex dynamics
require higher order systems to be represented; the second one exploits a suitable
reinterpretation of the integer grid Z x Z, along the same lines we followed for
the third state model in sec 3.1.

For sake of simplicity, we deal only with BOD diffusion equation. Assume
that the elementary volume of water, centered at the abscissa | at time ¢, attains
the abscissa !+ 2Al at time t + At, so that the advection velocity is v = 2Al/At
We still keep in force the BOD degradation scheme considered at the beginning
of this section, assuming in particular that diffusion in At only affects contiguous
elementary reaches. Thus the BOD updating equation takes the explicit form

B((h + 1) AL, (k + 2)Al) = [1 — a  At|B(AAL, KAL) + [1 - ay At]Ming(hAt, kAl
+ Dg{B(hAt, (k — 1)Al) — f(hAt, kAL)} At
+ Da{B(RAL, (k + 1)Al) — B(hAL KAL)} At

(4.17
Letting )
B(hAt, (k- 1)Al
zp(h, k) = B(hAt, kAL ,  uplh, k) = ing(hAt, kAl)
BlhaAt, (k+1)Al
one gets a 2D system of the following form
xﬂ(h+1,k+1)=Aéﬁlgﬂ(h|k}+_{l[lmx9(h,k+1) (4.18)
4.18
+ A za(h + 1, k) + BPug(h, k)
with
- ] 0 0 0 10
AP =] o 0 0o |, AP =0, AP =|0 0 1
DgAt 1-a,At DgAt 0 00

Assuming BOD concentration f(hAt, kAl) as the system output the impulse

response is given by the power series expansion of the following transfer function

1 ‘
o1 0] (1— Az — 4z A!,“s,.-.,) B2z,
_ M(1— ayAt]zy 2] (4.19)
1 -z za{DpAt + |1 - ﬂpﬁiltg-} DﬂAlzg}
= ML - a1 At]2123 {1+ zyz3b(22) + 23 23b(22)* + -}
where b(zz) denotes the polynomial (4.7). The support of (4.19) is represented

in fig.4.2 , showing that the diffusion wavefront progresses with a velocity which
is different from (actually, smaller than) the river advection velocity.

The second approach is reminiscent of the philosophy that underlies model
{3.11). The interpretation of the grid Z x Z, given in fig. 3.2 with reference
to model (3.11) is well suited also for representing the diffusion model (4.1). In
fact, letting

B(hAL kAL = zp(h — k, k) = z5{a,b)
ing(hAt, kAl) = ug(h — k, k) = ug(a, b)
equation (4.1) is transformed into
zpla,b+ 1) = [L — a,At]za(a, b) + Dpzpla+ 1,6 —1)At
+ Dazala — 1,6+ 1) At + |1 — ay At]Mug(a, b)

In fig.4.3 we dashed the causality cone of point (a+1,b), i.e. the set of points
of the discrete plane that contribute to the BOD concentration at (a + 1,b).

Consider now equation (4.17) and associate with the pair (hAt, kAl) the
point (a,b) € Z x Z, whose (integer) coordinates satisfy

a=2h-k, b=k—-h (4.20)
In this way the points of the separation set Cp = {(a, b) | a + b =k} represent
different locations along the river stretch at the same time instant hA¢, while
the points of the set Ty = {(a,b) [ a+2b= E} correspond to the location kAl
at different time instants. Letting
B(hAt, KAL) = p(2h — kyk — h) = za(a,b)
ug(hAt, kAL) = up{2h — k, k — h) = ug(a,b)
eqn. (4.17) becomes now
zala,b+ 1) = [L — a1 At]zp(a,B) + Dazpla+ 1,6+ 1)At
* Dﬂ.’l:_p[ﬂ —1,b+ 1)At + [1 = Glﬁi]MUg{ﬂ,b]
and therefore admits a 2D representation with a scalar state variable, provided
that a suitable reinterpretation of the grid Z x Z has been performed.

The above examples constitutes a particular application of a more general
theory, that is outlined in [10].

{4.21)

, (= time)
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