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Abstract: Some properties of minimal state space realizations
of 2D FIR transfer functions are investigated. It is shown that
hidden modes are allowed in minimal realization and, conse-
quently, there exist internally unstable minimal realizations of
FIR transfer functions.
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1. Introduction

It is well known that many analytical proce-
dures for control design are based on state space
representations of systems dynamics. In the 2D
case, any linear stationary input output map, rep-
resented by a proper rational transfer function
W(z,, z,), can be converted to an equivalent sys-
tem of first order equations with the following
structure [2):

x(h+1,k+1)
=A;x(h, k+1)+A,x(h+1, k)
+Bu(h, k+1)+ Bu(h+1, k), (1a)
y(h, k)=Cx(h, k) + Du(h, k). (1b)

System (1) is usually denoted as
By, ds, By By Gy D)

and called a (state space) realization of W(z,, z,).
Generally speaking, it should be expected that any
constraint we assume on the structure of the pair
(A, A,) is reflected in a restriction on the class of
transfer functions which can be realized by (1),
and vice versa.

In this paper we shall be concerned with two
properties of 2D systems and 2D input/output
maps that are strongly connected with each other.
The first one is the so called ‘finite memory
property [1] of the state space model. A 2D system
is finite memory if, for any arbitrary initial set of
local states,

F= iy, —i), i€ 2} (2)

the state free evolution goes to zero in a finite
number of steps. This property depends only on
the structure of the pair (4,, 4,) and requires
that the 2D characteristic polynomial of the sys-
tem satisfies

det(I— Ayz, — A,2,) = 1. (3)

The second property is the finite impulse response
(FIR) of the input/output map or, equivalently,
the polynomial character of W(z,, z,).

The connections between these properties are
very well understood in the 1D situation, where

(1) finite memory reduces to the nilpotency of
the matrix A,

(i) finite memory implies that the transfer
function 1s FIR,

(ii1) minimal realizations of FIR transfer func-
tions are finite memory.

Only proposition (ii) has an immediate exten-
sion to 2D systems, as can be easily seen from the
expression

W(ZD 22)

_ C adj(I— Az, — A5z,)(Byz; + Byz,)

+ D.
del(I— Az, —A,z,) P

(4)

The objective pursued in Section 2 is to investigate
some connections between the finite memory
property of a 2D state space model and the struc-
ture of its pair (4,, 4,), while in Section 3 we
shall cope with the minimal realization problem of
FIR transfer functions in two variables. One char-
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acteristic feature of 2D minimal realizations is
that the numerator and the denominator of (4)
need not be coprime polynomials. Therefore we
expect that the characteristic polynomial of a
minimal 2D state model may be a multiple of the
transfer function denominator.

In that case the FIR property of a transfer
function does not imply the internal stability of its
minimal realizations.

2. Finite memory 2D systems

The spectral properties of matrices 4, and 4,
are strongly connected with the finite memory
property of a 2D system. However, the problem of
obtaining a complete characterization of matrix
structures that satisfy equation (3) has not yet
been solved.

While (3) implies in an obvious way the nilpo-
tency of A4; and A,, the converse is not true, since
the nilpotency of 4, and A, does not imply finite
memory. To show this, just take

0 1 0 0
4= [0 o]’ A2= [1 0]'
A stronger condition on A4; and A, corresponds to
requiring that the multiplicative semigroup § gen-
erated by A4, and A4, consists of nilpotent ele-
ments. In this case, by a theorem due to Levitzki
[5], the elements of S can be simultaneously put in
strict triangular form, i.e. zeros on and below the
main diagonal. The above assumption on 4, and
A, is now sufficient, but not necessary, for obtain-
ing a finite memory 2D system.
In fact, consider the following pair of nilpotent

matrices:
0 1 0 0 0 0

A=|0 0 1|, 4=|1 0 0f (5
0 0 O 0 -1 0

It is immediate to check that
det(I— Ayz; — Ayz,) =1.

However the multiplicative semigroup generated
by 4, and A, includes

1 0 0
0 -1 0

0 0 0

A4, =

which is not nilpotent.

Remark. If the dimension of 4, and A4, is 2, then
the finite memory condition (3) implies (and hence
is equivalent to) the nilpotency of all elements of
S. Actually, the case 4, =0 is trivial; so there is
no restriction in assuming that 4, is a Jordan
block

A]:[g (1)] (6)

and A, any 2 X 2 nilpotent matrix

A2=[g][a Bl, ua+uvB=0. (7)
We therefore have

det(I— Ayz; — Ayz,) =1 — avz;z,.

Thus finite memory gives av =0, and ua + vf
=0 implies Bv=cau=0. We conclude that the
structure of 4, is as follows:

0 uﬁ}

A, =
2[00

and S consists of nilpotent elements.

Using some properties of the family of matrices
(A,"HY4, 1), generated recursively [3] according to

A%, =4l 4, = A, (8a)
Alju*]{‘fz:A](A;-lu‘%‘tz)
+A4,( 4" 4,) iti, j>0, (8b)

a necessary and sufficient condition for finite
memory can be stated as follows. Consider first
the identity

fee]
(=8~ Azzz)_] = ¥ Aayzzd
i,j=0
_adj(/ — 4,7, — A,z,)
©det(I — Ayz; — Aqyz,)
(%)

The finite memory condition (3) implies that

i Eif
ZAI A,yz2q24
i

is a polynomial of degree less than », where n is
the dimension of 4; and A4, and, a fortiori,

A, =0, i+j=n. (10)
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Vice versa, using the recurring equations (§), we
see that conditions (10) give

A4, =0, i+j=n,

which in turn imply that (I — 4z, — A,z,) ' is a
polynomial and

det(I — Ayzy—A,z,) = 1.

This proves that (10) constitutes a criterion for
finite memory.

Neither condition (3) nor criterion (10) yield a
set of canonical forms for characterizing those
pairs (A;, 4,) that exhibit the finite memory
property.

However, if we confine ourselves to pairs of
matrices with dimension 3, a finite set of canoni-
cal forms (with respect to similarity transforma-
tions) can be computed directly. Since these will
be needed in the next section, we shall sketch here
their construction.

Referring to the ranks of 4; and 4,, we clas-
sify all possible cases as follows:

Case 1: (rank 4,) (rank 4,)=0.

One of the matrices is 0 and the other one can
be reduced to a nilpotent matrix in Jordan form.
No further constraint arises when considering
equation (3).

Case 2. (rank A,) (rank 4,)=1.
Both matrices have rank 1. There is no restric-
tion in assuming that 4, is in Jordan form,

0 1 0
A4=[0 0 0=JD,

0 0 0

and A, is a generic 3 X 3 nilpotent matrix of rank
1

Az“{z}[a B v], au+Bo+yw=0. (11)

Similarity transformations induced by

. tatn*0,

preserve the structure of JV and reduce 4, to one
of the following structures:

0 0 0]
As=|v 0 0[#0, (12a)

w 0 0]

0 0 ul
Ay=10 0 ov|=#0, (12b)

0 0 0]

0 u O
A7 =|0 0 0]=0. (12c)

0 w O

Finally, equation (3) introduces a further con-
straint on A3, so that the admissible pairs are

[0 0 0

A=J =0 0 0[+0C (13a)
w 0 0
[0 0 u

A=JY, 4,=10 0 v|+#0, (13b)
0 0 0
(0 w 0

A=09_ A,=|l0 0 0[=0, (13c)
0 w 0

Case 3: (rank A,) (rank A4,)=2.

Suppose that A4; is of rank 2 (the case rank
A, =2 can be dealt with by symmetry), reduced to
its Jordan form

0 1 0
A=10 0 1]|=J%,

0 0 0

and A, is a generic 3 X 3 nilpotent matrix of rank
1. Similarity transformations induced by

Iy hy o I3
t; # 0, (14)

preserve the structure of J®, while reducing A4, to
one of the structures given in (12). The finite
memory condition implies then that the admissi-
ble pairs are only two, namely

[0 0 u

A=J® A,=|0 0 ov|=#0, (15a)
[0 0 0]
(0 w 0

A=J% 4,=0 0 0|=0. (15b)
(0 0 0]
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Case 4: (rank A,) (rank 4,)=4.
Assume A, =J® and let 4, be a generic 3 X3
nilpotent matrix of rank 2,

8

A, =|#|,
3

re R, (16)

If r, belongs to the row span of r, and r;, then
there is no restriction in assuming r; = 0. In fact
in this case a similarity transformation exists, as
induced by a suitable matrix (14), that annihilates
the first row of 4.

If r, does not belong to the row span of r, and
r;, then, using a similarity transformation as above,
we may assume that either r, =0 (and ry # 0) or
r; =0 (and r, #0).

In case r; = 0, the finite memory condition puts
further constraints on A,, that reduces to

0 0 0
A,=|—-u 0 0|=0. (17)

0 u 0

In case r, =0, there is no way of satisfying the
finite memory condition, while in case r; =0 the
matrix A, reduces to

0 u v
A,=0 0 w|, u, w*0. (18)
0 0 0

3. Realization of FIR transfer functions

Obtaining a finite memory realization of a
polynomial transfer function is quite easy if we
are not required to obtain a low dimensional
system. Actually a finite memory realization of the

monomial g, z/z4 is given b
I kel e

[0 1 | (0]
1{0
Hy = 0 , Bi=|0| (19)
0
0 0 :
L | Ll_

with i X i left upper matrix,

r =}

0 0

A, = . . B,=0,  (19b)
0 4
L 1o 0

with j > j right lower matrix,
c=[0 0 --- .- 1] (19¢)

in case 7 > 0, and by a nilpotent 1D system in case
i=0.
So in realizing a 2D polynomial

i
qu‘,.zlzz
iJj

it is sufficient to use direct sums, that preserve the
finite memory property [4].

However if we look for minimal realizations of
FIR transfer functions, in general it is not true
that these are necessarily finite memory (which
makes a remarkable difference with the 1D case).
In this section we aim to show that this phenome-
non holds independently of the (real or complex)
field where the matrix elements take their values
and implies that minimal realizations of FIR
transfer functions need not be internally stable.

To prove our statement, we shall go through
the following steps:

1. We show that there exists a 2D polynomial
n(z,, z,) of degree 3, that cannot be realized in
dimension 3.

2. We construct an (infinite memory) realiza-
tion of dimension 3 for the transfer function
n(z;, z,)/(1 + z,) and a series connection of such
a realization with a realization of dimension 1 for
1+ z,. The realization of n(z,, z;) obtained in
this way is minimal, internally unstable and ex-
hibits pole/zero cancellations.

Step 1. Assume that 4, and 4, belong to C**°
and are the state updating matrices of a finite
memory 2D system.

For all matrices

C=[c Ca]
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in C'** and B,, B, in C**!, the system transfer
function is a polynomial

W(Zlv 22)
=C adj(IﬁAlzl *A222)(3121 + B:J_Zz) (20)

of degree not greater than 3, that we shall rewrite
as

W(Z]> Zz) =P1(21= 22) +P2(Zh 22) +P3(21: z;),

where p; are homogenous forms of degree i, i =
1, 2, 3

Referring to the cases considered in Section 2,
we see that, independently of the choice of B,, B,
and C, the polynomials p, must satisfy the follow-
ing constraints:

Case 1: p; belongs either to the principal ideal
(z2) or to the principal ideal (z3).

Case 2: p, belongs to the principal ideal (z,z,).

Case 3: if p, = ¢°, where g is a first order form,
then either g =z;, or g =2z,

Case 4: if p; = g°, where q is a first order form,
then ¢ is also a factor of p,.

The above constraints show that the poly-
nomial

n(zy, 23) = (2, +2,)* + 22 + 2, (21)

cannot be realized by a finite memory third order
2D system. Therefore, if we look for a third order
2D realization of n(z, z,), a system with

det( — Az, — A;z,) # 1

would be needed. However in that case pole /zero
cancellations between

det(1 — Az, — A, 2,)
and
C adj(I— Ayz; — Ayz,)(Byz, + B, z,)

must occur, and therefore the degree of the latter
must be greater than or equal to 4, which is
impossible for third order systems.

Consequently, the dimension of any state space
realization of n(z;, z,) is greater than 3.

Step 2. Consider the following 2D systems:

2, = (Al': A,, By, Bs, C)

with

and

3,=(F, F, G,, G,, H, D)

with

D=1.

F,=F=0, G;=0, G,=H=1,

They realize n(z,, z,)/(1 +z,) and 1 + z, respec-
tively. Then the series connection of X, and 2| is
a strictly proper 2D system

S= (A, Ay, By, By, €)
with

~

A S Lo 0 92
VS H 40 2T | BH 4, \228)

=0 5=
'“\gD|" " |B,D

which provides a fourth order, and hence a
minimal realization of n(z;, z,).
Since the characteristic polynomials of X is

, C=[0 c],

(22b)

det(1— Ayzy — Ayzy) =1+ z,, (23)

the realization 3 above is not finite memory.
The above example allows to point out some
interesting consequences:
(1) Minimal realizations of FIR transfer func-
tions need not be finite memory.
(ii) Pole/zero cancellations are allowed in
minimal realizations. Actually in 3 we have

& adj(I*AA]Zl _/fzzz)(élzl + Bzzz)
(1, )1+ 2),
det(!—/f]z1 _14‘222) =1+ ;-

(iii) minimal realizations of FIR (and hence
BIBO stable) transfer functions may be unstable.
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In fact in the above example the variety of 1+ z,
intersects the unit closed polydisc

931={(215 )z =1, | 2| 51}-

Remark.

The connections of the above results (in par-
ticular the existence of pole/zero cancellations in
2D minimal realizations) with some conjectures
that have been advanced in the literature are rather
intriguing. This is partly due to the use of Roesser’s
model by the authors of the conjectures, that
introduces heavy a priori constraints on the state
space realization matrices, and to different nota-
tions adopted in 2D transfer functions.

As is well known, Roesser’s model can be
viewed as a particular case of model (1), where A4,
A,, By, B, have the following structure:

A A B
A, =71 12], B=[ ] 24a
S R N ()
0 0 0
4a= [AZI Azz]’ . [B(Z)]- (240)

Consequently, minimal realizations in Roesser’s
form often exhibit a larger dimension than uncon-
strained minimal realizations.

When a transfer function W(z, z,) is ex-
pressed as the ratio of two irreducible polynomials
in z;7! and 277, ie.

h(zl_ Loz 1)
W(2y5:25) = k(zl_l, 22—1)
with », =deg, -1k, v, =deg, 1k, it is possible to
construct state space models in Roesser’s form
(and, a fortiori, in general form (1)) with dimen-
sion »; + 2», and », + 2»,. In all cases, Roesser’s
realizations cannot exhibit a dimension lower than
¥, + »,, and in [7] Sontag conjectured that »; + »,
is the dimension of minimal Roesser’s realizations
over the complex field. Note that this does by no
means preclude the existence of unconstrained
realizations with dimension lower than »; + »,. As
an example, in our case we have

=1 —T%3 3.1 —3_-2
(z1 +z, ) +2zy 7z, iz
W(zy; 23) = = e

1 22

and therefore », +», =6, whereas W(z, z,) ad-
mits an unconstrained realization of dimension 4.

Roesser’s realizations of dimension greater than
vy + v, are always associated with pole/zero
cancellations in the rational function

-1
20 1 — Ay Arz B

+ D.
—Ay 23— Ay B

Therefore, the conjectural nature of Sontag’s state-
ment and the existence of counterexamples when
only real valued Roesser’s realizations are allowed
suggested the following remark by Lévy [6, p.
223]: “This seems to suggest that, unlike in the 1D
case, the problem of finding irreducible realiza-
tions and the one of finding realizations of mini-
mum state space size are not necessarily the same”.

Whether or not Sontag’s conjecture is true, it is
clear that the problem of the existence of pole/zero
cancellations in minimal realizations with general
structure would remain still unsolved. Actually
cancellations in minimal Roesser’s models could
be viewed as an artifact of the structure (24), that
possibly disappears when the model (1) is used
and the state space dimension becomes lower. On
the other hand, even if Sontag’s conjecture is true,
we could conceivably think of minimal uncon-
strained realizations that exhibit pole/zero cancel-
lations.
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