

ALGEBRAIC ASPECTS OF 2D SINGULAR SYSTEMS

E. Fornasini and S. Zampieri

Dept. of Electr. and Inform. University of Padova
via Gradenigo 6/a, 35131 Padova, Italy, fax 39-49-8287699

Abstract The paper investigates the behaviour \mathcal{B} of a singular 2D system on a half plane. Some connections between the matrices appearing in the updating equations and the restrictions of \mathcal{B} to the separation sets are presented.

1 Introduction

Consider a 2D system given by the following equation

$$\bar{E}\bar{x}(h+1, k+1) = \bar{A}\bar{x}(h, k+1) + \bar{B}\bar{x}(h+1, k) \quad (1)$$

where $\bar{x} \in \mathbb{R}^n$ and $\bar{E}, \bar{A}, \bar{B}$ are $q \times n$ matrices with entries in \mathbb{R} .

Clearly, if $\text{rank } \bar{E} = n$, (1) can be reduced to the equation of an unforced nonsingular 2D system [1], as follows

$$\begin{aligned} \bar{x}(h+1, k+1) &= (\bar{E}^T \bar{E})^{-1} \bar{E}^T \bar{A} \bar{x}(h, k+1) \\ &\quad + (\bar{E}^T \bar{E})^{-1} \bar{E}^T \bar{B} \bar{x}(h+1, k) \end{aligned} \quad (2)$$

If $\text{rank } \bar{E} = r < n$, we are allowed to introduce two nonsingular matrices $Q \in \mathbb{R}^{q \times q}$ and $N \in \mathbb{R}^{n \times n}$, such that

$$Q\bar{E}N = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \quad (3)$$

So, letting

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = N^{-1}\bar{x}, \quad Q\bar{A}N = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad Q\bar{B}N = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \quad (4)$$

equation (1) can be rewritten as follows

$$\begin{aligned} x_1(h+1, k+1) &= A_{11}x_1(h, k+1) + B_{11}x_1(h+1, k) \\ &\quad + A_{12}x_2(h, k+1) + B_{12}x_2(h+1, k) \\ 0 &= A_{21}x_1(h, k+1) + B_{21}x_1(h+1, k) \\ &\quad + A_{22}x_2(h, k+1) + B_{22}x_2(h+1, k) \end{aligned} \quad (5)$$

In the particular case when $A_{21}, B_{21}, A_{22}, B_{22}$ are simultaneously zero, x_2 can be viewed as an $n - r$ dimensional input and (5) provides the state updating equation of a nonsingular 2D system. More generally, however, x_2 is the direct sum of exogenous variables (i.e. inputs), and auxiliary variables that induce some dynamical constraints on the system trajectories, and (5) can be considered a singular 2D system, as studied in [2].

This paper constitutes a preliminary report on a research still in progress, concerning the analytical structure of the trajectories of system (5) in the half plane $\mathcal{X} = \{(h, k) : h + k \geq 0\}$. No "a priori" assumption is made on which components of x_2 can be given the role of exogenous variables. Following the philosophy that underlies the behavioural approach by J. Willems and P. Rocha [3-5], the nature of the input functions is determined "a posteriori", after establishing what variables are constrained by equations (5).

2 An algebraic approach via duality

All signals x that will be considered in this paper are sequences indexed on the half plane \mathcal{X} and taking values in some finite dimensional \mathbb{R} -vector space $x : \mathcal{X} \rightarrow \mathbb{R}^n : (h, k) \mapsto x(h, k)$. The single step updating structure (5) makes it convenient to introduce a partition of \mathcal{X} into a countable family of separation sets $\mathcal{S}^i = \{(h, k) : h + k = i\}$, $i = 0, 1, \dots$ and to associate with x a formal power series

$$x = \sum_{i=0}^{+\infty} \sum_{j=-\infty}^{+\infty} x(i+j, i-j) \xi^{-j} \lambda^{-i} \quad (6)$$

So, the "bilateral" formal power series $\mathcal{X}^i = \sum_{j=-\infty}^{+\infty} x(i+j, i-j) \xi^{-j}$, $i = 0, 1, \dots$ are associated with the restrictions of the signal x to the separation sets \mathcal{S}^i , $i = 0, 1, \dots$

Let denote by F^n and G^n respectively the spaces of polynomials in ξ, ξ^{-1}, λ and of formal power series in $\xi, \xi^{-1}, \lambda^{-1}$, with coefficients in \mathbb{R}^n . Introduce in $F^n \times G^n$ a nondegenerate bilinear function $\langle \cdot, \cdot \rangle_n$ that associates with a polynomial $p = \sum_{i=0}^{\ell} \sum_{j=-m}^m p_{ij} \xi^j \lambda^i$ in F^n and a series $\mathcal{X} = \sum_{i=0}^{+\infty} \sum_{j=-\infty}^{+\infty} x(i+j, i-j) \xi^{-j} \lambda^{-i}$ in G^n the coefficient of the constant term in the Cauchy product $p^T \mathcal{X}$

$$\langle p, \mathcal{X} \rangle_n = \sum_{i=0}^{\ell} \sum_{j=-m}^m p_{ij}^T x(i, j). \quad (7)$$

Every series \mathcal{X} in G^n induces a linear function $\varphi_{\mathcal{X}}$ on F^n , defined by $\varphi_{\mathcal{X}} : p \mapsto \langle p, \mathcal{X} \rangle_n$. Moreover, the linear mapping that associates \mathcal{X} with the linear function $\varphi_{\mathcal{X}}$ is an isomorphism of G^n onto the space $\mathcal{L}[F^n]$ of linear functions on F^n and, consequently, each series in G^n (or, equivalently, each signal $x : \mathcal{X} \rightarrow \mathbb{R}^n$) can be identified with an element of the algebraic dual space $\mathcal{L}[F^n]$. This accounts for the possibility of expressing many features of signal spaces with support in \mathcal{X} in terms of properties of suitable subspaces of F^n .

Let $M(\xi, \xi^{-1}, \lambda)$ be a $q \times n$ matrix with entries in $\mathbb{R}[\xi, \xi^{-1}, \lambda]$ and consider the linear mappings

$$\begin{aligned} \mu : \quad F^q &\longrightarrow F^n & : p &\mapsto M^T(\xi, \xi^{-1}, \lambda)p \\ \mu^* : \quad G^n &\longrightarrow G^q & : \mathcal{X} &\mapsto M(\xi, \xi^{-1}, \lambda)\mathcal{X} \end{aligned} \quad (8)$$

Here σ is the shift operator in G^1

$$\sum w(i+j, i-j) \xi^{-j} \lambda^{-i} \xrightarrow{\sigma} \sum w(i+1+j, i+1-j) \xi^{-j} \lambda^{-i} \quad (9)$$

and μ and μ^* are dual mappings [5], as $\langle \mu p, \mathcal{X} \rangle_n = \langle p, \mu^* \mathcal{X} \rangle_q$ holds for all \mathcal{X} in G^n and p in F^q . We therefore have

$$\ker \mu^* = (\text{im } \mu)^\perp, \quad (10)$$

where $\text{im } \mu$ denotes the $\mathbb{R}[\xi, \xi^{-1}, \lambda]$ -module generated by the columns of the matrix $M^T(\xi, \xi^{-1}, \lambda)$.

In order to analyze the trajectories of system (5), we introduce the following series

$$\mathcal{X}_\ell = \sum_{i=0}^{+\infty} \sum_{j=-\infty}^{+\infty} x_\ell(i+j, i-j) \xi^{-j} \lambda^{-i}, \quad \ell = 1, 2 \quad (11)$$

and the matrix

$$M(\xi, \sigma) = \begin{bmatrix} \sigma I - A_{11} - B_{11}\xi & -A_{12} - B_{12}\xi \\ -A_{21} - B_{21}\xi & -A_{22} - B_{22}\xi \end{bmatrix} \quad (12)$$

The constraints induced on x by equation (5) are expressed as

$$M(\xi, \sigma) \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{bmatrix} = 0$$

Therefore the behaviour of (5) can be viewed as the kernel of the linear operator μ^* or, alternatively, as the orthogonal subspace to the $\mathbb{R}[\xi, \xi^{-1}, \lambda]$ -module \mathcal{M} generated by the columns of the matrix $M^T(\xi, \lambda)$:

$$\mathcal{B} = \left\{ \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{bmatrix} \in G^n : M(\xi, \sigma) \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{bmatrix} = 0 \right\} = \ker \mu^* = \mathcal{M}^\perp \quad (13)$$

In our context an important consequence stems directly from the fact that G^n is the algebraic dual $\mathcal{L}[F^n]$, namely

$$\mathcal{B}^\perp = (\mathcal{M}^\perp)^\perp = \mathcal{M} \quad (14)$$

Actually (14) shows that the module M is uniquely determined by \mathcal{B} , so that \mathcal{B} can be described as the kernel of some matrix $\bar{M}(\xi, \sigma)$ if and only if the columns of both $M^T(\xi, \lambda)$ and $\bar{M}^T(\xi, \lambda)$ generate the same $\mathbb{R}[\xi, \xi^{-1}, \lambda]$ -module.

The duality theory provides also an useful tool for analyzing the restrictions $\mathcal{B}^{[0,k]}$ of the behaviour \mathcal{B} to the sets $S^0 \cup S^1 \cup \dots \cup S^k$. This is easily seen by considering the linear mappings

$$\begin{array}{ccccc} F_k^n & \xrightarrow{i} & F^n & \xrightarrow{\bar{\pi}} & F^n/\text{im}\mu \\ G^n/\sigma^k G^n & \xleftarrow{\pi} & G^n & \xleftarrow{\bar{i}} & \ker \mu^* \end{array} \quad (15)$$

where F_k^n is the $\mathbb{R}[\xi, \xi^{-1}]$ -submodule of the polynomial columns in F^n having degree less than or equal to k in the indeterminate λ , $G^n/\sigma^k G^n$ is (isomorphic to) the $\mathbb{R}[\xi, \xi^{-1}]$ -submodule obtained by truncating in each series of G^n all terms with degree greater than k w.r. to λ^{-1} , the maps i and \bar{i} are canonical injections, π and $\bar{\pi}$ are canonical projections.

Obviously $G^n/\sigma^k G^n$ is isomorphic with the space $\mathcal{L}[F_k^n]$ of linear functions on F_k^n . Moreover $F^n/\text{im}\mu$ is isomorphic with a direct complement of $\text{im}\mu$ in F^n , and using the duality theory on direct decompositions [6] gives $\ker \mu^* = (\text{im}\mu)^\perp \cong \mathcal{L}[F^n/\text{im}\mu]$. The first and the last space on the second row of (15) can be viewed as the algebraic duals of the corresponding spaces on the first row and the maps $\bar{\pi} \circ i$, $\pi \circ \bar{i}$ in (15) are dual linear maps w.r. to the bilinear function induced on the pairs $(F_k^n, G^n/\sigma^k G^n)$ and $(F^n/\text{im}\mu, \ker \mu^*)$. Consequently the restriction $\mathcal{B}^{[0,k]}$ is given by

$$\mathcal{B}^{[0,k]} \cong \text{im}(\pi \circ \bar{i}) = \ker(\bar{\pi} \circ i)^\perp \quad (16)$$

The above relation characterizes $\mathcal{B}^{[0,k]}$ as the subspace of all signals with support in $S^0 \cup S^1 \cup \dots \cup S^k$ and values in \mathbb{R}^n that correspond to formal power series $\sum_{i=0}^k \chi^i \lambda^{-i}$ satisfying the orthogonality condition

$$\left(\sum_{i=0}^k c_i(\xi) \lambda^i, \sum_{i=0}^k \chi^i \lambda^{-i} \right)_n = [c_0(\xi) \ c_1(\xi) \ \dots \ c_k(\xi)] \begin{bmatrix} \chi^0 \\ \chi^1 \\ \vdots \\ \chi^k \end{bmatrix} = 0 \quad (17)$$

for all polynomial vectors $\sum_{i=0}^k c_i(\xi) \lambda^i$ in the $\mathbb{R}[\xi, \xi^{-1}, \lambda]$ -module $\text{im}\mu$.

The $\mathbb{R}[\xi, \xi^{-1}]$ -submodule of $\mathbb{R}^{1 \times n(k+1)}[\xi, \xi^{-1}]$ whose elements are the rows $[c_0(\xi) \ c_1(\xi) \ \dots \ c_k(\xi)]$ that satisfy the condition $\sum_{i=1}^k c_i(\xi) \lambda^i \in \text{im}\mu$ is finitely generated. Therefore there exists a polynomial matrix $C^{[0,k]}(\xi)$ with $n(k+1)$ columns such that $\mathcal{B}^{[0,k]} = \ker C^{[0,k]}(\xi)$.

In the next section we shall take advantage of the particular structure of $M(\xi, \sigma)$ given by (12), when determining the $\mathbb{R}[\xi, \xi^{-1}]$ -submodule $\mathcal{B}^{[0,k]}$.

3 Computation of trajectories

The following lemma directly provides a matrix $C^{[0,1]}(\xi)$ whose rows are given in terms of submatrices A_{ij} and B_{ij} that appear in the partition (12). The proof is based on Cayley-Hamilton theorem and can be found in [7].

Lemma Let A_{ij} and B_{ij} be as in (12) and define the polynomial matrices:

$$\mathcal{A}_{ij} := A_{ij} + B_{ij} \xi, \quad i, j = 1, 2$$

$$[C_0(\xi) \ C_1(\xi)] = \begin{bmatrix} A_{21} & A_{22} & | & 0 & 0 \\ A_{11} & A_{12} & | & I_r & 0 \\ 0 & 0 & | & A_{21} & A_{22} \\ 0 & 0 & | & A_{21}A_{11} & A_{21}A_{12} \\ 0 & 0 & | & A_{21}A_{11}^2 & A_{21}A_{11}A_{12} \\ \dots & \dots & | & \dots & \dots \\ 0 & 0 & | & A_{21}A_{11}^r & A_{21}A_{11}^{r-1}A_{12} \end{bmatrix}$$

Then $C^{[0,1]}(\xi) = [C_0(\xi) \ | \ C_1(\xi)]$ and $\mathcal{B}^{[0,1]} = \ker C^{[0,1]}(\xi)$ or, equivalently,

$$\begin{bmatrix} \chi^0 \\ \chi^1 \end{bmatrix} \in \mathcal{B}^{[0,1]} \Leftrightarrow C_0 \chi^0 = -C_1 \chi^1 \quad (18)$$

Premultiplying both C_0 and C_1 by a suitable unimodular matrix U , one gets

$$UC_0 = \begin{bmatrix} D'_0 \\ D_0 \\ 0 \end{bmatrix}, \quad -UC_1 = \begin{bmatrix} D_1 \\ 0 \\ 0 \end{bmatrix} \quad (19)$$

where both D_0 and D_1 have full row rank. Just rewriting (18) as

$$\begin{aligned} D_0 \chi^0 &= 0 \\ D_1 \chi^1 &= D'_0 \chi^0 \end{aligned} \quad (20)$$

we easily see that all solutions of equation (20.1) can be viewed as restrictions of admissible trajectories to the separation set S^0 . In fact D_1 has full row rank and, therefore, given any χ^0 , eq. (20.2) can be fulfilled by suitably chosen values of χ^1 .

We are now in a position for establishing the following

Theorem A signal $\chi = \sum_{i=0}^{+\infty} \chi^i \lambda^{-i}$ belongs to \mathcal{B} if and only if χ^i satisfy the following equations

$$\begin{aligned} D_0 \chi^0 &= 0 \\ \begin{bmatrix} D_1 \\ D_0 \end{bmatrix} \chi^{i+1} &= \begin{bmatrix} D'_0 \\ 0 \end{bmatrix} \chi^i, \quad i = 0, 1, \dots \end{aligned} \quad (21)$$

PROOF Suppose that χ satisfies (21). Then we have

$$C^{[0,1]}(\xi) \begin{bmatrix} \chi^i \\ \chi^{i+1} \end{bmatrix} = 0, \quad i = 0, 1, \dots \quad (22)$$

which implies

$$\chi^i + \lambda^{-1} \chi^{i+1} \in \mathcal{B}^{[0,1]}, \quad i = 0, 1, \dots \quad (23)$$

The degree of all columns in $M^T(\xi, \lambda)$ w.r. to λ is less than or equal to one. So, any such column can be written as $c_0(\xi) + \lambda c_1(\xi)$ and we have

$$\begin{aligned} &\langle (c_0(\xi) + \lambda c_1(\xi)) \lambda^i \chi^j, \chi \rangle_n \\ &= \langle (c_0(\xi) + \lambda c_1(\xi)) \xi^i, \chi^i + \lambda^{-1} \chi^{i+1} + \dots \rangle_n \\ &= \langle (c_0(\xi) + \lambda c_1(\xi)) \xi^i, \chi^i + \lambda^{-1} \chi^{i+1} \rangle_n = 0 \end{aligned} \quad (24)$$

as a consequence of (16) and (23). This shows that χ is orthogonal to $\text{im}\mu$ and therefore $\chi \in \mathcal{B}$. The converse is obvious.

Equations (21) provide a recursive procedure for generating the system trajectories. Moreover, the difference $n - \text{rank} \begin{bmatrix} D_1 \\ D_0 \end{bmatrix}$ gives the number of free variables that appear in system (5), i.e. the variables that can be arbitrarily chosen on all separation sets S^i .

4 References

1. E.Fornasini, G.Marchesini *Doubly indexed dynamical systems: state space models and structural properties*, Math. Sys. Theory, 12, 123-29, 1978
2. T.Kaczorek *Singular multidimensional linear discrete systems*, Proc. 1st Nat. Symp. Aut. Robot., Athens, 71-91, 1987
3. J.C.Willems *Models for dynamics*, Dyn. Rep., 2, 171-269, 1989
4. P.Rocha, J.C.Willems *Canonical computational forms of AR 2D systems*, Multidim.Sys.Sign.Proc., 1, 251-78, 1990
5. P.Rocha *Structure and representation of 2D systems*, Ph.D Thesis, Rijksuniversiteit Groningen, 1990
6. W.Greub *Linear Algebra*, Springer, 1975
7. E.Fornasini, S.Zampieri *Singular 2D systems: a behavioural approach*, submitted