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Abstract—MNecessary and sufficient conditions for the existence of a
decoupling bicausal precompensator for multivariable 2-D systems are
derived in state space and frequency domains. In general, the decoupling
problem for 2-D systems can be solved by feedback compensators if
suitable injectivity assumptions are introduced on the input-state matri-
ces. The structure of dynamic compensators is derived for this case and
the 2-D decoupling problem with stability is solved.

1. INTRODUCTION

Since the late sixties, the decoupling problem constitutes one of
the most attractive research topics in multivariable 1-D systems
theory. Besides several appealing consequences in the applications,
the interest in this field relies on the analytical tools that have been
introduced in developing the underlying theory. The decoupling
schemes considered in the literature have different characteristics.
These include the topology of the interconnections (based on the use
of precompensators, feedback compensators, or compound strate-
gies), the dynamical characteristics of the subsystems that enter in
the interconnections, the use of state-space or input—output models
and, finally, the algebraic structures (fields, rings) which provide
the framework where the systems are defined [1]-[5]. In most
applications, we are required to solve at the same time the decou-
pling and the stabilization problems. In these cases, state or output
feedbacks have to be considered and only those schemes that include
dynamic compensators become relevant to the solution.

2-D systems provide input-output and state-space models repre-
senting physical processes which depend on two independent vari-
ables. In some cases, one of these variables is time and the other
represents a spatial dimension (as in the study of some classes of
distributed parameter systems and delay differential systems), while
for other problems, such as image processing, none of the indepen-
dent variables can be sought of as time. Typically, they apply to
two-dimensional data processing in several fields, such as seismol-
ogy, X-ray image enhancement, image deblurring, digital picture
processing, etc. Also, 2-D systems constitute a natural framework
for modeling multivariable networks, large scale systems obtained
by interconnecting many subsytems and, in general, physical pro-
cesses where both space and time have to be taken into account [6],
[7].

Recently, the feedback control theory of 2-D systems attracted the
interest of research people and a great deal of attention has been
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devoted to problems related to stabilization and characterization of
closed-loop characteristic polynomials [8]-[11]. Moreover, the sys-
tematic application of 2-D polynomial matrices techniques allowed
us to extend the original single-input single-output analysis to in-
clude multivariable 2-D systems.

In this note, we aim to analyze how 2-D compensators apply to
noninteracting control of multivariable 2-D systems and to find
necessary and sufficient conditions for the existence of a feedback
law that makes the closed-loop transfer matrix diagonal and nonsin-
gular. We shall tackle this problem using MFD’s in two variables,
applied to input-output and state-space models. It is worthwhile to
remark that several equivalent strategies, based on bicausal precom-
pensators, static precompensators and compensators, static precom-
pensators and dynamic compensators can be implemented in gener-
ating noninteracting controls for 1-D systems. As we shall see, in
the case of 2-D systems these strategies are not equivalent, since
they allow decoupling of different classes of systems.

The state equation of a multivariable 2-D system ¥ = (A, A,,
B,, B,, C, D) having m inputs and m outputs is given by

x(h+1,k+1)=Ax(h+1,k) + A, x(h, k+1)
+ Biu(h+1,k) + Byu(h, k+1)
y(h, k) =Cx(h, k) + Du(h, k) (1.1)

where u and y are the m-dimensional vectors of input and output
values, x is an n-dimensional local state vector, and A,, A,, B,
B,, C, D are matrices of appropriate dimensions. In the following,
we shall adopt the standard convention that a scalar sequence {s(#,
k)} with nonnegative indexes h, k is associated with a formal
power series s(h, k)z{"zf having nonnegative powers in z, and
Z,. According to this convention, a proper (strictly proper) rational
function can be represented as a quotient p(z,, z,)/q(z,, z,) of
coprime polynomials with {0, 0) # 0 (g(0, 0) # 0 and p(0,
0) = 0).

Therefore, the transfer matrix of ¥ is the m X m rational matrix

W(Zl’ 22) = C(]* Ayzy — Azzz)il(Blza + Bzzz) +D
(1.2)

whose entries are proper rational functions in two variables. The
system (1.1) is called strictly proper if D = 0 and bicausal if D
is an invertible matrix. It is immediate to see that ¥ is strictly
proper if W(0, 0) = 0 and bicausal if W/(0, 0) is an invertible
matrix.

Because of the structure of 2-D systems, a number of different
state feedback schemes is allowed. The simplest of these is repre-
sented by the static control law

(1.3)

u(h, k) = Kx(h, k),
Comparing to static state feedback in 1-D theory, the possibilities
of modifying the dynamical behavior by applying (1.3) are much
poorer [12].

KeRm*nm,
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we obtain

(2.5)

_ Denoting by 7;;, (A,),;, and (Ng),; the (4, j)-indexed element of
N, Ay, and Ny, respectively, it is easy to see that 7;; = (A,);{1 +
(Ns);) # 0 and 7;; = (A,);(Ng);; if 7 # j so that o(71;;) < o(A;;)
i # j. This implies that N is diagonally ordered and so 7,; /7, =
(NS)ij/(l + (Ng);;), i # J are strictly proper. Hence, from 1) we
have that there exists an MFD with structure (2.4) that satisfies 2).
Actually, we shall prove that all MFD’s having structure (2.4)
satisfy 2).

To this end, reduce (2.5) to a right coprime MFD by eliminating
a g.c.r.d. of NQ, and (1 + Dy). It is not restrictive to assume that
the g.c.r.d. can be written as I + Fg, with Fg(0, 0) = O and the
corresponding factorization is

NQy = (NQo)(I + Fs), I + Dg = (I+ Dg)(I+Fs) (2.6)
with Dg(0, 0) = 0. In this way, we get a right coprime MFD

W= NQ;'(I+ Dg)™".

s ]
W= (NQo)(I+Ds) . (2.7)
Since N = N(I + Q,FsQ;"), N satisfies property 2). Finally,

consider any MFD of W having a structure (2.4). By the coprime-
ness of (2.7), there exists a g.c.r.d. G of N and (I + Dg) such that

(2.8)
(2.9)

N = NQ,G
I+ Dg=(I+Dg)G

hold. It is straightforward to see from (2.9) that G can be written as
(I+ Gy), with Gg0, 0) =0, so that N = NQi' = NI+
0o GsQy") satisfy property 2).

Vice versa, assume that property 2) holds for an MFD having
structure (2.4) and rewrite N as

iy
ﬁ - EZZ
ﬁmm
1 iy /7y Ay [T
My [y 1 My [Tipy
’_?m] /ﬁmm L) /ﬁmm 1
Then, assuming A = diag{#,,7,, T,y and
0 My [Ty Aim /1
V=|1+ fay [ Mz 0 Mym [Tgy
j'_"!m] /ﬁmm ﬁm'2 /ﬁmm e 1
= -1
- Qg (I + Dg)
the transfer matrix factorizes in the following form:
W= NQ; (I+Dg)™' = AV, (2.10)

Since the constant term of the series expansion of ¥ is given by
the nonsingular matrix (g, it turns out that V' is bicausal. Conse-
quently, property 1) holds. |

The aforementioned proposition contains a criterion for the exis-
tence of a decoupling bicausal precompensator. Actually, from
(2.10) we have W' = A, so that V' also provides the transfer
matrix of the precompensator. In order to exploit this result, it is
worthy to notice that we need an algorithm for deciding, starting
from N, whether there exists a constant matrix ), such that
N := NQ, satisfies property 2). To this purpose, denote by »; the
minimum order of the polynomials in the ith row of N and by r;

the row vector constituted by the homogeneous polynomials of
degree »; that belong to the ith row of N.

Letting R” = [riry +-+ ryl, decompose Nas N=R + §, so
that the elements of the /th row of S are polynomials of order
greater than ;.

_ Now observe that, if property 2) holds for some Q, the matrix
R defined by

R :=RQ, (2.11)

is diagonal and nonsingular. This follows directly from the fact that
H;; /T, is strictly proper rational for 7 # j. On the other hand, the
property that Q, diagonalizes R in (2.11) determines Oy modulo a
constant nonsingular diagonal right factor. Consequently, once we
have, obtained a matrix Q, that diagonalizes R, the whole set of
diagonalizing matrices satisfies property 2) if and only if Q, does.
Finally, the diagonalizability of R in (2.11) implies that the struc-
ture of the ith row r; is

ri=Rylbapy  Dinl i=12,,m (2.12)
where R ; is the homogeneous polynomial in the (7, i)th position of
R and [p;, Py *** Dinl is the ith row of Qp'. Based on the
previous remarks, we have an algorithm for checking property 2) in
Proposition 1 which consists of the following steps.

Step I: For i =1, 2, *++ m, extract the homogeneous row r;
from the ith row of R.

Step 2: For i = 1, 2, --+ m, decompose r; in the form (2.12).

Step] 3: Check if [ p;;] is an invertible matrix. Then set Q, =
[pi;1°.

III. DECOUPLING BICAUSAL PRECOMPENSATORS: STATE
VARIABLE APPROACH

In this section, we are concerned with the existence of a decou-
pling bicausal precompensator for a strictly proper 2-D system
z=(A4,, A,, B,, B,, C) represented by the state updating
equations (1.1). As we shall see, the conditions that will be derived
are only partially reminiscent of those obtained in [1] for 1-D
state-space systems. In fact, the 1-D decouplability condition can be
expressed as a rank condition on a constant matrix, which allows us
to construct a decoupling static feedback law, while the decoupling
compensators for 2-D systems are dynamical systems and the decou-
plability condition is expressed in terms of algebraic properties of a
polynomial matrix in two indeterminates.

To shorten our notations, we write & = A,z, + A,z, and
% =Bz, + B,z,.

As a preliminary remark, we note that the integers v, v,," ", »,,
introduced in the previous section to define R can be obtained from
the state model assuming
d; :=min{j:C,—ﬁj.@¢0,j:0, 1, ,n—

d 1}; 9 :=d; + 1.

Clearly, the existence of d,, d,, -, d,, is guaranteed if and
only if the system transfer matrix W(z,, z,) is nonsingular.
Actually, the nonsingularity of W is necessary to solve the decou-
pling problem and in the sequel this condition will be always
assumed.

Proposition 2: Let M, be the m X m 2-D polynomial matrix
given by '

C\Z%
C,d 2%

(3.1)

M, =

C,,o g

Then the system can be decoupled by a decoupling bicausal
precompensator if and only if: 1) there exists a constant nonsingular
matrix Q, such that M,Q, = diag {¢;e, "' €,}, where ¢, i =
1, 2,--+, m are homogeneous 2-D polynomials of degree d; + 1;
and 2) My'C(I — & )"'# is proper rational.
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Proof: Assume that 1) and 2) hold. It is immediate to see that
p = det M, is a homogeneous polynomial of degree m + Z;d;
and that the /th column of adj M, is a homogeneous polynomial
vector of degree m — 1 + Zj:,-dj, i=1,2,--,m.
Consider the following series expansion of the transfer matrix:
C,& g CioN1*1g

= a2 4 dr+1y
C(I-«)"'a= Ca2g | || Cuw 2tz

Cmﬂd’”+1:’3
4 e :M0+M1+...

C,, Om%

(3.2)

and premultiply both sides by M. We obtain
MG'C(I— o)™ % = p~'[(adj M,) M,
+(adj Mo) M, + -+ |.

(3.3)

The degrees of the nonzero polynomials in the matrices (adj
MM, :=[p{1, r=0,1, -+ are given by deg p{ =m +r
+ Z,d;.

By Assumption 2), the left-hand side of (3.3) admits a power
series expansion

My'C(I- ) ' = P+ @, + - (3.4)

where #; are homogeneous matrices of degree /. Comparing (3.3)
and (3.4) and equating the homogeneous terms of the same degree,
we have (adj MM, = p#, and, hence, #, = p~'(adj M,)M,
= I. This implies that the matrix

M'CI-o)"'3=T+ P + P, + -

(3.5)

is a bicausal transfer matrix. Recalling Assumption 1), by (3.5) we
have

C(I- )31+ 2+ P+ ]7'Q
= M,Q, = diag {€. €, ", €}
which shows that [{ + #, + @, + *++17'Q, is a decoupling bi-
causal compensator.
Conversely, suppose that there exists a decoupling bicausal prec-
ompensator with transfer matrix U = U, + U, where U, is a

nonsingular constant matrix and Us is a strictly proper rational
matrix. Then

C(I - &) "' 3(Uy + Us) = diag {5,, 65, 3,,} (3.6)

where 6; are proper rational functions.

Denote by ¢; the homogeneous polynomial of minimum degree in
the series expansion of §; and equate the minimum degree homoge-
neous rows on both sides of (3.6). We obtain

C 2

C,d 23
w Uy = diag {e,e, "+ ¢,,}.

C, o %m3g

Therefore, the property 1) holds with Qy = U,.
It remains to prove property 2). Consider an MFD of the transfer
matrix given by
farr)

where N = NQ, satisfies condition 2) of Proposition 1 and Dg(0,
0) =0. Let A :=diag {# iy, *** A,,,} and rewrite N in the
form N = A + P. Then the aforementioned condition implies that
in N = A(J + A7'P) the matrix fraction A~'P is strictly proper.
By (3.2) and (3.7) we have

My+M +M,+ -

= NQy'(I+ Dg)™ = N(I'+ Q5'Ds0,) ™ 05"

=A(I+A7'P)(1+ Q;'DsQ,) O

C(I-«#)"'@=N(I+Dg)”"

(3.8)

93

and hence My = AQq'. Thus, premultiplying (3.8) by Mg', we
see that the matrix

= e . ~ S
MG C(I - )" 3= Qo(1+ A '"PY(I+ Q5'DsQq) Q5
is proper rational.

IV. Dynamic FEEDBACK DECOUPLING

To carry through the analysis of the feedback decoupling scheme
for a strictly proper 2-D system X = (A,, A,, B,, B,, ), an
important remark is that the application of dynamic state feedback
together with static precompensation produces transfer matrices that
can be obtained also using suitable bicausal precompensators.

In fact, let K(z;, z,) and Q, be the transfer matrices of the
compensator and the precompensator, respectively. Then the trans-
fer matrix of the closed-loop system is given by

W (2, 2)[(1- K (2 2)(1- ) 78) " Qo] (41)

and the term in square brackets can be viewed as the transfer matrix
of a bicausal precompensator.

A significant difference with respect to 1-D system is that, given a
bicausal precompensator U(z;, z,), the 2-D transfer matrix WU
need not be implementable using a dynamic state feedback compen-
sator and a static precompensator.

This is illustrated by the following example. Consider the system
X =(A4,, A,, B,, B,, C) given by

0 0 0 1
Al:[o 0} A2=[1 0] B‘i[é ?]

0 0 1 0
By = =
2 [o 0] G [0 1]'
Since the transfer matrix of ¥

-1
Zy 0 1 2
O N |
satisfies condition 2) of Proposition 1, there exists a decoupling

bicausal precompensator. Its transfer matrix is easily computed and
is given by

1 g
U2y 25) = L2 12].

However, we cannot decouple the system adopting state feedback
and static precompensation, since, in this case, it is not possible to
find a constant nonsingular Q, and a proper rational K(z,, z,) that
make the matrix (4.1) diagonal.

Our aim is now to find structural conditions on the matrices of the
state model (1.1) which guarantee that a decoupling bicausal com-
pensator U(z;, z,) can be replaced by a feedback compensator
K(z,, z,) and, possibly, a static precompensator Q.

These conditions correspond to assuming that, for any bicausal
U(z,, z,), there exist proper rational K(z,;, 2z,) and nonsingular
Q, that solve

W(z1, 22)U(z1, 25) = C(I — o/~ 3K (2, 7)) 20;.
(42)

For this, substitute in (4.2) U, + Us for U and the series
expansion C4 + Co/# + Cs/ 2%+ -+« for W. Then, looking for
a solution of (4.2) in terms of K(z,, z,) and Q,, one starts by
choosing @, = U,. Since

c(l- )" a(I+ UUs")
=C[I- - 2K(z),2,)] " @

=C(I-a)"'3[I-K(z, 2,)(I-2) " 2] - (4.3)
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we are reduced to solving the following equation in K(z,, z,):

(T+ UUs")  =1-K(z, ) (I- &) '3.  (4.4)

Introduce a realization S = (A~1, /-1~2, éi, §2, & I) of the
left-hand side of (4.4) and let

=

K(z),2) (1= o),

K(z, 2):= d=Az + Ay z,,

%= E‘lzl +_§2Z2.

Therefore, the search for a causal K(z,, z,) that solves (4.4)
reduces to find a causal K(zl, Z,) that solves
G- ) 3= -R(z, 2,)%. (4.5)
We shall show that, if the matrix [B,| B,] is injective, there
exists a causal solution of (4.5). In fact, in this case, there exists a
left inverse L of [B, | B,] and the matrix F := = [B,| B,]L satls—
fies

F[B,|B,] = [B,| 5] (4.6)
or equivalently, F(B,z, + B,z,) = ﬁlzl + B, 2,.

This implies that a solution of (4.5) is given by the proper rational
matrix K(z,, z,) = —C(I — & )'F so that

~ ~, -1
K(zy,20)=-C(I-5) F(I— ) 4.7
constitutes the transfer matrix of a causal decoupling compensator.

The injectivity of [ B, | B,] does not impose any constraint on the
structure of the transfer matrix, since any 2-D transfer matrix
admits a realization with [B, | B,] injective [9]. So, when dealing
with the decoupling problem starting from the state-space equations,
we will always assume [ B, | B,] to be injective.

Example: Consider the 2-D system X given by

1 -1 1 0
{0 -1 0 O 0
A4=10 0 0 0 o 0
0 0 0 O 0 0
1 1 0 0
0 1 0 0O |1 1 0 0
Hi=lg o] #5710 C_[OOO]]
0 0 0 1
The transfer matrix of Z is
-1
W(z), 2,) = C(I - A2y — A,2,) " (B2, — By2,)
2+ 20+ 22 - 223 2% - 2 - 4%,
= 1 -z} — 2,2, 1-2zi-z,2,
—-z3 Zo
The matrix
Z:  Z
M0=C3’3=[ ‘ ']
0 Z5

satisfies properties 1) and 2) of Proposition 2. In fact, assuming

%=[5 7

the matrix M,Q, is diagonal and My'W is proper rational.
A decoupling bicausal precompensator is then given by

1
1+z, +2z,+ 222

[ 1 -2z - 2,2,

U= w'M,Q, =

2+4+z,+3z
2,(1 - zf-22;) 14z, +2,2, - 22

In order to simplify computations, it will be convenient to modify

the precompensator by postmultiplying its transfer matrix by a
diagonal bicausal factor

1
1 -2z{ -2z,
0 1

In this way, U = OT is still a decoupling bicausal precompen-
sator for ¥ and
- zz]

is a polynomial matrix. The feedback decoupling scheme includes
U, = Q, as static precompensator. For applying (4.7) to obtain the
transfer matrix K(z;, z,) of a causal dynamic compensator, a
realization

(s e B 85 G B oL

T= 0

l+z,+z,2,—-2; 2-z

-z, |

U=

1+ +225,+212, -2 -2, - 2,
—Z2 1

is needed. It is immediate to verify that the realization given by

a-[3 3 a-[8 4] a-[3 7]
[5 9]

~ 2 _i ~
By = —
SR
satisfies C(J — A]z] - A2Z2) (B]z1 + B, Z)+ = UU™.
In this example, the matrix F is given by

={1-22—1
0 0 -1 0

Uut = [

= [B,1B3,][B,]B,]”

so that
K(z2y,2,) = -C(I- 7)) 'F(I- )
=[zl+2z2—1 Z+2 2z,-2 1]
0 0 1 0}

V. STABLE DECOUPLING

In the previous section, we have shown how to realize a noninter-
acting control of a 2-D system using dynamic compensators. In
general, the decoupled system we obtain need not be internally
stable for all choices of the decoupling compensator. So, it is
important to decide if, given a 2-D system, there exists stabilizing
decoupling compensators and then to have procedures for their
construction.

In this section, we will show that, if the system is stabilizable and
there exists a noninteracting control, it is possible to select a
decoupling compensator which stabilizes the closed-loop system.

More precisely, let the system (1.1) satisfy the following condi-
tions:

1) Stabilizability Condition: The matrix [[ - Az, — A,2;
B,z, + B, z,] has full rank for all (z,, z,) belonging to the unitary
polydisk P, = {(z}, z,):| 2| = 1, | z,| = 1}.

2) Decouplability Condition: 1) and 2) of Proposition 2.

Then the class of stabilizing compensators contains compensators
which are decoupling [for the system (1.1)]. This property depends
on the following facts.

1) The stabilization by state feedback preserves the decouplability
of the system.

2) If an internally stable system is decouplable, it can be decou-
pled without losing internal stability.

The proof of the first fact is immediate, since the matrix M,
defined by (3.1) and relative to the original system coincides with
the matrix M, that corresponds to the closed-loop system. So that
both systems satisfy Condition 1) of Proposition 2. As far as
Condition 2) of Proposition 2 is concerned, it is sufficient to note
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that the transfer matrix Wy of the feedback system differs from
C(f — & )7'% in a bicausal multiplicative factor, so M~ Wy is
proper rational since M™'C(J — & )7 % is.

To prove the second part, observe that, if U is a decoupling
bicausal precompensator, A := WU is a proper rational diagonal
matrix. Now let /4 be the 1.c.m. of the denominators of the elements
of U™, Then also UA™' is a bicausal decoupling precompensator
and W(UR™) = ah™".

Consequently, we can assume in (4.4) that the matrix (f —
UUy "~' = U,U™" is polynomial and that its realization X =
(ffl, A,, B,,B,, C, D) satisfies the condition det (I — A,z, —
A,z,) = 1. In this case, the transfer matrix K(z,, z,) of the
compensator, given by (4.7), is a polynomial matrix.

In order to obtain an internally stable closed-loop system, we
construct a coprime realization of K(z,, z,), i.e., a 2-D system
2 =(A,, A,, B,, B;, C, D), where both matrices

[1“ Ajzy - Ayz, Bz + Ezzz]

and

[1— Az~ Azzz}
C
are full rank for any (z,;, z,) in C x C [9], [11].

The state-space model resulting from the feedback connection of
¥ and ¥ is internally stable, as a consequence of the following
properties:

o The plant ¥ is internally stable.

e The compensator I is a coprime realization of a polynomial
matrix. Therefore, det (f — Az, — A, z,) = 1, which implies that
¥ is internally stable.

e The closed-loop system is externally stable, since its transfer
matrix is the product of the stable matrix W(z,, z,) and the
polynomial matrix U(z,, z,).

VI. CONCLUSIONS

In this note, we have tackled the problem of constructing a
noninteracting control for an m-inputs n-outputs 2-D system. Nec-
essary and sufficient conditions for the existence of a decoupling
bicausal precompensator have been derived both in state space and
in frequency domains. We have examined how to implement the
action of a bicausal precompensator by means of a state feedback
compensator. Differently from the 1-D theory, bicausal precompen-
sation is not equivalent either to static or to dynamic state feedback,
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unless some further assumptions are introduced on the state-space
model.

These assumptions are also sufficient for showing that the 2-D
stable decoupling problem can be solved using dynamic compensa-
tion.
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