State realization of 2D finite dimensional autonomous systems

I5.Fornasini*, I’.Rocha**,

S.Zampieri®

* Dept. of Elect. and Inform. University of Padova
via Gradenigo 6/a, 35131 Padova, Italy, far 29-49-8287699

o ** Fac. of Tech. Math. and Informn. Dellt University of Techinology
Julianalaan 132, 2628 DL Dellt, 'The Netherlands, fax 8$1-15-787022

Abstract This paper deals with the state space realization of autonomous autoregressive 2D aystemns in the context
of behavioral approach. Any arbitrary autoregressive 21 aystem I can be viewed as the sumn of an externally controllable
subsystem L° witli-an autonomous one £°. Hence the state space realizations of I can be obtained by separately realizing £
and I*. A procedure for realizing externally controllable systems in state/driving-variable form has already been presented
in [8]. Thus, in order to solve the general realization problem, it is enough to investigate the autonomons case. llere we
consider in particular finite dimensional autonomous systems and derive a realization procedure based on Gréhner hases

representations of such systems.
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1 Introduction

The realization of 2D systems by means of state space models is an
important question which still waits for a complete solution. A major
problem in this area concernsthe realization of noncausal systems. As
well-known, 2D input/state/output models proposed in [1] and [2,3]
realize precisely the class of quarter plane rational transfer function.
A possible approach to the realization of noncausal transfer function
is to consider singular versions of the above mentioned models, as
done in [4,5]. However, these input/state/output models the disad-
vantage of not being in recursive form.

An alternative to the singular model approach is to consider
state/driving variables models, where the joint input-output trajec-
tories are recursively computed from the values of an auxiliary free
variables via the state. It is shown in [8] that every externally control-
lable autoregressive (AR) 2D system can be realized in state/driving
variables form independently of its causality structure. It still re-
mains, however, to analyse the realization of arbitrary (i.e., not nec-
essarily externally controllable) 2D systems. In this paper we reduce
such a problem to the realization of autonomous systems. Indeed,
we show that every AR system ¥ can be viewed as the sum of an
externally controllable system L° and an autonomous one, £° and,
therefore, the realization of I can be obtained by realizing separately
X and L% Since a procedure for realizing externally controllable
systems is given in [8], it will be enough to derive a realization pro-
cedure for autonomous systems. Here we consider, in particular,
the case of finite dimensional autonomous AR systems with ¢ (real-
valued) variables defined over Z2. It turns out that, in this case,
the set B of admissible system trajectories can be represented as
B ={w:Z*— R?| R(01,02,07%,07")w = 0}, with oy and o3 the
2D shifts and R(zy, 22,271, 2z3°!) a factor right coprime 2D polynomial
matrix. This implies that the polynomial module generated by the
rows of R is characterized by a pair of commuting invertible matri-
ces. Basing on these matrices a state space realization of the original
system can be easily obtained.

2 Autonomous 2D systems

In this paper we follow the behavioral approach to dynamical systems
introduced in [9] and [6]. This means that we characterize a 2D
system by means of its behaviour, which consists of the set of all the
signals which are compatible with the system laws. Moreover, we do
not start with a given input/output structure, i.e., the system signals
are stacked together in a (multivariate) signal w instead of being
divided into inputs u and outputs y. A 2D system £ with g real valued
variables defined over Z? and with behaviour 8 C {w : Z? — R}
will be denoted by & = (Z?,R9, B).

In order to define the notion of autonomy we introduce the follow-
ing nomenclature. A subset S C Z? is said to be a 2D-unbounded set
if there exist unbounded Z-intervals I; and I3 such that Iy x I, C S.

Definition 1 £ = (72, R9, 8) is an antonomons 2D syatem if there
exists a subset 7' C Z? such that Z2\ 7 is 21) unbounded and satisfies
the following condition

{wl,wz (=} B and wlh- = wzh.} =5 {wl e !“2}

So, intuitively, a system is autonomous if the evolution of its trajec-
tories is completely specified by what occurs in a restrict part of the
domain Z2%.

In the sequel we will be interested in the class of autoregressive 2D
systems. % = (Z% R?, B) is said to be an autoregressive (AR) system
if there exists a (two sided) 2D polinomial matrix R(z1,22,271, 257)
such that

B={w:7% - R7| Rley,02,07" 07" )w = 0},

with oy and o3 the 2D shift operators. These are respectively defined
by:
orw(ty, t2) = wity 1 1,1y)

oaw(ty,t2) = w(ty, iy + 1)

for all w: Z% — R? and all (t1,t2) € Z®. As stated in proposition
2.1, for autoregressive systems the autonomy is equivalent with the
absence of free variables.

Notation Let £ = (Z2,R?, 8) be a system in the variables (wiy. ..,
wy)T = w. The variable w;, i € {1,...,q}, is a free variable if,
for every a : Z* — R, there exists some w € B such that w; = a.
Similarly, a vector (w;,, ... ,w;,)T, with i€ J C{1,...,q} and i; #
ik if j # k, is a vector of free variables if for every g : Z2 — R!
there exists w € B such that (w;,,..., ;)T = #. The number of free
variables in a system X is defined as the maximum dimension of a
vector of free variables in E.

Lemma 2.1 Let & = (2% R7,B) be an autoregressive 2D system
such that B = {w: Zz_ﬁ R?| R(o1,03,07%,07)w = 0}. Then:
1. The number I of free variables in ¥ is g — rank(R).

2. Ifl > 0, there exists a nonzero ¢ x! polynomial matrix M(zy, 23,
2%, 25 ') such that B D imM(o1,02,07,05!) , where M(oy, 79,
ei',07") is viewed as an operator from {v:Z' - R"} into
{w: Z* - R7}. Moreover, im M has [ free variables.

PROOF: For the first statement we refer to [6, Chapter 3, Proposition
13]. As for (2), note that R can be factorized as R = FP with P



a full rank factor left prime polynomial matrix of size | x q. Con-
sequently B D {w : Z? -+ R | P(oy,02,07 05w == 0} ::: ker P
Finally, it follows from [8, Theorem 1] that there exists a g x [ nonzero
polynomial matrix M such that ker P = im M.

Proposition 2.1 An autoregressive system ¥ = (Z2, 7, B) is au-
tonomous if and only if it has no free variables.

PROOF: (i) Suppose that I is a system without free variables. Then,
the method for chosing the initial conditions proposed in [7, Section
4.2] implies the following. There exists a subset I of Z? of the form
I =([-L,L| x B)U(Z x [-L, L]), for some paositive integer L, such
that every trajectory w € B is completely determined by its initial
values w|ri*In other words, if w',w” € 8 and w'l; = w’|;, then
w' = w", This clearly means that ¥ is autonomous,

(ii)Assume that £ has I > 0 free variables and let M be as in
lemma 2.1, Denote respectively by #i; and m; the maximum and the
minimum of the exponents of z; in the entries of M, and define the
extent of M as e(M) ::_.ﬁ max {ii; — my,mz — my}. Further,
denote the Euclidean digtance by d(-,-). Given any subset T C Z?
such that Z? \ T is 2D-unbounded, define two trajectories v' and
v” € {v: Z? - R} in the following way. The trajectory v' is
simply the zero trajectory. As for v”, we require that v”(ty,t2) = 0 if
d((t1,t2),T) < e(M); for (t1,tz) with d((t1,t2),T) > e(M), we define
v” (L1, ¢3) in such a way that Me” # 0. Note that this is possible since
the value of Mv" at a point (t],£3) € 7 depends only on the values
of v” at the points (t1,23) such that d((ty,2),(¢],t3)) > e(M). Let
now w' := Mv' =0 and w” := Mv”. Clearly, w',w” € B. Moreover
wr = w'|y =0, and w” # 0 = w'. This shows that £ is not
autonorous,

Clearly, the set {w : Z* — R} of R%-valued [unctions defined on
Z? is a real vector space with respect to functions (pointwise) addition
and (pointwise) scalar multiplication. A 2D system T = (Z% R, B)
is said to be linear if B is a linear subspace of {w : Z% — R?}. A
linear 2D system is said to be finite dimensional if its behaviour B
is a finite dimensional vector space, otherwise ¥ is said to be infinite
dimensional.

Contrary to the one dimensional case, where autonomous linear
systems are necessarily finite dimensional, autonomous 2D systems
may be infinite dimensional. The following proposition character-
izes the autonomy and the finite dimensionality properties of AR 2D
systems,

Proposition 2.2 Let & = (Z?,R? 8) be an AR 2D system with
behaviour 8 = {w : Z? — R | R(ay,03,07',05 ' )w = 0}, where
R(z1, 22,271, 27) is a 2D polynomial matrix. Then £ is autonomous
if and only if R has full column rank. Moreover ¥ is finite dimensional
if and only if R is right factor prime.

PROOF The first part of the result is an irnmediate consequence of
lemma 2.1 and proposition 2.1. The second statement follows from
[5, Theorem 3.8).

An extreme example of non-autonomous systems is the class of
(externally) controllable systems. For these systems, the evolution
of the trajectories outside a restricted part T of the domain eventu-
ally becomes independent of what occurs in T. Formally, we define
(external) controllability as follows.

Definition 2 A 2D system © = (22, R, 8) is (externally) control
lable if the following condition holds. There exists a positive real
number p such that, for all Ty, Ty C Z? with d(T,T2) > p and for all
wy, wz € B, there exists w € B such that w7, = wi|1,1 = 1,2. Here
d(T}, T3) denotes the euclidean distance between the sets Ty and Ty,

Remark We refer to the above notion of controllability as to external
controllability in order to make a distinction from the classical notion,
which applies to state space realization. Our definition is given at an
external level, as it only refers to the (external) system variables
w € B. However, when no possibility of confusion arises, we will
simply refer to it as controllability. )

The next result provides a characterization of controllability for
autoregressive systems.

Propoai.tion 2.3 [6] Let £ = (Z% R?,8) be an AR 2D system.
Then E 18 controllable if and only if there exists a factor left-prime
(two-sided) polynomial matrix P(21, 23,27, z31) such that

B {mrzz R f’(n],n;g,n;||rr§’)vlr 0}.

An interesting feature of controllability and autonomy is the fact
that these are complementary properties, in the sense that an arbi-
trary AR system can be viewed na the sum of a controllable system

Wilh an antonomous one.

Notation Given two systems %; = (2%, R7,8;),4 - 1,2, the sum
L1+ By of Zy and By is defined as Xy | ¥ == (2% R, 8), where
B := B+ B,y

Proposition 2.4 Let £ = (72,17 8) a 2D system. Then there

exisl AR systems 8¢ (ZZR? B7) and B (72 117, B") anch that:

1. 2% is controllable,
2. ¥ is antonomous, and

3. D =X° |- B

PROOF: Let R{zy, 22,271, 25 ") such that
B={w:2* = R? | R(oy,00,07 05 Dw — 0}

Then there exist polynomial matrices F(z, 7, 7 Yoz ), with full
colunm vank, and Pz, 22,20 1, 23 '), with full row rank, such that
R = FP. Without loss of gencrality we can assuine that I” is factor
left-prime (otherwise the non-trivial left factors of I can be extracted
and included in F) and that, moreover, 7 == [ P%], with Iy asquare
and full rank matrix. Define

B ={w: AR 1 1) | Pw =0},
B = {w:Z? -+ R7 | w= [EIJ ywy = 0 and FPjwy = 0},
2

¢ = (Z% 1, 8°) and B°* = (Z%, R4, B®). Clearly, by proposition 2.3,
%¢ is controllable and, by proposition 2.2, £* is autonomous. We will
show that ¥ = 2° 4 I®, Since both B¢ and B? are subspaces of B,

B4 B*CB.

Pw [ note

In order to prove the reciprocal inclusion, assume thal w € B is given.
Let w® :—

a
w .

L1 with wy == 0 and w§ such that P
1w

H

that I’y(0y,02,07 Y05 1) is a surjective operator, as 1 has full row
rank). Further define w® := w — w®. Now, since FIiuw¢ = FPw =
Rw = 0, it follows that w® € B9. Moreover,

wi

Pw® = Pw - Puw® = w1y 1’2][ ] = Pwo w0

wy
and hence w® € B°. So, w = w® 4+ w® with w® € B® and w® & B*,
proving that B C B® 4 B* This yiclds the desired result.

Rerark Note that the above sum 8 = B¢ 4 B¢ (and hence 3 = ¢ 4
Z%) is not necessarily a direct sum, i.e. we may have B°n Be # {0}.
However, it can be shown that 8 = B @ B% if and only if in the
decomposition R = FP the matrix I is zero-left-prime. Moreover, it
is not difficult to prove that & = ¢ + Df =3+ % imply £f = 5%,
i.e. in the decomposition 3 = 5° 4 B¢ the system E° is unique. In
fact, it turns out that ° is the largest controllable subsystem of I,
Curiously, this uniqueness does not necessarily hold for £%. This is
illustrated in the example helow.

Example Let B = (22, R3, B) with
8 = {w:Z* - ? | R(a, 02.0;1,0; 1)!:: 0}
where

R(Zl,z:z,zil,z;l} — [21—1 0

0 Zz*]

(21 = ”(Zg + 22)]
(22 - l](::-z - 21) :

Then, clearly, R can be decomposed as B = FI? with

\ o zy - 1 0
PRt ’z’[):"[ 0 22--1J

and

sy 10
P(ZI,ZLZI 1,22 :):i [0 1 z;f::}



Constructing £° and £° as in the proof of the proposition 2.4 yields
B¢ = (Z% R3, B°) with

B = {w:Z* W R? | Pw =0},

and L% = (Zz,RS,B“) with

wy
B := {w:7? + 1*? | w— {wg] ywg O F [w.] 0}.

wy
w3
So, = X% 4 ¥°. Let now £% = (Z?, R?, 82), with
B :={w:Z 2 R? | w, = O,F]_’[z::] =0}

and ; I

2 “1 -1y 71tz

‘r(zhz?:zl 23 0) [0 s 22}-
Applying the same reag;ggfi;g ag in the proof of proposition 2.4, it
is easily shown that also £% + £° = 2. So, in the decomposition
X = B% 4 ¢ the autonomous subsystem is not unique.

The above decomposition of an arbitrary AR 2D system 3 into
the sum of a controllable part £¢ and an antonomous part B* can be
used to obtain state space realizations of I by separately realizing
Z° and B As shown in (8], every controllable AR system admits a
realization of the form

S(owos)x =0
7103X = Ayo1X + Azoax + Byoyv + Byogv (2'1)
w =Cx+ Dv

with x the state, v an auxiliary variable, called the driving-variable,
and where (2.1.1) can be regarded as a constraint on the admissible
initial state along a diagonal line. Thus, in order to investigate the
realizability of an arbitrary 2D system ¥ = 5°-£ by the state model
(2.1), it is enough to focus on the realizability of the autonomous part
E?®. This problem will be considered in the next section.

3 Autonomous finite dimensional systems

We shall assume throughout that R is a full column rank, factor right

prime matrix, with elements in the polynomial ring Rzy, 23, 271, 2371

= Ax. Moreover, for sake of simplicity, we shall first restrict to scalar
behaviours, by assuming that R = [r; ry r¢]" a column vee-
tor, and successively extend the results to the general case,

3.1 Scalar case

In the subsequent discussion a significant role will be played by some
connections between the ideals in A4 and the ideals in Ay =Rz, 2]
and by a characterization of the system behaviour based on the alge-
braic properties of dual spaces. The connections are provided by the
following map

|1 Ax = Ay :p s |p| = 27257

where ¢ and 7 are the minimum degrees of p w.r. to the variables z,
and z; respectively. More precisely, if

P= Z Phki?zzk
hkeZ

then
i:=min{h € Z|3k € Z, pps # 0}

Ji=min{k € Z|3h € Z, psx # 0}.

In case p = 0, we define |p| = 0. Clearly, for every nonzero p, |p|
includes a monomial in z; and a menomial in z3 with nonzero coeffi-
cients.

Denote by I := (r1,72,...,7¢)2 the ideal in Ay generated by
™72, and by Iy := (|r],|raf,..., |r]) s the ideal generated in
Ay by |ry,|r2],...,|r|. Note that I, depends on the particular set
of generators ry,ry,...,r in Iy.

Lemma 3.1 i) p € I; if and only if there exists a pair of integers
(v,7) such that z{zjp e I,.

ii) Ay /Ty is finite dimensional if and only il the same holds for
Ay /14

PROOF i) is obvious. As far as ii) is concerned, suppose first {hat
Ay /1y i a nonzero finite dimensional space. This implies that .,
and hence Iy, include two nonzero polynomials f(z) and g(z3), with
deg [ = ¢ > 0and deg g = v > 0. It is easily scen that the cosets
[z{z;] =241, 0<q < @, 0 < 7 < v conslitute a finite set of
generators for the quotient apace Ay /T,

Viceversa, suppose that Ay /Iy is a nonzero finite dimensional
space and assume, by contradiction, dimA, /I, = co. Then there ex-
ists a polynomial d € A, which is a common factor of Iralslrals - oy |rel
and is noninvertible in Ay, (since the [ri]s cannot exhibil a factor like
ziz]). Asa consequence, Iy C (d)4, where (d), is the principal ideal
of Ay gencrated by d. To get a contradiction, it remains to prove
that Ay /(d)4 is infinite dimensional. Since d must include at least
two nonzero monomials and these exhibit diflerent, deprees wor, to 2y
or zz, it is casy Lo see that {24,1 ¢ Z} in the first case, and {241 ¢ 7}
in the second, are linearly independent sets, modulo (d) 4.

In the following we shall identify in the obvious way the “universe”

RE*Z of all signals defined on Z x Z with the space of the formal

power series in zy, 23,21 1, 23 and introduce a bilinear function

(- :Ux Ay R,

by assuming that (p,w), we U, p = Yijez a2 z;, is the constant
l.c:l-m in the Cauchy product wp, where P o= 3 e aigzg 2;7. In
this way, the space of the bilateral series with support in Z x Z is
isomorphic to the algebraic dual of Ay, Moreover, since

we B¢ (rw) =0, Vre Iy,

B can be identified with the orthogenal complement of J;. We there-
fore have

B=1If, Bt=rit=yp

Lermuna 3.2 If the matrix R is right factor prime, then 8 and A/ Iy
are finite dimensional isomorphic vector spaces,

PROOF  Since R is right factor prime, A, /Iy is finite dimensional.
Therefore, by lemma 3.1, Ay /Iy is finite dimensional too. Let now
{Ipal,Ip2], ... [pn]} be a basis of A4/ I, and consider the linear map

ViB = Ax/Liiwes 3 (pi,w) ]

i=1

If [y ez ... )" € R is orthogonal to [{pr, w) (p2, w) ... {pn,w)]T

for all w € 8, then
(3 aipi,w) =0,
Yw € B and
NMapedt=1,

This implies oy = 0, ¢ = 1,2,..., n and consequently |{py, w) (py, w) ..

{Pn,w)|T span R" as w varies over B. Therefore ¥ is surjective.
Suppose now that w € B satisfies y(w) = 0 or, equivalently,

(w,p;) =0, { =1,2,...n. Since every p€ Ay can be expressed as

n
Doapitr, rely,
i1

we have
{w,p) = (w,r) =0, ¥pe Ay = w — 0.

Therefore 1 is injective.

Once a basis {[p1],|p2],.. ., [pn]} has been chosen in As /I, and
consider the dual basis {w,wa,...,wy} in B wr. to the bilinear
function ([p], w) == (p,w). We have {[p], w;) = Bis.

Consider the commutative linear maps

ZyviAsfIs — AsfIs : [p] — [21p]
22 Ax /Ty = As /Ty : [p] v+ [22p)]

and the adjoint maps Z{ and Z} in the dual space, defined by

{lpl, Ziw) = {[21p], w)



([P], z;w) = ([zip]l w)
Since {[zp],w) = (w£p,1) = {[p],z7'w), i = 1,2, we have that
Ziw = z{'w and Zhw = z;'w.

Let N; = Inﬂ , £ == 1,2, be the matrices of the linear trans-
formations Z; w.r. to the basis {|pi],[p2|,...,lpn]}. Then "5:;2 =
([2ipk), wa). Moreover, the matrices of the maps Z} and Z} wr. to
the dual basis are N7 and N7 respectively. In fact, letting Zlw; =

hI tg}wh, { = 1,2, we have

(pel, Ziw;) = 37 t¥)pal, wn) = ¢ (3.1)
h

and, using the duality,
(Ipel, ZHes) = (zipe),ws) = 3l (peywy) = 0] (3.2)

Comparing (3.1) and (3.2).gives the result.

Let x(0,0) € R" denote the vector in R” whose elements are the
components of w with respect to the dual basis

(Ipa], w}

x(0,0) = [ {IPslw)
{[pn], w)

and C:=[c; ¢ ¢, ] denote the row vector of components of

[1] w.r.to the basis in Ay /Jy. The computation of the coefficients of

the series w (i.e. the signal values) is quite simple:

(27”23 *w,1) = (1], (ZDM(Z))*w) = C(NT)H(NT)rx(0,0)
Once a “state vector”

(Ipa] (21)"(23)*w)
(Ip2], (2D)"(25)*w)

(lpal, (ZD)*(25)*40)
has been attached to every point in Z x Z, the state and the signal
values at (h, k) are uniquely determined by x(0,0) according to the
equations

x(h, k) =

x(h, k) =(N{)*(N])¥x(0,0)
w(h, k) =Cx(h,k)

When p;, 7 = 1,2,...n are monic monomials, i.e. p; = z:" z;", Fi=
1,2,...,n, the element w; of the dual basis is the unique element of

B taking the values 1 at (k5,v;) and 0 at (3, 04), § = 1,2,...,5~
1,5+1,...,n. Moreover, for every (h,k) € Z x Z, the components of
the state vector x(h, k) are the values of w at {(zzy + h, vy + k), (pe2 +
hyvat k), ..oy (pn 4 hvn + E)).

In the following subsection we shall apply the Grobner basis algo-
rithm [10] to the construction of a monomial basis in As/Iy and to
the computation of the matrices NT and N that provide the state
updating structure.

3.2 Computational Methods

Let G4 = {91,92,--.,9n}, 9i € A, be a Gribner basis of the ideal I,
and suppose that {g; = 1,qs,... +gm} is the set of monic monomials
that are not multiple of the leading power products of any of the
polynomials in §,. Then {0;+ T }j=12,..m i5 a basis of A, /I, and
it is easy to compute a pair of commuting matrices M; and Mz that
represent the linear transformations

$itAr/Iy AL i q 4+ Iy — g4 Iy, i = L2

w.r.to that basis. In [11] it has been shown that the annihilating
polynomials of M; and M3 are exactly the polynomials of the ideal
I.‘., ie.
(M, Ma) =06 pe Iy
The construction of the invertible matrices Ni and Nz introduced
in the previous section can be viewed as a further step of the above
algorithm and sheds some light on the connections between T4 and
I+.
Let p be a positive integer such that

Ii = TmMP = qma ' 12

Then L = Lyn Ly is an My-M;y-invariant subspace such that M; [ =
My L = L. Therefore the subspace £ of Ay /T, spanned hy

{zr'Z;’qu,sz' Z;’CI:'.], ---:lzfl Z;?G'mL v 2o > (3‘3)

does not depend on 1y and [Z8
Let vy o py
(3.3) a maximal independent subset

poand let S be a boolean matrix that selects in

Utz [ aal - (A2 aml}S = {[24' 5 i) (4 o0l ... (24 ebai,])
Note that, because of the assumption on L,
{[z,:ﬂi‘az;ll l'qll [2:1 1 Flzétlqul L IZ:‘I hz-::lkq»n”s
::{sz'}hz; I kql_li [Z{th;n kq.—,] o IZ;'”{Z;”*Q.',,”
still provides a basis of £, for any pair of nonnegative h and k.

PI'roposition 3.1 The polynomials ¢;, ¢;;,..., g, constitute a hasis

of A4, modulo Iy,

PROOF Suppose that 3°F_; axg;, isin Iy.

Then there exists a positive integer v such that 3.5 | oyq;, 2V 2% and,
a forliari, 3" _, ahq.-hzrwz;“ ¥ belong to T,.

Since the polynomials

v _pte ptw _ptv CoGkte _piwv
gz 2y gy g e e
are lincarly independent modulo Iy, we have ap, = 0, b - 1,2,... n,
and ¢i,,h = 1,2,...,n are linearly independent modulo Iy .

Consider now a polynomial p € Ay. Then there exists a positive
integer v such that zyz¥p € A, . Therefore

n n
™ un 7 g oGk _piv
(2Y25p)2yey = 3 anqnzlzh - E Brainzy ¥ 24 mod I
h=1 h=1

n
- E Brginzt' V" modly

h=1
Multiplying both sides by z; * "2, we have

p= Z Baqin  modly,

h=1

showing that the polynomials g5 gencrate Ay modulo Iy.
Once [gi,],[9:,],. ., i, ] has been selected as a basis in ATy,
we are interested in constructing the commuting invertible matrices

that represent 2y and Z3. Consider first the matrices Ny and N,
that represent the restrictions of ¢; and ¢, to £. We have

dill=tzqi,) [t 2 i), o (2 2 i, ]}
= ¢ {lzf o), [ Bz, 2 2 ]} S
= ¢dlml, g2, -, Iqm]}f‘ﬂ‘Mz'uS
={lmblaal, . lgm]} M MYS

On the other hand

#ullzrzban ] [of 2 an), o [of 24 g, ])
= {[Z’I"z;q":]’lz;‘z:qi:]l' s ![Z;‘z;qinﬂwl
= {[‘Il;r[qz]r vy quI]}M:JM;SNl

We therefore have M}'*' M{'S = MIMESN,. Since M{'ME'S has
full column rank, letting

o (MY (M) A )
we obtain

Ny = (8THS) Y (ST H M, S)
and, similarly,

N2 = (ST15) "1 (STH M,S)
3.3 Vector case

Suppose now that Ris a ¢ x q full column rank right prime matrix, de-
scribing a q variables behaviour. All concepts previously introduced
for the scalar case have an immediate extension to the vector case.
Let



A% 1= Rz, z)
A} = Illxq[zhz;,zi_l,z; li
and define the map
[-]: AL = AL r |r] o= 22dr,

where 1 and j are the minimum degrees of ¥ w.r. to the indeterminates
21 and zz respectively. In case p = 0, we define |p| = 0.

Let My := (r1,...,1¢)+ be the module in AL generated by the
rows of R and My := (|r1],...,|r:|)+ the module in AL generated by
the rows of the matrix

[r1]

R = AR

f|

[rel

where A :=diag {z7" 25" o2, 21" 25"} and v; and y; satisly 2}z r; =
[ril yi=1,...,t. S

Lemma 3.3

(i) A row r belongs to My if and only if there exists a pair of
integers (1,7) such that 2{z}r isin M. o

(i) AL/My is finite dimensional if and only if AT/M, is finite
dimensional.
PROOF: (i) Obvious. .

(ii) Suppose that A% /M. is finite dimensional. This implies that
there exist polynomials f;(z1) and g;(2;), i = 1,...,q, such that

filz1)el € My
95(22)3? € My

where ¢; is the element of the canonical basis of I? with 1 in position
¢. It is easily seen that, if y; := deg f; and 7, := deg g;, then

U {zhekel + My, 0<h <y, 0<k< 7}
i=1,..q

constitutes a set of generators for A} /M.

Conversely suppose that A% /My is finite dimensional and let [
be any right factor of R

R=RD.

It follows that R = A~'R = A"1RD, where A~! is still a polynomial
matrix with elements in A4. Since the module M4 (D) generated by
the rows of D, satisfies My, C M4 (D), we have

dim AL /My > dim AL/ My (D)

and A} /M (D) is finite dimensional. Therefore there exist polyno-
mials f;(z1) and gi(22),f = 1,...,q, such that

fi(z1)el € M4(D)
gi(z2)e] € My(D)

and, consequently, there exist polynomial matrices H and K such

that
HD = diag{f1(z1),..., fo(z1)} (3.4)
KD = diag{g1(22),...,9.(22)} : (3.5).

(3-4) implies that det D is a polynomial in 2; and (3.5) implies that
det D is a polynomial in z;. Therefore D is unimodular and I is
right factor prime. Therefore A% /M, is finite dimensional,

Denote now by U9 the universe of formal power series in z;, 25, 2z,
z7 ! with g components and introduce a bilinear function {-,) in AL x
U? letting

{r, w) = (Fw, 1).

Note that if r is the polynomial row r ;= Yijez r;jz}zg, F is given
by 3 ez riszi’z? and (r,w) is the constant term in the Cauchy

product fw. Then U9 is isomorphic to the algebraic dual of A% and
we still have

B =Mt
Bt = MEL = My

Moreover B and AL /My are finite dimensional isomorphic vector

spaces.
As in the sealar case, if Ny and Ng are the matrices of the linear
trasformations

21:/‘1/}"; ’11?|/pr 1|1']\ b|:'|r"

Zyo AL/ Ma o AL My (] s [z
w.r. 1o the bagia [ry],... yrn] of AT /My and if the state vector rela-
tive to w € B ia delined as
(Zf‘Zg‘[rll , w)
x(h, k) := )
(Z8Zf[ra) , w)
then
x(h, k) = (NN Ex(0,0).
Moreover, if € is a q % n constant matrix sueh that
lef) [
' = (3

[ed] [rul
then w(h, k) = Cx(h, k).

By applying the theory of Gribner basis over modules [12], a
basis in A% /M with elements of the type 282kl 1 M, can be casily
obtained. After computing the matrices M; and M, that represent

the transformations
di: AV /My ATIMy b My v zr My, P=1,2
w.r. to that basis, the procedure for extracting Ny and N; from M,

and M3 is the same we introduced in the scalar case.
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