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1. Introduction

Since the early 1970s two dimensional (2D) models have been attracting
the attention of the scientific community working in the area of dynamical
systems theory. Several different motivations underlie the research in this
field. The inspiring idea originated in the framework of two-dimensional
processing (using parallel computer structures) by yhe necessity of mod-
elling dynamical processes parametrized by two independent variables (e.g.
time and one space coordinate). Beyond that, very nice system theoretical
reasons exist for dealing with this kind of models, whose dynamics evolves
on partially ordered sets and where the extension of “classical” systems
notions does not appear a practicable road.

The conceptual and formal difficulties envisaged in the theory of 2D
systems are well known and descend from the fact that most definitions
and operations, which are natural in the 1D theory, have to be totally
revised or abandoned when one deals with signals having support in Z x Z.

Our aim in this contribution is to briefly discuss some research per-
spectives in those areas of modelling, realization and control of 2D systems
where a significant set of results is already available in the literature.

2. Modelling

The class of dynamical systems called 2D systems has been introduced
as the natural tool for representing the processing of discrete signals which
are two-dimensional, in the sense that they are functions of two indepen-
dent variables. Since the support of 2D signals is the discrete plane Z x Z,
essentially different orderings can be conceived for representing cause-effect
relations and these lead to mathematical models which exhibit character-
istics which are not always comparable.

In the early works [1-4] the causal structure (typically quarter plane)
was a priori assumed in the model as a consequence of the choice of the
product ordering in Z X Z. In some recent works [5-7] the partial ordering
definition and the induced causal structure are not a priori given, but result
from the analysis of the system trajectories and the underlying causality
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relations. In some cases (8], inspired by the process used for discretizing
partial differential equations, conditions on signals are assumed on a closed
contour in Z X Z. Thus the solution essentially relies on the evolution of a
1D system and the two-dimensional causal does not play an essential role
in the computation of the response.

The theory of 2D filters [9] is the framework where models which exhibit
a quarter plane causality have been initially investigated. As the input
output approach is considered, 2D filters are represented by proper rational
functions in two indeterminates of the following type

L eoq Mzl
W(z1,22) = Loits>1 Ma? . (1)
L+ E{+;‘21 difziz%

Some topics of 2D filter theory, such as BIBO stability and discrete cir-
cuit implementations, have deep connections with the system theoretic ap-
proach. Noteworthy, the challenging problems of determining necessary
and sufficient conditions for external stability and computing the minimal
number of delay elements needed in circuit implementations have not been
completely solved in the general case.

The idea of associating 2D state space models with two-dimensional
filters originated very naturally. However, since the beginning it appeared
that the “canonical” technique based on the Nerode equivalence leads to
an infinite dimensional state space [3,4] and there is not an unique way to
introduce te concept of state. So, following sometimes heuristic procedures,
several models have been introduced, where two different notions of state
play different roles:

1. local states z(h, k) belong to a finite dimensional vector space. They
enter in the state updating equation and determine the value of the output

2. global states Xj, = {z(i + h,—1),% € Z} provide the initial conditions
on a separation set of Z X Z. These belong to an infinite dimensional
vector space, which provides an extension of the space of Nerode equivalence
classes.

The most common state model with quarter plane causality is repre-
sented by the following equations [10]:

x(h+1,k+1) =Aix(h, k + 1) + Azx(h + 1,k)
+Byu(h,k+ 1) + Bou(h + 1, k) (2)
v(h, k) =Cx(h, k)

where x(h, k) € R*,u(h,k) € R™,y(h, k) € RP are the values of the local
state, the input and the output at (h,k) € Z x Z. Since the local state at
(h+ 1,k + 1) is computed by solving a first order difference equation the
system (2), denoted by X; = (A;, Az, By, Bz, C), is first order.
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It has been extensively studied either in its general form (2) or under
some constraints on the system matrices. The most popular particularized
version of (2) is the Roesser’s model [1,11], where the local state space X
is the direct sum of two vector spaces X" and X", and the conformably
partitioned matrices of the model are constrained to have the following
structure

AD A 0 0 B{Y 0
= = B = 1 By =
Al [ 0 0 ,AZ Agi) Aglg) R | 0 ) D2 Bézl
(3)
Second order models are used less frequently: the typical structure of

the equations is given by [3,4]:

x(h+1,k+1) =Aix(h, k+ 1) + Aax(h + 1,k) + Aox(h, k) + Bu(h, k)
Y(hsk) =Cx(h: k)
(4)
In particular, Attasi’s model [2] has the structure (4) with 4; and Aj
commutative matrices and A; A; = Ay. Although realizing only separable
filters, it constitutes an interesting second order model, since the underlying
theory is very close to the 1D theory.

Recently the “behaviour” approach has been extended to 2D systems.
Following this theory, a 2D system is defined by a family 8 of “admissible
functions” (behaviour), defined over the discrete plane. These functions are
characterized by the property of belonging to the kernel of a polynomial
matrix M(z1,23) in two variables

B={w= Z w;; 25 25| Mw = 0} (5)
i,J’EZ

Associated with the external description provided by the behaviour 8
different “internal” representations can be given, by introducing the so
called latent variables models. State variables constitute a particuler type
of latent variables, that hold the memory of the system with respect to a
notion of “past” introduced on Z x Z. When a state description is possible,
i.e. when the notions of past, present and future are allowed by the structure
of B, the behaviour is called markovian. Since there ins’nt any “natural”
direction for the evolution in Z x Z, the markovian property appears more
general than the familiar quarter plane causality and has been exploited in

the analysis of non-causal 2D dynamics [5-7].

3. Realization

In the theory of 1D systems minimal realizations of a given transfer
function are reachable and observable. They are algebraically equivalent
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and can be canonically computed using the Nerode equivalence. This very
simple picture does not fit with the 2D situation. We are not very far
from the truth by saying that the minimal realization problem is the bot-
tleneck of the entire 2D theory and that appropriate tools for investigating
this problem have not yet been set up. In particular, the reachability and
observability analysis, relative to local and global states,is not useful for
constructing minimal realizations. Actually, local reachability and observ-
ability do not necessarily imply minimality [12]. On the other side, globally
reachable and observable realizations are minimal, but the converse is not
true. Is should also be noticed that in some cases (see the Example below)
globally reachable and observable realizations do not exist [13].

Ezample 1. The transfer function W(z;,22) = 2% + z2 does not admit
globally reachable and observable realizations, independently of the field of
the entries of the system matrices.

Several approaches to the minimal realization problem have been un-
dertaken. One of these consists in associating an Hankel matrix with the
impulse response and using a suitable version of the Ho’s algorithm. It
was originally conceived for scalar systems, but it can be extended to the
multivariable case without any conceptual difficulty. Given a formal power
series s = E‘- 5 S;J-z{zé in the commuting variables z; e 23, the Hankel ma-
trix ¥ (s) is an infinite matrix with the entries indexed on the commutative
semigroup of monic monomials in two indeterminates. The matrix element
indexed by (z}23, 27'zK) is given by the coefficient s;4p ;4% It has been
proved [14] that,except for the case of series expansion of separable trans-
fer functions, the rank of ¥(s) is infinite, even when s is rational. So any
direct implementation of the Ho’s algorithm to obtain minimal realizations
of a rational transfer function becomes quite problematic.

A way to overcome this difficulty [12] descends from observing that the
Hankel matrix associated with a noncommutative rational series has finite
rank and allows us to use linear algorithms to construct a minimal matrix
representation of the coefficients of the series. More precisely, given the
alphabet {1, &2} and the noncommutative monoid {¢;, £;}*, consider a
strictly proper rational series

o= Z (o, w)w
we{€1,€2}*\ {0}

with noncommutative indeterminates £; e £, and introduce the matrix
X(o), indexed in {£1, £2}*, where the (w, w2) entry is the coefficient (o, wy ws).
Ho’s algorithm enables us to represent o in the following form

o(€1, &) = C(I — A1y — az82) " (B1é1 + B2 &) (8)

and to obtain a representation (6) where A; and A, have minimal dimen-
sion &(c). If the series expansion of the transfer function W (21, z3) is the
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commuative image of o, the system ¥; = (A;, Az, By, B, C) provides a
realization of W (zy, z3).

Thus a method to obtain the minimal realizations of W(zy,23) con-
sists in finding the set of noncommutative rational series o(¢;, &;) having
W (21, z2) as commutative image, §(c) minimal, and then in constructing
their representations (6). The algorithm for obtaining the set of such non-
commutative series is intrinsically nonlinear and evidentiates that

i) the dimension of minimal realizations of W (zy,z2) depends on the
ground field of the elements of the system matrices

ii) two minimal realizations are not algebraically equivalent if they are
computed applying Ho’s algorithm to different noncommutative series hav-
ing the same W (21, 22) as commutative image.

Ezample 2. Consider the following transfer function

22122
1+ zf + zg

It admits a minimal realization of type (2)

e 5 Yo e e[

on the complex field. It can be shown that there are no realizations of type
(2) on the real field having dimension two.

W(zy,22) =

Ezample 8. The following systems

(1 1 1 0] 0 (0]
A1=_0 1],A2=[0 1‘,Bl= By = ,C=[1 0]

and

[1 0 1 1] [0] [0
4= 1o 1}"42:[0 1] Br= 1) B = o) 0= 1 O]

are minimal realizations of the same transfer function, but are not alge-
braically equivalent.

Using noncommutative power series sheds also some light on a property
of 2D hidden modes, that has been recently discovered. Given an irreducible
2D transfer function n(zy,22)/d(21,22) and a state space realization & =
(A1, A2, By, B2, C, D) of W(z1,22), hidden modes are the common factors
of Cadj(I — A1z — Az22) and det(I — A1z1 — Azz3).

Since in the 1D case hidden modes are associated with unreachable
and/or unobservable parts, that prevent a system from being minimal, a
naive extension of 1D theory would suggest that minimal 2D realizations
are free of hidden modes. Actually cancellations of 2D polynomials between
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Cadj(I — A1z — Azzp)(Byz; + Bgzz) and the characteristic polynomial
det(I — Ajz; — Agz;) are always connected with the existence of plane
curves where one of the PBH controllability and reconstructibility matrices
are not full rank, but this fact is not in contradiction with the minimality
of the realization.

We shall sketch here an example, showing that the above intuition is
false. It is based on a multistep procedure that can be summarized as
follows:

i) express W(zy,22) as the product W;W; of two irreducible trans-
fer functions that exhibit the cancellation of some nonconstant polynomial
c(21 ) 2’2}.

ii) construct two minimal realization £; and E; of W;(z1,2;) and
Wy (21, 22), respectively

iii) perform the series connection of £; and E;. This provides a re-
alization of W (21, z2), whose characteristic polynomial includes the factor
¢(z1,22).

The noncommutative power series o1, that corresponds to the series
connection of ¥y and ¥y, is the product of the noncommutative power se-
ries oy and o5 associated with ¥; and X3 respectively. The cancellation of
a commutative polynomial ¢(z;, z;) in W;W, needs not imply that cancel-
lations arise in the product ;05 = 0,3, when o; and o, are expressed via
finite sums, products and inverses of noncommutative polynomials. This
suggests that the series connection of £; and X3 may be a minimal MR of
012, irrespective of cancellations in W, W5,

Ezample 4. Consider the transfer function W (z1,22) = (21 +22)% + 22 + 25

and its factorization into

(zl -+ 22)3 -+ z% + 2o
1 + 29

W (z1,22) = Wy(z1,22)Wa(21,22) = :I [1+ 2]

Starting from a minimal realization £; of Wy (21, 22), given by

0 -1 0 0 -1 0 0 1
Ai=|0 0 -1]|,4=]|0 0 -1|,By=1|0]|,B,=]|0],
0 0 0 0 0 -1 1 1
c=[1 0 o],
and a minimal realization ¥ of Wy(zy,22), given by A = fO],fi2 =

[0], B: = [0],B; = 1], = [1],D = [1], we compute the series connec-
tion of ¥; and X,

_[ A, _[ A, _[ B _[ B
A4 =|p,6 L]’A2_[Bzc Az]’Bl“[BlD]’Bz_[BZD}’
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The above system constitutes a minimal realization of W. The proof of this
fact is rather long [15], and involves a detailed analysis of the matrix pairs
A1, Az in C3%3 that satisfy the finite memory condition det(] — A;2z; —
Azz;) = 1. Note that I; and Iy provide minimal MR’s of o1 = (& +
£)2%(1+ &) (&1 + €2) + €2 and 0 = 1+ &; respectively, and £ provides
a minimal MR of ¢ = [(f] -+ 62)2{1 + 62)_1(61 + Eg) + 62](1 + Eg) No
cancellation arises in the above expression because of the noncommutativity
of the factors (1 + &2) and (&; + &2).

Every strictly proper rational functions can be realized by systems (2)
and (4). In general, if we assume that the system matrices satisfy some
structural constraints, only subclasses of the class of rational transfer func-
tions can be realized.

e the transfer function of an Attasi’s model is given by a separable
transfer function; conversely, the whole class od separable proper rational
functions can be realized using Attasi’s models. It can be shown that,
given a separable transfer function W (z1, z2), the rank of its Hankel matrix
X (W) provides the minimal dimension of the realizations having the Attasi’s
structure. Also, minimal realizations are algebraically equivalent and can
be computed using linear algorithms based on the Ho’s procedure.

e Consider now the model (4) and assume that the system matrices
satisfy the constraints

Ag =0, AjA2 = Az Ay, (7)

In this case the class of transfer functions which can be realized coincides
with the set of rational functions having series expansions of the following
form

W(zy,22) = [no(zl,zz) + Z ( n;(z1,22) ]2122 (8)

1-— @121 — ﬂ.szg)”f

with degn; < v; and ng € R|zy, z3|. The minimal realization algorithm is
based on linear procedures.

o Transfer functions having series expansion (8) do not exhaust the
set of all transfer functions whose denominators factorize as the product
of first order polynomials. The realization of a transfer function in this
set is always accomplishable by systems (2) and (4), with Ay, A2 (and A)
simultaneously triangularizable [17]. Algorithms for constructing minimal
realizations in this class are not yet known.

4. Control

Comparing with the situation in the 1D case, we have that, as a conse-
quence of the 2D partial ordering structure, the class of feedback schemes
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which can be implemented is much wider. Actually we can conceive control
procedures where the values of the state and/or the output at (h, k) influ-
ence the input values at points which are not causally related to (h, k). In
these cases the resulting closed loop system looses the quarter plane causal-
ity, which could be undesirable in the context of the synthesis problem we
are dealing with.

A further general remark is in order about the static or dynamic nature
of the feedback schemes. For the 2D systems the solution of most control
problems consists in introducing causal dynamic compensators that realize
state-input or output-input recursive relationships of the following form

u(h,k) =Y Hiju(h—1i,k—5) + Y Kiyx(h — i,k — j)

However, as we shall see, in the case of optimal control the input at (k, h)
is generated using a static noncausal control law that involves an infinite
number of local states. Obviously this gives some inconveniences from the
realization point of view, so that resorting to suboptimal causal dynamic
compensators might be preferable.

4.1 Feedback stabilization

By definition, a 2D system ¥ = (A, A2, B, B2, C) is internally stable

if, for any global state Xo = {x(¢, —1), 7 € Z} with sup; ||x(z, —1)|| < oo,
the free evolution of the local states satisfies

li h,k) = 0. 10

Rl e x(k, k) (10)

Accordingly, a stabilizing output feedback compensator is a (possibly non

strictly proper) p inputs, m outputs 2D system ¥ = (A4, A3, By, B;,C, D)

that makes internally stable the closed loop system resulting from the feed-

back interconnection of X and I.

Both stability and stabilizability properties can be checked by analyzing
the intersection of suitable polynomial varieties with the closed unit bidisk

Pr=A{(z1,22) : 21| < 1,z < 1}.

The following results have been obtained in [18,19]:
i) ¥ is internally stable if an only if the characteristic polynomial

det(! - A]_Z]_ - AgZz) (11)

associated with the pair (A;, A;) is devoid of zeros in F;.
ii) ¥ admits a stabilizing output feedback compensator if and only if

VR)UYV(O)NnP =8 (12)
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Here V(R) and V(0) denote the complex varieties of the ideals generated
by the maximal order minors of the following polynomial matrices in two
variables:

R =[I~- Az — A2z Biz + Bz (13)
and
0 - I- A1Zé— AQZQ] (14}

The meaning of condition (12) can be fully understood by examining the
analogous condition in the 1D framework. It is well known that a discrete
time 1D system (A, B, C) is stabilizable via dynamic output feedback if and
only if

(V(R)UYV(O)]Nn Dy =4,

where D; denotes the closed unit disk {z : 2| < 1}, and R; and O, are the
PBH controllability and reconstructibility matrices

Ri=[I—-Az Bz], 0= [I_CA”].

If Ngr(2)Dz'(z) is a right coprime MFD of the transfer matrix of (A4, B, C),
so that det Dp divides det(] — Az), then [V(R1) U V(01)] is the zero set of
det(I — Az)/det Dp, i.e.

(15)

V(R1) UV(01) = V (—MU - A"))

det Dy

This implies that the points of [V(R1) U V(01)] are naturally associated
with the hidden modes of the system and 1D stabilizability reduces to have
all hidden modes converging to zero.

The situation is quite different in the 2D case. Given any factor right
coprime MFD Ng(z1,22)Dgt(21,22) of the transfer matrix W (zy,22) of
L, the ideal of the maximal order minors of [ Ng Dpg | does not depend
on the particular right coprime MFD and coincides with the analogous
ideal of any left coprime MFD of W (zy,22) (see [20]). This ideal will be
unambiguously denoted by J(W) and the points of the corresponding finite,
possibly nonempty, variety V(W) are called “rank singularities” of ¥ (or
W(Zl, 2’2)).

The variety V(W) turns out to be of great importance in investigating
the relationship between the set of points [V(R) U V(Q)] and the variety
of the characteristic polynomial V(det(] — A;2z; — Az23)). For the 2D case
this relationship is more complex than (15), essentially because V(W) is an
invariant subset of [V(R) U V(0)] with respect to the specific realization
taken into account.

In [20] the following result has been obtained:
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Theorem 1 Let W(zy,2;) be the transfer matriz of a 2D system & =
(A1, A2, By, B2, C) and Ng(z1,22) D5 (21, 22) be a right coprime MFD of
W. Then the variety of the mazimal order minors of (13) and (14) s given
by,

YR UY(0) = Vw)uy (S S L))

det DR(Z]_,ZQ) (16)

Eqn. (16) shows that the set of critical points for 2D stabilizability includes
both the hidden modes variety, i.e. the algebraic curve associated with
the polynomial h(z1,22) := det(I — A1z; — Az2;)/det Dg(z1,22), and the
variety of rank singularities V (W).

The difference between the structures of (15) and (16) has important
consequences on the stabilizability of the state space realizations of in-
put/output maps given by transfer matrices. Clearly, minimal realizations
in the 1D case are stabilizable, since no hidden modes are left in the system
and therefore the polynomial matrices R, and 0, are full rank everywhere.
On the other hand, as a consequence of theorem 1, the 2D stabilizability
condition (12) requires that both V (k) and V(W) do not intersect P;. For
a given transfer matrix W(zy, z2) it is always possible to compute a real-
ization which fulfils the requirement that V(W) N P, = @; nevertheless, if
V(W) N Py # 0, there are no stabilizable realizations of W, since the set of
the rank singularities V(W) is independent of the realization.

Theorem 1 contains a first result about the constraints which have to
be fulfilled by the closed loop polynomial variety, but it does not specify to
what extent it can be modified using output feedback. The assignability of
the variety has been further investigated [20] and the key result is given by
the following theorem.

Theorem 2 Let £ = (A;, Az, By, B2, C) be a realization of a strictly
proper transfer matriz W (z1, z3). For any output feedback compensator I,
the variety of the closed loop polynomial A(zy, z3) satisfies the inclusion

V(B) 2 V(K UV (W)

Viceversa, given any algebraic curve C that includes V(h) U V(W) and ez-
cludes the origin, there ezists a compensator & such that V(A) = C.

At this point two problems naturally arise:

i) given a polynomial ¢(zy, z3) in R|[z;, 25, decide about the assignability
of the variety V(c) :=C

ii) if V(c) is assignable, find algorithms for realizing a compensator &
The solution of the first problem consists in verifying if

(0,0)¢¢ (17)
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V(h) S C (18)
YWw)ccC (19)
Checking (17) is trivial. Moreover, once the polynomial h(z1, z2) has been
computed, we can easily verify (18) using a linear algorithm to see if h
divides c9¢¢®, The condition (19) can be checked by first computing a set

of generators of J(W) and successively exploiting them for constructing a
pair of commuting matrices M; and M;, with the property

p(Z]_, 22) S I(W) < P(M],Mg) =0. (20)

Thus V(W) C C if and only if ¢(M;, M) is a nilpotent matrix. For the
construction of M) and M, the reader is referred to [21].

It remains to show how to compute the polynomial A and a set of gen-
erators for J(W) starting from the system matrices A, A3, By, B3, C.

For this, let

[Cadj(I — Ay21 — Az22)(Bi21 + B22)| [Ln det(] — A1z; — Az2;)]”' = ND!

be a MFD of the transfer matrix W (z1,z2). The generators set can be ob-
tained by evaluating the maximal order minors my, mg,...m; in | NT DT ]
and then by eliminating their g.c.d. d(z1,22). Thus k is given by

. det(I— A1z — Ang) _ det(I — Az — Ang]d(Zl,Zg)
B det Dp B det D

h

As far as the second problem is concerned, suppose that a variety C =
V(c) that fulfils conditions (17)-(19) has been given, and suppose we want
to synthesize a compensator ¥ that produces a closed loop polynomial A
whose variety is C. The procedure can be summarized as follows:

o Evaluate a right coprime MFD NrDg?' of W. This can be performed
by using the primitive factorization algorithm [11] or other algorithms that
do not require primitive factorizations [22].

e Compute the maximal order minors m;, ms,...m;.

o Compute an integer r and a Grobner basis g, gs,...g, such that
¢” =), mig;. A technique for performing this step has been presented in
[21].

e Solve the Bézout equation ¢"I,, = XDgp + Y Np.

e Use the realization algorithm given in [20] for computing a coprime
realization of X1V,

4.2 Optimal control

The compensator synthesis procedure illustrated in section 2 enables
us to obtain any preassigned variety of the closed loop polynomial, pro-
vided the constraints specified by Theorem 2 are satisfied. However the
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pole placement design essentially affects the asymptotic behaviour and ex-
hibits a poor control of the short term system response. In this section we
shall tackle the problem from a different point of view and outline a state
feedback synthesis procedure based on the minimization of a quadratic cost
functional J. The system which constitutes the end result of the optimal
design is not merely internally stable, but satisfies additional requirements
on the state and input evolutions that are summarized by J.

Assume that the initial global state (10) is an £; sequence and consider
the cost functional

J= Y xT(h,k)Qx(h, k) +uT (h,k)Ru(h,k) (21)

h+k>0

with @ > 0 and R > 0. Theorems 3 and 4 below provide a complete
solution to the following optimal control problems:

1. given Yo, derive conditions for the existence and the uniqueness of an
input function u(,-) that minimizes J;

2. whenever these conditions are satisfied, explicitly compute the opti-
mal input function and the corresponding value of J.

The following theorem [23] shows that the existence and the uniqueness
of a stabilizing optimal control reduce to rank conditions on polynomial
matrices in two variables.

Theorem 3 For any Xy € £, there ezists an £3- solution of the optimal
control problem. (i.e. an inputu(-,-) in £y such that the corresponding state
evolution X(-,-) is in £y and the value of J is minimized) if and only if the
polynomial matriz (12) has full rank on the set

M= {(21,22) €eC X C: 21| = |z2| < 1}
and the polynomial matriz

I—- A]_Z]_ = AQZZ

z (22)
has full rank on the unit torus

Ti = {(21,22) EC X C: |z1| = |z2| = 1}

When the conditions of Theorem 3 are fulfilled, the optimal control
law is obtained via an algebraic Riccati equation whose coefficients are
polynomial matrices in one variable.
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Theorem 4 Assume that (12) s full rank on M and (22) s full rank
on Ty. Then the following algebraic Riccati equation (ARE-z)

P(2) = Q + (AT + AT27Y)P(2) (A1 + A22) — (AT + AT 27 1) P(2)(B; + Bz2)-
-[R+ (BT + Bl 27")P(2)(By + B;2)] " (BT + BY27%) P(2) (A1 + A22)

in the unknown matriz P(z) admits a unique solution in an open annulus
that includes the unit circle vy, with the following properties:

1. P(e?¥) = P*(¢7“) 20, Vw € [0,2n]
2. the matnriz

K(2):= - [R+ (BT + Bfz"")P(2)(B1 + B22)] -
(BT + BTz7Y)P(2)(A; + Az2)

13 analytic in an open annulus that includes ;.

The coeffictents of its Laurent series ezpansion

+o0
K(z)= ) Kz (23)

provide a stabilizing feedback law u(h, k) = i__oim K;z(h + 7,k —1) and
the minimum value of J 1s given by
1 2m .
Toin =57 [ £5(0)P() fufw) do (24
0

where £o(w) denotes the Fourier transform of the £;-sequence Xo.

The proofs of theorems 3 and 4 are quite long and the interested reader
is referred to [23]. We shall give here two examples. The first one shows
how the solvability conditions based on the rank of (12) and (22) reflect
into the analytic structure of P(e’“). The second one gives an idea of some
difficulties involved in the computation of the feedback matrices K;, even
in dimension 1.

Ezample 5. Assume in (2) m=n=1,4; = By = B, = 1,A; = —1 and
in (21) R = @ = 1. In this case the solution of (ARE-z) can be obtained in

closed form as
_ =1F V542242271

—2(2+z+271)

P(z)
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Letting z = 7, the first solution is negative and the second is given by

P(e™) = -

—1+4++5+4cosw

Since we are looking for nonnegative solutions, we consider only the second
one, which is positive for w € [0,2n], except at w = m, where P(e’“)
diverges. Actually, this is not surprising because (12) is not full rank at
(1/2,-1/2) € M. Hence for some initial global state in £, a stabilizing
optimal feedback law does not exist.

Ezample 6 Let’s change only the sign of Az in the previous example. In
this case the unique positive definite solution of (ARE-z) along =, is given
by

: 2
P(e¥) =
(=) v/1+16(1+ cosw)? — (3 + 4 cos w)

and the corresponding feedback matrix is

K(e™) = 4(1 + cosw) _
14 /1+16(1 + cosw)

Since P(e’¥) attains its minimum value at w = m, we have
1 am Jw 2 2 Jm
Jmin(Zo) = o | Ple 1 £o(@)|[? dw 2 || Xol[*P(e™)

and Jnin(Xo) can be made arbitrarily close to the lower bound, if we con-
sider initial global states whose spectral content is concentrated in a narrow
neighbourhood of /™.

The computation of the values of K; depends on the evaluation of the
following integrals

1 [ 4(1 + cosw) cos(wh)

Kh=5—
TJo 1++/1+4(1+cosw)?

dw, h=0,1,...

When infinitely many Kj,s are different from zero, the optimal feedback
law cannot be implemented by a finite dimensional device and the resulting
closed loop system is an half plane causal 2D system, whose updating equa-
tion requires in principle to cope with an infinite dimensional state vector.
To overcome the storage and computation problems, it seems natural to
investigate whether, in case (2) satisfies the rank condition of theorem 3,
the stabilizing feedback matrix could be constrained to have all elements
in the bilateral polynomials ring R[z,z7!]. An obvious advantage of this
control law is that u(h, k) would only depend on a finite number of local
states, which makes the closed loop system weakly causal [24].
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The question above can be positively answered. Actually, the bilateral
polynomial matrix

N
.KN(Z)2 Z K;z‘
i=—N

obtained by truncation of the Laurent series (23) gives a stabilizing state
feedback, provided that IV is large enough. Even more, when N diverges
and £, initial states are considered, the corresponding cost functional Jy
asymptotically converges to the minimum value Jy;,.

10.

11.
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