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Summary This communication discusses some aspects of the problem
of constructing dynamical models of 2D input/output maps. In the first
part a finite array of data is given, and a recursive algorithm is provided
for generating the whole class of minimum degree transfer functions,
whose series expansion fits the data window. In the second part a 2D
input/output map is completely assigned, via a rational transfer func-
tion in two indeterminates. Some algebraic properties of its state space
realizations are investigated, and related to the structure of noncommu-
tative power series.

1. Introduction

The purpose of this paper is to outline some recent results, connected
with the construction of irreducible rational functions in two variables
that model a finite two dimension data array, and to point out perspec-
tives and constraints in computing minimal state space realizations of
such rational functions.

Questions relating to the recursive generation of different Padé ap-
proximations schemes of a finite 2D array have been actively studied
by several authors [1-3]. The novelty of the algorithm presented in this
paper is that all data available in the positive orthant are fitted by the
power series expansion of the rational function. Once a rational in-
put/output model of the data has been obtained, it is natural to ask for
a state space realization ¥ = (A1, A3, By, By, C, D), given by

a(h+1,k+1) = Ayz(h, k+1) + Azz(h + 1,k)
+ Biu(h,k + 1) + Bou(h + 1, k) (1.1)
y(h,k) = Cz(h, k) + Du(h, k)

that exhibits some desirable properties.
Coprime (i.e. free of hidden modes) realizations, which are very useful
when synthesizing 2D observers and controllers, have been analyzed in
the second half of the last decade and are now well understood.

The situation is different if we look for minimal realizations, whose



structure still constitutes the bottleneck of the 2D theory. At the mo-
ment counterexamples are available, that provide negative answers to
many questions we could naively hope to solve by just extending 1D
results. A stricking difference w.r. to the classical case is that hidden
modes are allowed in minimal 2D realizations. This result encompasses
many interesting consequences, ranging from the stability of minimal re-
alizations to the existence of minimal realizations that are not modally
controllable and reconstructible. In the perspective of this paper, an
important consequence is that minimal state space realizations of a fi-
nite 2D array are allowed, whose characteristic polynomials cannot be
obtained as denominators or rational irreducible 2D Padé approximants.

2. Rational representations of 2D finite data arrays

Suppose we are given a finite array of data with support in the discrete
plane, and we look for an irreducible rational function in two variables,
whose power series expansion fits the samples of the array. For sake of
simplicity, we assume that the support of the array is included in N2 and
data are entered by diagonals, according to the restriction to N2 of the
total ordering relation <r in Z? given by (hy, ha) <r (k1, k2) iff (ks +
ha < k1+kz) or (hy+ha = ki +k2 and hy < k3). Consequently, at every
time instant there exists an integer pair ¢ = (g, g2) € N? such that the
2D partial sequence of data A7 := {Ap, p <r g} is already known. The
acquisition of a new sample A, updates the partial sequence into 4991
with ( i 1), g >
@1tlgtl), g 21

g5l = {(Q2+1 0), if g =0 (21)

A causal rational function c(27!, z37%) /b(27 1, 25°1) constitutes a “ra-
tional representation” of A7 if the samples of A7 are fitted by the coef-
ficients of the power series expansion

c(zrt23Y) ,z
b( : 2 Z spzp Z sph?nzflzgn (2‘2)
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for all p <7 ¢q. The denominators of all rational representations are
termed “valid polynomials” of the partial sequence A? .

Once a valid polynomial b of A? has been computed, obtaining a
numerator ¢ is a trivial task, that essentially reduces to a convolution
operation between A? and b. Therefore, the parametrization of the valid
polynomials set V(A9) can be viewed as the crucial step of the rational
representation problem. However, since V(A7) is an infinite set, an effi-
cient solution should single out, on the basis of some optimum property,
a finite subset of valid polynomials. In the following, we shall concen-
trate on valid polynomials with minimum degree w.r. to a convenient



degree definition for polynomials in two variables.

To that purpose, introduce in Z x Z the partial ordering given by
the product of the orderings: (ry,r2) < (s1,s2) iff r1 < 51, r2 < g,
and define the degree of a polynomial b(z;1, 25 !) as the integers pair
constituted by the degrees of that polynomial w.r. to the variables z; 1
and z; ! . If degb = (hq, h2), the coefficient of z;™*2;? needs not be
different from zero. In case it is different from zero, b is called a §-
polynomial. Note that the denominator of any coprime causal rational
function is a §-polynomial.

Valid §-polynomials can be characterized by a set of linear relations,
as stated in the following Theorem

THEOREM 1 (3] Letb =3 bz =3 by, 272" be a é-
polynomial. Then b is a valid polynomial for the partial sequence A7 if
and only 1f
b[Aq]p = Z biAp+,' =0 (2_3)
o<i<degh

for all p € §(degb,q), where the set S(-,-) is defined by

S(z,y):={t€Z?:t+2eN?t+z<p y,t £0} (2.4)

A valid polynomial b € V(A7) is “minimal” with respect to the given
set of data A7 if none valid polynomial b exists, such that degb < degb.
Minimal polynomials are denominators of coprime rational represen-
tations of A? , which in turn belong to the set V(A7) of valid é-
polynomials.

“Irreducible sets” of minimal polynomials provide the optimal finite
subsets of valid polynomials we are looking for. Consider a set of minimal
polynomials I, C V(A?), obtained by selecting a representative in every
subset of minimal polynomials having the same degree. Such I, is called
irreducible. Given a partial sequence A7, the corresponding irreducible
polynomial sets are non unique. What is unique, however, is the set of
the degrees of the polynomials that belong to anyone of the irreducible
sets.

The construction and the updating of an irreducible set of min-
imal polynomials is based on the following polynomial vector spaces
F,(A?) := {b € R[z7',23!] : degh < 5,b[A7], = 0,Vp € §(s,9)}, s €
NZ. These spaces are very useful, since a §-polynomial b(z7t,251) of
degree s is a valid polynomial for the sequence A? if and only if b €
F,(A?), and it is possible to single out a finite subfamily of the family
{F,(A?), s € N2} that allows to compute an irreducible set I, . More-
over, when a new sample A, is obtained, updating F,(A?) into F,(A47%1)
is quite simple. Actually, in case ¢ < s we have F,(A?) = F,(A47®!);



if not, the definition of F,(A?®!) involves one more linear constraint
w.r. to that of F,(A?) and F,(A47%!) is a subspace of F,(A?) with a
generator set obtainable from a generator set of F,(A7) (see [3]).

The computational complexity of the procedure for updating the
family {F,, s € N?} and for extracting I, is very high. So it seems
reasonable to look for alternative algorithms that avoid dealing directly
with the structure of the above family. A detailed procedure has been
designed in 3] where, for all ¢’s, the infinite family is replaced by a finite
set of polynomials. These polynomials still allow to compute I; and are
recursively updated when a new sample A, is available.

3. Minimal state space realizations of rational representations

Suppose now that a rational representation W(zy,2;) € R(21,22) of a
finite array has been computed and we want to select an efficient state
space realization of W(zy, 23).

In setting up a structure analysis for a class of algebraic objects like
2D realizations of a rational transfer function W(z, z3), it is desirable
to be able to recognize what special subclasses of 2D realizations are
“simple” and to be able to measure the lack of “simplicity” in the gen-
eral realization. One then wants some sort of passage from the general
realization to these better behaved ones, that will contribute the target
for all subsequent analysis efforts.

In principle, the situation is very similar in the 1D case, where, in
order to study the set of all realizations of a 1D transfer function, we slice
out of the set a certain piece - the subset of non-canonical realizations
- in such a way that the piece being cut away is capable of description
and at the same time the object resulting after the excision, i.e. the
set of minimal realizations, is also capable of an easy and algebraically
sound description. When dealing with 2D realizations, however, the
dichotomy minimal/nonminimal does not provide a convenient partition
of Real(W), the set of state space realizations of W. As a matter of
fact, there is no concrete way for passing from nonminimal to minimal
realizations and, on the other hand, 2D minimal realizations often do
not constitute a set endowed with strong structural properties.

It is to circumvent these difficulties that we introduce noncommu-
tative power series [4]. We shall see that every realization in Real(W)
can be viewed as the matrix representation (MR) of a noncommutative
power series ¢ whose commutative image is W. Furthermore all realiza-
tions that provide minimal MR’s of the corresponding n.c. power series
turn out to have a simple characterization in terms of rechability and
observability matrices. On the other hand, if ¥ € Real(W) does not
constitute a minimal MR of a noncommutative power series, then linear



algorithms apply so as to provide a minimal MR. So, a good insight
into the structure of Real(W) can be gained if we previously discard all
realizations that do not provide minimal MR’s of n.c. power series. This
elimination can be performed in a very simple way and the remaining
subset of Real(W) is easily parametrized by a family of n.c. power series.

Consider the commutative power series expansion W = ) w,-,J-zizg
and a noncommutative power series [5] in two non commuting variables
O = > re{es, ez} (0, )T, whose commutative image ¢(0) is W (z1, 22).
This amounts to say that the coefficients (o, 7) of (3.2) satisfy the fol-
lowing infinite set of linear equations

Z (oym) =w;; 1,7€N (3.1)

n:‘t{n):z;z;

Suppose, moreover, that o is recognizable, which implies the existence of
matrices Ay, Az, By, B2, C, D of suitable dimensions, such that ¢ admits
a MR with the following structure

oc=D+C(I— A1&; — Az€) " (B1 €1 + Ba&s) (3.2)

Clearly we have that any MR of o is a state space realization of W
and, viceversa, any state space realization & = (A;, As, By, B;,C, D)
of W (z1,2z) induces a recognizable noncommutative series o = C(I —
A1€1 — A2€2)7Y(B1€1 + Ba ) + D that satisfies (3.1). Therefore, denot-
ing by N(W) ihe set of all noncommutative recognizable power series
that satisfy (3.1), we have that the map

¥ := Real(W) — N(W) := (A1, A2, B1, B2,C, D)

3.3
— 0 =C(I— A€y — A262) " (B1&1 + Ba&3) + D (38)

is surjective. The inverse mapping of 1 induces a partition of Real(W)
into disjoint and non-empty sets with the following properties:

i) ¥7Y(0),0 € N(W), is the set of all MR’s of o.

i) Minimal MR’s of any ¢ € N(W) are uniquely determined, modulo
a similarity transformation and can be obtained using linear procedures,
starting from any other MR of 0. Also, given ¢ € N(W), a modified
version of Ho’s algorithm allows to compute a minimal MR of o.

iii) Preimages ! (1), ¥ ™! (02) of different series ¢y and o in N (W)
possibly include minimal MR’s with different dimensions. Actually it is
not difficult to show that N(W) includes noncommutative power series
with minimal MR’s of arbitrarily large dimensions.

iv) 2D realizations that constitute MR’s of different noncommutative
power series are nonequivalent.

The above approach to the analysis of Real(W) enlightens many in-
teresting properties of 2D realizations. First of all, W(z1, z2) needs not



admit a unique minimal state space realization (modulo similarity). Ac-
tually the dimensions of minimal MR’s of the series in N(W) constitute
a set L C N, whose lower bound m is possibly attained by minimal
MR’s of many different series in N(W).

EXAMPLE 1 The transfer function W(zy, z2) = z122/(1 — 21 — z2)2
admits X, given by

I T I e

and Z, given by (41, A2, By, B2, C) = (A2, A1, B2, By, C), as nonequiv-
alent minimal realizations. Note that ¥ and £ provide minimal MR’s of
the following n.c.power series in N (W)

o=(1-¢& — &) (11— & — &) & = €€ + higher order terms
F=(1—¢& — &) 1€a(1— & — &) ¢ = €261 + higher order terms,

The dimension of a minimal MR of a noncommutative recognizable
power series ¢ € R << £, £; >> does not decrease if the matrices are
allowed to take their values in C, instead of R. However the dimension
m of minimal realizations of W possibly depends on the field. In fact the
set N(W) is bigger, and the lower bound m of the set L may decrease,
if noncommutative power series take coefficients in C instead of R.

EXAMPLE 2 Consider the polynomial transfer function W (zy, 22) =
22 +22. When looking for a realization of dimension 2, elementary degree
evaluations show that matrices A; and A, must satisfy det(] — A;2z; —
Asz;) = 1. This implies that A; and A; can be simultaneously put in
structure upper triangular form and therefore

1 o =
# 7= ca [0 alzll azzZ] (Byz1 + Baz2)

factorizes into the product of two first order forms. This requires C to
be the ground field. The complex valued minimal realization

01 0 1 0 0
Al—'[o 0:|:A2—[0 0]:31_[1])B2_[_i]?c—[1 0]
isa MRof o/ = ¢2 (a1 — &1&) + 2 € C < &y, &2 >.
The real valued minimal realization given by
0 -1 1 0 -1 -1 1 1
A;=|0 0 0f|,A2={[0 0 0|,By=|-1|,B:=]|-1]1],
0O 0 0 0o 0 0 1 -1

C=[1/2 1/2 0]



provides a minimal MR of 0" = &2 + 2 e R < £1,63 > .

Using noncommutative power series sheds also some light on a prop-
erty of 2D hidden modes, that has been recently discovered. Given an
irreducible 2D transfer function n(zy, z2)/d(21, 22) and a state space re-
alization ¥ = (Ay, Ag, By, B2, C, D) of W(z1, z2), hidden modes are the
common factors of Cadj(f — A1z; — Az22) and det(] — A;2z; — Azzs).

Since in the 1D case hidden modes are associated with unreachable
and/or unobservable parts, that prevent a system from being minimal,
a naive extension of 1D theory would suggest that minimal 2D realiza-
tions are free of hidden modes. Actually cancellations of 2D polynomials
between Cadj(I— A1z, — A222)(B12z1+ Ba22) and the characteristic poly-
nomial det[I — Aj2; — Azz;) are always connected with the existence of
plane curves where one of the PBH controllability and reconstructibility
matrices are not full rank, but this fact is not in contradiction with the
minimality of the realization.

We shall sketch here an example, showing that the above intuition is
false. It is based on a multistep procedure that can be summarized as
follows:

i) express W (zy, 2;) as the product W;W, of two irreducible transfer
functions that exhibit the cancellation of some nonconstant polynomial
c(z1,22).

ii) construct two minimal realization ¥y and £, of Wy (z;,2;) and
W (z1, z2), respectively

iii) perform the series connection of £; and £,. This provides a
realization of W (z1,2;), whose characteristic polynomial includes the
factor c(zq, z2).

REMARK The noncommutative power series ;5 that corresponds to
the series connection of ¥; and I, is the product of the noncommutative
power series oy and o, associated with I; and X respectively. The
cancellation of a commutative polynomial ¢(21, 23) in W ;W5 needs not
imply that cancellations arise in the product 0102 = o2, when oy and o
are expressed via finite sums, products and inverses of noncommutative
polynomials. This suggests that the series connection of £; and ¥, may
be a minimal MR of o;5, irrespective of cancellations in W, W;.

EXAMPLE 3 Consider the transfer function W (zy, z3) = (21 +22)° +
22 + 25 and its factorization into

(21 +22)3 + Z% + 25
1+22

W (21, 22) = Wi(z1,22)Wa(z1,22) = [1+ 23]



Starting from a minimal realization Xy of Wy (21, 22), given by

0 -1 0 0 -1 0 0 1
Ai=|o o -1|,A,=|0 o -1|,Bi=]o|,B.=]0],
0 0 O 0o 0 -1 1 1
C=[1 0 0],
and a minimal realization X5 of Wy(z1,22), given by 111 = [0],&2 =

[0], B; = [0],B; = [1],C = [1], D = [1], we compute the series connec-
tion of ¥; and X,

_ J:i]_ 0 _ "2 0 s ﬁ1 = 2
Al—[falo gl]’Az—[Bgc Az]’Bl[Bl }’32—[329]’
c=[0 C]

The above system constitutes a minimal realization of W. The proof
of this fact is rather long [11], and involves a detailed analysis of the
matrix pairs A;, Ay in C3*3 that satisfy the finite memory condition
det(I — A;z; — Azz;) = 1. Note that X1 and X provide minimal MR’s
of o1 = (§1+ &2)*(1 + €2) * (&1 + &2) + &2 and 0 = 1+ &; respectively,
and T provides a minimal MR of ¢ = [(&1 + &)?(1+ &)~ (&1 + &2) +
£&2](1 + &2). No cancellation arises in the above expression because of
the noncommutativity of the factors (1 + &;) and (&; + £2).
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