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Abstract The paper investigates the behaviour B of a singular 2D
system on a half plane. Some connections between the matrices ap-
pearing in the updating equations and the restrictions of B to the
separation sets are presented.

1 Introduction

Consider a 2D system given by the following equation
i Ez(h+ 1,k +1) = AZ(h,k+ 1) + Bz(h + 1,k) (1)

where Z € R" and E, A, B are q x n matrices with entries in R.
Clearly, if rankE = n, (1) can be reduced to the equation of an
unforced nonsingular 2D system [1], as follows

Z(h+1,k+1) = (E"E)'ETAz(h,k+1)

+(EE)'E Bz(h + 1, k) @

If rankE = r < n, we are allowed to introduce two nonsingular matri-
ces @ € R?? and N € R™*", such that

o, I 0
QBN = 0] (3
So, letting
1 1= An A:z] = _[311 312]
= = N-'z, QAN = , QBN = 4
i [Iz] % @ [Au Agg ? By, Bi (4)

equation (1) can be rewritten as follows

zi(h+1,k+1) = Az (h,k+1) + Buz;(h + l,k)
+ An:l:g(h, k+ l) + Buzg(h + 1,k)

0= Anxl(h,k + 1)+ Bazi(h+ 1,k)
+ Azaza(h,k+1) + Baaza(h + 1,k)

()

In the particular case when Aj;, By, A2z, B2z are simultaneously zero,
z2 can be viewed as an n — r dimensional input and (5) provides the
state updating equation of a nonsingular 2D system. More generally,
however, 3 is the direct sum of exhogenous variables (i.e. inputs),
and auxiliary variables that induce some dynamical constraints on the
system trajectories, and (5) can be considered a singular 2D system,
as studied in [2].

This paper constitutes a preliminary report on a research still in
progress, concerning the analytical structure of the trajectories of sys-
tem (5) in the half plane ¥ = {(h,k) : h + k > 0}. No “a priori”
assumption is made on which components of z; can be given the role
of exhogenous variables. Following the philosophy that underlies the
behavioural approach by J. Willems and P. Rocha [3-5], the nature
of the input functions is determined “a postericri”, after establishing
what variables are constrained by equations (5).

2 An algebraic approach via duality

All signals = that will be considered in this paper are sequences in-
dexed on the half plane ¥ and taking values in some finite dimensional
R-vector space z: ¥ — R": (h,k) — z(h,k). The single step up-
dating structure (5) makes it convenient to introduce a partition of ¥
into a countable family of separation sets §* = {(h,k) : A+ k =i}, i =
0,1,... and to associate with z a formal power series

400 +oo

X=3 3 a(i+4i-5)eir (6)

i=0 j=-o0

So, the “bilateral” formal power series ' = 120 e zli g, - 7)€,
1 =0,1,... are associated with the restrictions of the signal = to the
separation sets 5%, § =0,1,.. ..

Let denote by F™ and G" respectively the spaces of polynomials
in £,¢71, X and of formal power series in £,£~1,A~!, with coefficients
in R™. Introduce in F™ x G" a nondegenerate bilinear function {-,-),
that associates with a polynomial p = T4,  Teem pij&7 3 in F™ and
aseries X = TP T4 z(i + 5,6 — 7)€A% in G™ the coefficient
of the constant term in the Cauchy product p7 X

[4 m
P, Xn=23_ 3 pFz(i,5). (7

i=0j=-m

Every series X in G? induces a linear function @y on F", defined by
px : p— (p, X)n. Moreover, the linear mapping that associates X
with the linear function ¢y is an isomorphism of G™ onto the space
L[F"] of linear functions on F™ and, consequently, each series in G"
(or , equivalently, each signal z : ¥ — R") can be identified with
an element of the algebraic dual space £|F"|. This accounts for the
possibility of expressing many features of signal spaces with support
in ¥ in terms of properties of suitable subspaces of F™.

Let M(£,£71,)) be a g x n matrix with entries in R[£, £71, A] and
consider the linear mappings

p: F1— Fm

. MT -1y
s Gh G p (E’E ) )P (8)

X— Mg, o)X
Here o is the shift operator in G!
2wl 5= )N S w(i 4 144+ 1- )6 (9)

and p and p* are dual mappings {5], as {up, X}, = (p,p* X'), holds for
all X in G" and p in F?, We therefore have

kery® = (imu)", (10)

where imp denotes the R[£, £71, A]-module generated by the columns
of the matrix MT(€,£71, 7).

In order to analyze the trajectories of system (5), we introduce the
following series

+co +oo ) ]
Yoo= 30 37 ze(i+5i-7)E72, £=1,2 (11)
i=0 j=-o00
and the matrix
ol — Ay — Buf —-Anz- Blzf]
M(¢, o) = 12
(&) [ —An - Bu€  —Ax - Bpé (1)

The constraints induced on z by equation (5) are expressed as
] _
M(E,O‘) [12] =0

Therefore the behaviour of (5) can be viewed as the kernel of the
linear operator u* or, alternatively, as the orthogonal subspace to
the R[£, €71, \]-module M generated by the columns of the matrix
MT(g,)):

B={[§']EG" : M(E,a)[ii]:ﬂ}:ker,ﬂ':)ﬂl (13)

In our context an important consequence stems directly from the fact
that G™ is the algebraic dual £[F"|, namely

Bt =(MHt =M (14)



Actually (14) shows that the module M is uniquely determined by B,
so that B can be described as the kernel of some matrix M(€,c) if and
only if the columns of both M7 (¢, A) and HT(E, A) generate the same
R[¢, €71, Al-module.

*The duality theory provides also an useful tool for analyzing the
restrictions BI% of the behaviour B to the sets SOU S1uU--- U §*.
This is easily seen by considering the linear mappings

R S I Pimp

15
Gr/a*G" - G" - o)

ker p*

where F[ is the R|[¢, £~!]-submodule of the polynomial columns in F™
having degree less than or equal to k in the indeterminate A, G" /o*G"
is (isomorphic to) the R[£, ¢ ~!]-submodule obtained by truncating in
each series of G™ all terms with degree greater than k w.r. to A~!, the
maps § and 1 are canonical injections, 7 and 7 are canonical projections.

Obviously G™/e*G" is isomorphic with the space L[F}| of lin-
ear functions on FJ'. Moreover F"/imu is isomorphic with a direct
complement of imu in F™, and using the duality theory on direct de-
compositions [6] gives ker u* = (imp)* = L£[F"/imu]. The first and
the last space on the second row of (15) can be viewed as the algebraic
duals of the corresponding spaces on the first row and the maps 7 o1,
7 of in (15) are dual linear maps w.r. to the bilinear function induced
on the pairs (Ff*, G"/d*G™) and (F"/im, keru*). Consequently the
restriction BI%* is given by

BIOH & im(x 0 §) = ker(¥ o i)* (16)
The above relation characterizes B[%* as the subspace of all signals
with support in §°U §'U. ..U §* and values in R that correspond to
formal power series Ef:o XX~ satisfying the orthogonality condition

o 5
(e, 3 XA =[co(€) ex(€) - el |, | =0 (17)
=0 =0 .

Xk

for all polynomial vectors %, ¢; (€)' in the RJ¢, €1, A]-module imp.
The R[£, £~"]-submodule of R*"™(*+1)[¢, £~1] whose elements are
the rows [co(£) c1(§) -+ ci(€)] that satisfy the condition T, ¢;(£)A' €
imy is finitely generated. Therefore there exists a polynomial matrix
COH(£) with n(k + 1) columns such that 819 = ker C10H (¢).
In the next section we shall take advantage of the particular struc-

h?re of M(§, o) given by (12), when determing the R[£, £~!]-submodule
BloM.

3 Computation of trajectories

The following lemma directly provides a matrix CI%1(¢) whose rows
are given in terms of submatrices A;; and B;; that appear in the
partition (12). The proof is based on Cayley-Hamilton theorem and
can be found in [7].

Lemma Let A;; and By; be as in (12) and define the polynomial
matrices;

Aij = Ayj + Bij€, i,5=1,2
. Az Az | 0 0
A A | I, 0 .
0 0 | An A2z
[Co(€) Cil&)]=]| 0 0 | Andu  Andn
0 0 | AndA}  Andundn
0 0 | Andj AndAiTlAn]

Then ClOU(£) = [Co(€) | Ci(€)] and B0 = ker ClO1(¢) or, equiv-
alently,

rU
[I‘] €8l & g% =—c 1! (18)

Premultiplying both Cy and Cy by a suitable unimodular matrix U,
one gets

Dy D,
UCU = Do 3 —UCI = 0 (19)
0 0
where both Dy and D; have full row rank. Just rewriting (18) as
DoX®=0
2 % (20)
htt= DY

we easily see that all solutions of equation (20.1) can be viewed as
restrictionsof admissible trajectories to the separation set §%. In fact
D has full row rank and, therefore, given any X° eq. (20.2) can be
fulfilled by suitably chosen values of X'!.

We are now in a position for establishing the following

Theorem A signal X = 1% X*A~ belongs to B if and only if X*
satisfy the following equations

Dox%=0

D1 yis1 _ D;,] ;o 1=0,1,... (21)
Du]r ‘{0 o

PROOF Suppose that X satisfies (21). Then we have

Sl .
clotey [I‘*‘ =0, i=0,1,... (22)
which implies
Xiga-lyittggloal ;g4 ... (23)

The degree of all columns in M7 (€, A) w.r.to A is less than or equal
to one. So, any such column can be written as co(€) + Acy(£) and we

have L
((co(€) + Acr(€))X°€7, X )
=((co(§) + Aca())&, XF + 21X ¥ 1 ),
=((co(€) + Ac1(€))€, X + 271y, =0

as a consequence of (16) and (23). This shows that I is orthogonal to
imu and therefore I € B. The converse is obvious.

(24)

Equations (21) provide a recursive procedure for generating the

system trajectories. Moreover, the difference n — rank 1} gives the

Dy
number of free variables that appear in system (5), i.e. the variables

that can be arbitrarily chosen on all separation sets $°.
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