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STRUCTURE AND SOLUTIONS
OF THE LQ OPTIMAL CONTROL PROBLEM
FOR 2D SYSTEMS

MAURO BISIACCO, ETTORE FORNASINI

The LQ optimal control problem of 2D systems is addressed and solved in an /, environment.
The optimal stabilizing control law does not preserve, in general, neither quarter plane nor weak
causality. Some preliminary results on system and cost structures guaranieeing that the optimal
feedback law is causal or weakly causal are discussed.

1. INTRODUCTION

This paper deals with 2D optimal control problems. The class of discrete time 2D
systems we shall consider has as a prototype the linear model

x(h+ 1,k + 1) = A, x(h, k + 1) + Ay x(h + 1, k)
+ Byu(h, k + 1) + Byu(h + 1, k) (1.1)

where x(h, k) € 8" and u(h, k) € R™ are the local state and the input value at (h, k)
and A, 4,, B,, B, are real matrices of suitable dimensions [1].

Assuming that the local states x(i, —i) have been assigned, we wish to choose
the control sequence so that the system behaves in some desirable way. We have
to settle two questions at the outset, namely what the control objective is and what
sort of controls and initial conditions are to be allowed.

As far as the first question is concerned, the cost of controls will be specified
precisely by a scalar performance criterion of the following form -

S xT(h, k) Q x(h, k) + u"(h, k) R u(h, k) (1.2]

B+ k20
withR > Oand Q = 0.
Denoting by

&= (i) )eZ x Zri+j=1)
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the tth separation setin Z x Z and by
U, = {u(i,t — i)},
Z,:={x(i,t — i)}, where teZ,

the restrictions of u(, +) and x(-, -) to &,, it is clear that, given any initial “global
state” %', on &4, &, only depends on #%,, Uy, ..., %, and the value of (1.2) is
uniquely determined by the 2D control sequence {u(h, k)} via the updating equation
(1.1). So in what follows the cost functional (1.2) will be denoted as J(u, Z,). We
now turn to the problem of admissible controls and initial global states. It is apparent
from the structure of J that admissible input functions must belong to the space
13°(R™) of R™-valued sequences u(-, -) defined on
Z: ={(hk)eZ xZ:h+kz0}=U¢, (1.3)
t20
and satisfying the finite norm condition

Ju, 1= % (k) ulh k) < o0 (L.4)

Furthermore, we are only interested in state dynamics x(+, *) that belong to
2P(R"). Although this condition is not necessary for guaranteeing the finiteness if J
in case Q is singular, it fulfills the natural requirement of imposing a stable pattern
on the admissible state evolutions.

In fact, x(+, +) € I3(R") implies that the associated global states &', satisfy

+ o

EAE ::I_Z_OFT(MI t+ i) x(—i,t + i) < o (1.5)
S 23 = [x(. ) < (16)

Z,| = 0 as ¢ goes to infinity.

Just putting ¢ = 0in (1.5), we argue that the allowable bilateral sequences of initial
conditions must belong to I,(R").

Within this framework, the 2D optimization problems can be stated as follows:

i) given &, € I,(R"), derive conditions for the existence and the uniqueness of an
input u(+, *) € 3°(R™) that minimizes the cost .J

ii) whenever these conditions are satisfied, explicitly compute the optimal input
and the corresponding value of J.

In Section 2 we will summarize from [2] the solution to these problems and outline
the structure of the resulting control law. Under suitable natural assumptions on the
matrices of (1.1) and (1.2), the optimal input sequence exists and is expressed as
a linear feedback law that stabilizes the closed loop system. Although the closed loop
solution is quite appealing from the control point of view, it conceals the serious
drawback that the resulting system doesn’t exhibit a 2D causal structure. Actually,
preserving quarter plane causality and obtaining a control law that minimizes (1.2)
constitute in general a pair or conflicting objectives.
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In Section 3 we shall discuss the possibility of implementing the optimal control
law by means of causal and weakly causal [3] feedback structures and discuss the
important property that weakly causal feedbacks provide a family of suboptimal
control strategies, that converge to the optimal one.

2. EXISTENCE AND STRUCTURE OF THE OPTIMAL CONTROL LAW

As well known, the existence and the uniqueness of a stabilizing optimal solution
for the 1D infinite time least squares problem can be decided independently of the
explicit computation of the control law. Indeed these questions can be settled a priori
by analyzing a couple of rank conditions on the polynomial matrices

[I - Az|Bz] and [I_:_:_‘I_%:l

We might expect that the corresponding polynomial matrices in two indeterminates
play an analogous role in the 2D case. This is the gist of the following proposition.
It gives conditions under which the optimization procedure admits a unique solution
and supplies an input function that stabilizes the system, in the sense that the corres-
ponding values of x(h, k) converge to zero as i + k goes to infinity.

Proposition 2.1 [2]. Consider the 2D system (1.1) and the cost functional (1.2}

The following facts are equivalent:

1. for every global state Z', in I,(R") there exists a (unique)
control problem, i.e. there exists an input sequence u(+, *) in I3°(R™) such that
x(+, *) belongs to I3°(R") and the corresponding value of J is minimized.

2. the 2D polynomial matrix

[1 — Az, — Ayz,| Byzy + Byzy] (2.1)

12P solution of the optimal

has full rank on the set
M = {(z4,2;,)€C x C:|zq| = |z;] £ 1}

and the 2D polynomial matrix

_________ G
[I — Ayzy — Azzz:l (2'2)

has full rank on the unit torus
T ={(z1,2,)€C x C:|zy| = |z,| = 1}

Remark 1.1. In case B, = B, = 0, Huang’s theorem [4] implies that (2.1) is full
rank on ./ if and only if is full rank on 2, = {(z1, 2,): |2,| £ 1, |z2| £ 1}. This
property does not extend to more general situations. Indeed, assuming A4, = 1,
A, =2,B, =1,B, =0,R = Q = 1, we see that the matrix (2.1) is full rank on ./.
Yet (2.1) vanishes at (0, 1) € 2;.
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From now on we shall steadily assume that the rank conditions on (2.1) and (2.2)
are fulfilled. Then, using a well established result of the LQ 1D theory, we are allowed
to conclude that the w-dependent algebraic Riccati equation (AREw)

P(w) = Q + A%(w) P(w) A(w) - A*(w) P(w) B(w)
[R + 3*(&)) Pw) E(w)]"l E*(a)) ﬁ(w) A(w), (2.3

with d(w) = 4, + e'® 4,, B(w) = B, + ¢'® B,, is pointwise solvable in [0, 2]
and admits for every w a stabilizing hermitian positive semidefinite solution. This
solution provides a key tool for evaluating the minimum cost and computing an
input function that minimizes (1.2).

Let us first start with a somewhat heuristic analysis of the system dynamics in terms
of Fourier transforms. We assume that 2, and %, ,t = O, 1, ..., belong to [,. Clearly
all global states Z,, t = 1,2, ..., are in I, and the Fourier transforms

+ oo

U w) =Y ult + h, —h)e e

e (2.4)
"Z (o) = Y x(t+ h, —h)e e

h=—c

have components in L,[0, 2n]. Furthermore, equation (1.1) can be rewritten as a first
order recursive equation

" ia(w) = A(w) "2 (@) + B(w) U (), (2.5)

which provides the global states updating in the w-domain.
Suppose in addition that the I5° norms of the input sequence u(, *) and of the state
dynamics x(+, +) are both finite, i.e.

Ju(s> )3 = 2r)~" [3" 3 "% (w) "YU (w)do < oo
=0 (2.6)
[%(*, |7 = (=)~ ot Y. M) " (w)do < oo
t=0
Then, by applying the squares completion method we are able to express the cost

functional (1.2) as [2]
J = (2n)7" [§7 25 (w) P(o) "2 (w) do

+ (2m)~t (3" i "Fi(w) [R + B¥(w) P(w) B(w)] *&.(w) do 27)
where -
K(w):= —[R + B*(w) P(w) B(w)]™" B*(w) P() 4(w) (2.8)
"F(w) = U () - K(w) “Z,(w) (2.9)
It 1s easy to see that the minimum value of J
Join = (21) 71 [57 25 (0) P(00) *Z o(w) do (2.10)
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is attained using the closed loop control given by
" (w) = R(w) " & (o) R 5 i)

The conclusions we have drawn so far depict the situation in a way that may
convince of the intuitive reasonableness of the result. However, some caveats are
in order, since the validity of the procedure heavily depends on the fact that (2.11)
and (2.5) give rise to 2D sequences u(, *) and x(-, -) that belong to o

More precisely, the solution of the optimal control problem outlined above makes
sense if we are able to give a positive answer to the following questions:

i) does the matrix K(w) map the space L,[0, 2n] into itself? This requirement is
necessary for guaranteeing that the feedback law (2.11) (reinterpretéd in the time
domain) always transforms an [, global state 2, into an [, input sequence %,.

* i) does the solution of (AREw) ensure the asymptotic stability of the closed loop
system, in the sense that, for any %', € [,, the resulting global states sequences {Z}
can be viewed as an element of [3°?

To answer these questions, we need the following technical lemma.

Lemma 2.1 [2]. The stabilizing hermitian positive semidefinite solution P(e'®) :=
:= P(w) of (AREw) extends to an analytic solution of the polynomial algebraic
Riccati equation (AREz)

P(z) = Q + (A7 + A3z" ") P(z) (A, + A,z)

— (AT + A3z ") P(z) (B; + B,z)[R + (BY + Biz') P(z) (B, + B,z)]™’

(BT + BIz™") P(2) (4, + A,2) | (2.12)
in an open annulus that includes the unit circle y,.

A major consequence of viewing the pointwise solution P(w) of (AREw) as the
restriction to y, of an analytic matrix P(z) is that K(c,)) enjoys the same property.
Indeed the matrix :

K(z) = —[R + (B;r + B3z ') P(z) (B, + B,z)] !
(BT + Blz1) P() (4, + As2) (2.13)

analytically extends K(a)) in the annulus and therefore admits a Laurent power
series expansion

K(z) = ) K,z" (2.14)
h=—w
This implies that the matrices K, exponentially decay as fh[ increases and the feed-

back law (2.11) associates an input *%,(w) € L,[0, 2r] to every global state %", (w) €
e L,[0, 2n]. In time domain this is consistently expressed by

+ o
u(h, k) =Y K;x(h + i, k — i) (2.15)

i=—m
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This positive answers the first question.
As far as the second question is concerned, note that the Lyapunov equation

V(w) =1+ I(w) V(o) (o), (2.16)

with F(w) 1= A(w) + B(w) K(»), admits a unique positive definite solution, given
by the sum of the following pointwise convergent series

0) = 3. (o) Fw)

Furthermore, the linearity of (2.16) and the uniqueness of its solution for every w
in [0, 2n] imply that the matrix V(o) is a continuous function of w and hence its
spectral radius g(w) is uniformly bounded by some positive g.

Combining together all these properties and applying B. Levi’s and Parseval’s
theorems one gets

OB

t=0

- (2n)"! i 2 27 3(w) P(0) P() *Zo(o) do

o
Z;

2
2

= (2n) 7" 37 &5 (0) V(w) "% o(0) do = 2] %ol3 -
So x(+, *) and, obviously, u(+, -) belong to 2,

Example 2.1. Consider once more the system of Remark 1.1. By solving the
associated (AREw), one obtains a unique positive definite solution

(5 + 4cosw) + /(5 + 4cosw)® + 4

Plw) = 5

and the corresponding feedback matrix is

R(w) - —(1 +2e)[(3+ 4cosw) + /(5 + 4cos w)* + 4]
B 2(5 + 4 cos w)

Obviously the inverse Fourier transform of K(w) is an infinite support /,-sequence.
This shows that in general the computation of u(h, k) depends on an infinite number
of local states.

3. OPTIMAL CONTROL LAWS THAT INVOLVE A FINITE NUMBER
OF LOCAL STATES

The control law (2.15) we obtained through the solution of (2.12) provides a state
feedback that stabilizes (1.1) and minimizes (1.2). The input value at (), k) depends
in general on infinitely many local states x(h — i, k + i), i € Z (see Example 2.1),
So, implementing (2.15) destroys the quarter plane causality of the original system
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and produces an half plane causal 2D system [3], whose updating equation requires
in principle to cope with an infinite dimensional state vector. i ‘

Now it seems quite natural to ask whether there exist 2D systems and cost functionals
that give rise to causal or weakly causal optimal control laws. In other terms, the
problem we address in this section is to explore what conditions on (1.1) and (1.2)
do guarantee that the stabilizing feedback matrix given by (2.13) belongs: 1o
R[z, z7*]"*" and, in particular, to R"*". We shall provide only partial results:on
this subject. The feeling they give, however, is that the possibility of achieving 2D
optimal control while preserving 2D weak causality is extremely rare. So, if preserv-
ing weak causality is the main issue, we must in general put up with suboptimal con-
trol laws. o

Confining ourselves to single input 2D systems of dimension 1, we are able to get
a complete classification of systems (1.1) and cost functions (1.2) that produce
feedback laws with the following structure

it

u(h, k) = fK;x(h —id, k4 i) T (3.1)

i=—N .
for some integer N. Matrices in (1.1) and (1.2) are scalars, that will be henceforth
denoted by the corresponding lower case letter ay, a,, by, b,, q, r. The same con-
vention will be adopted for all scalar quantities we will deal with.in the sequel. So,
letting e
a(z) = a; + a,z b(z) = b; + byz, R A T (3.2)
the Riccati equation (2.12) and the corresponding feedback matrix are given by

p(2) = q +.a(2) a(="1) — a(z) al") b(z) (=) P°(2) .
x [r+ b(z) b(z"H) p(2)]" e Bogaers w05
KE) = —b()a() p) [ + b BE) T ()
Since we are interested in feedback laws k(z) whose Laurent series expansion has
finite support, it scems useful to summarize here some properties 1of the ring of
bilateral polynomials B[z, z71].
Given any nonzero polynomial

s

N
1(z, z7 1) =-;wri2f . with gy £ 0

the integer §(z) := N — M is called the degree of 7. If = = 0, by. déﬁﬁffjoﬁ deg (’t)_‘iz
= —o0. Clearly every polynomial of zero degree, i.e. every ‘m:c'in:o!njé]' az', a %.0,
ieZ,isaunitof B[z, z71]. Moreover, R[z, z7*] is an euclidean“d@npain and a for-
tiori an UFD. ' _ - .

If 1(z,z71) = 1(z"", z), then N = —M and the polynomial is termed reciprocal.
As an element of C[z, z7'], such a polynomial admits a (nonunique) factorization

iz, 2™ = t(z) i(z™") _ ‘ SE s (3.5)

wﬁére t(z) € C[z] and deg (t) = &(7)/2.
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Proposition 3.1. Consider a single input 2D system of dimension 1, that satisfies
the conditions of Proposition 2.1. The stabilizing optimal feedback law k(z) given
by (3.3) and (3.4) belongs to R[z, z~'] if and only if one of the following cases
occurs:

1. a(z) b(z) = 0

2. a(z) b(z) isan unitof Rz, z7']

3.9=0 and |ay| + |ay] <1

Furthermore in these cases the allowable k(z)’s reduce to the following three simple
structures:

ks, Rz, k.gz™ (3.6)
Proof. 1. If a(z) = 0 or b(z) = 0, one gets from (3.3) and (3.4)

p(z) = a[l = a(z) a(z"")], k(z) =0 (3.7)

2. If both a(z) and b(z) are units of B[z, z7'], then a(z) a(z™") and b(z) b(z™")
are both nonzero real constants and (3.3) reduces to a constant coefficients algebraic
Riccati equation. Thus p(z) is a nonnegative real number and k(z) has structure (3.6).

3, If ¢ = 0 and b(z) *+ 0, equation (3.3) admits two solutions:

pi(z) =0 (3.8)
_ rla(z) a(z™") — 1] (3.9)
b(z) b(z™") o

The internal stability assumption |a,| + |a,| < 1 directly implies that, for every
in [0, 2n], p,(e'*) is negative. Thus p,(z) is the stabilizing solution and k(z) = 0.

It remains to show that the above classification covers all possible cases, in the
sense that, whenever none of 1, 2 and 3 is satisfied, the support of k(z) is an infinite
set. The proof is rather long and will be performed in several steps.

p2(2)

Lemma 3.1. If conditions 1, 2 and 3 do not hold, then
a) p(z) *+0
b) k(z) + 0 (3.10)
c) a(z) + b(z) k(z) £ 0
Proof. a) Assuming p(z) = 0 gives ¢ = 0 and k(z) = 0. Since condition 3 does
not hold, |a| + |a,| = 1 and the zero feedback matrix cannot stabilize the system.
b) Assuming k(z) = 0 gives p(z) = 0 and case b) reduces to case a).
c) Assume a(z) + b(z) k(z) = 0. We apply (3.3) and (3.4) first, to obtain the
following relation connecting p(z) and k(z)

p(z) = q + a(z™") p(z) [a(z) + b(z) k(z)] (3.11)

It is clear from (3.11) that p(z) = q. Also, substituting g for p(z) into (3.3) and
recalling that a(z) + 0, we get ¢ = 0. Thus case c) reduces to case a) too. O
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Since a(z) + b(z) k(z) # 0, we are allowed to solve (3.4) with respect to p(z),
namely
r k(z)
) = s | (3.12)
b(z~") [a(z) + b(z) k(2)]
Substituting (3.12) into (3.3), k(z) can be directly computed as a solution of the
following equation e :
k*(z) a(z=*) b(z) r + k(z) [r a(z) a(z™') — g b(z) b(z™') — r] —
—-q a(z) b(z“l) = 0 ‘ , (3.13)
So we reduced to prove that, if conditions 1, 2 and 3 do not hold, equation (3.13)
isn’t solvable in R[z, z71]. : _ , .‘
Assume by contradiction that k(z) belongs to B[z, z7'] and satisfies (3.13). It is

clear from (3.12) that p(z) is a rational function. Consequently, there exists a pair
of coprime bilateral polynomials ¢(z, z~*) and y(z, z~') such that

p(z) d(z, z7 1) y(z, z71) ; (3.14)

On the other hand p(z) = p(z™') and H[z z71]is an UFD. Hence

wWz, 271 = ez’ y(z7, 2) :
Pz, z71) = ¢z’ ¢(z71, 2) (3.15)
and, evaluating (3.15) at z = +1, it follows that ¢ = 1 and i = 0 (mod 2). Conse-

quently, there is no restriction in assuming that ¢ and v are reciprocal polynomials
and in writing ¢ and 7y in factored form, namely

:M ' . : ' (3.16)
9(z)g(z"") '

with f(z) f(z7!) and g(z) g(z™") coprime.
~Note that the fact that p(ei“’) is a nonnegative real-valued function for every o
in [0, 2r] reflects into the fact that f and g have real coefficients. Next, substitute

(3.16) into (3.4), to get |
k(z) o(z, z71) = —b(z"Y) a(z) f(2) f(z™") | (3.17)
o(z, z7Y) i=rg(z) g(z™") + b(z) b(z™") f(2) f(z™1) (3.18)

is a reciprocal polynomial. To complete the proof, we show that both hypothesis
deg(c) > 0 and deg (o) < 0 lead to a contradiction.

p(z)

where

Lemma 3.2. Assume that 1, 2 and 3 do not hold and let deg(s) > 0. Then k(z) ¢
¢ H’[z Zgl]

Proof. Since f(z)f(z™*) and g(z) g(z~ )are coprime, we have that f(z) f(z7")
is a divisor or k(z). Then a(z,z™ ') divides b(z ') a(z) and since deg [b(z™") ( =2,
as a reciprocal polynomial ¢ has degree 2. : -
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This easily implies that, modulo nonzero real constants, o(z, z71), b(z) b(z™ ) and
a(z) a(z™") coincide, so that

b(z) = 2 a(z) (3.19)
for some nonzero A e R. Now equation (3.13) reduces to

k*(z) a(z) a(z" ) rd = —a(z) a(z™") 2q + k(z) [r — a(z) a(z™Y) (r — #q)]

(3.20)

If k(z) ¢ R, some elementary considerations on the support of the polynomials show
that the left and right hand sides of (3.20) cannot be equal. On the other hand, if
k(z) := ke R, (3.20) can be rewritten as

a(z) a(z™') [qA + k(r — 2’q) + k*#d] = vk (3.21)
This implies k = 0 and g = 0, which contradicts the conclusions of Lemma 3.1. [

Lemma 3.3. Assume that 1, 2 and 3 do not hold and let deg o(z, z7") £ 0. Then
k(z) ¢ B[z, # 1],

Proof. Since o(z, z~ ') is a reciprocal polynomial, and deg (o) < 0, o is a real

constant.
First, using (3.16) and (3.18), we have

a/[9(z) g(z"")] = v + b(z) b(z"") p(2) (3.22)

so that
ok 4 ;
Pe) b(z) b(Z‘)[Q(Z)g(Z‘l) } (.2)

Since p(z) must be nonnegative, it is clear that ¢ is different from zero. Substituting
(3.23) into (3.3) gives

o =g(z)g(z"") [r + ra(z) a(z7Y) + q b(z) b(z™1) -

— ot g(z) g(z7") a(z) a(z71)] (3.24)
which implies deg () > 0, unless g(z) is unit. Now there is no loss of generality
in assuming g(z) = 1, so that (3.23) and (3.16) imply

c—r
AT =" Az 3.25

o) = S = IS (29
Thus b(z) and f(z) are both units, p(z) is a real constant and, by (3.4),

k(z) = pb(z™") a(z) (3.26)

where p is a real constant, different from zero by Lemma 3.1.
Next, since k(z) must satisfy equation (3.13), we obtain the following equation

ur () ae) [L + 1 b(z) b(z)] = al1 + wb(z) b ] + wr (327)
where a(z) cannot be a unit of R[z, z~']. The right hand side of (3.27) is a real
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constant. So on the left hand side we must have 1 + ub(z) b(z™') = 0, which in
turn implies pur = 0.
This contradicts the fact that u is different from zero. O

The classification of Proposition 3.1 shows that the optimal control law of a one
dimensional 2D system involves a finite number of local states only in very particular
cases. Indeed they reduce to:

1. autonomous 2D systems (by = b, = 0), for which the control problem does
not make sense.

2. “dead beat” 2D systems (a; = a, = 0), for which the zero input is obviously
the optimal control.

3. asymptotically stable 2D systems (|a,| + |a,] < 1) with state weighting matrix

g = 0, for which the cost of the free evolution is zero. '

4. 2D systems “‘isomorphic” to 1D systems (a; = by =0 or a; = by = 0), that
exhibit only an horizontal or a vertical dynamics. In this case the control law is

a static one
u(h, k) = ko x(h, k)

5. 2D systems that reduce to the previous case by a one-step time-shift of the input
function (a; = b, = 0 or a, = by = 0). In these cases the control laws become

ulh, k) = &y =k + Lok — 1)
or
u(h, k) =Fk_; x(h -1,k + 1)
The extension of the previous result to higher dimensional cases constitutes a topic
of current investigation.

As a final remark, we only mention the fact that in cases when K(z) given in
(2.14) has an infinite support, it is possible to use weakly causal feedback laws that
approximate the optimal control law. These can be obtained by a suitable truncation
of the Laurent power series expansion (2.14), namely

Ky(z) ;i K (3.28)

Truncations (3.28) constitute the “right” approximation to the optimal control
law. Actually

i) provided that N is large enough, (3.28) is a stabilizing state feedback matrix

ii) even more important, when N diverges the corresponding cost function

1@ = 3 (20)7 (3 [ ) "2 (o) +
t=
+ *ZHw) K¥('°) R Ky(e®) “Z{w)] do (3.29)
asymptotically converges to the minimum value (2.10).

The discussion of these topics, however, is beyond the scope of our paper. It can
be found in [2] (Received November 26, 1990.)
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