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Abstract- Some properties of state space realizations of 2D FIR
filters are investigated. It is shown that hidden modes are allowed
in minimal realizations and, consequently, there exist minimal
realizations of FIR filters which are not finite memory.

I. INTRODUCTION

When one designs a 2D filter, the performance requirements
are usually specified by an input/output description. On the other
hand, the design is completed when the specifications are met
by a suitable state space model that “realizes” the input/output
description, by displaying the structure and the connections of the
physical components that are needed in the synthesis procedure.

The translation of one description into another is an important
problem which, while discussed and solved in the early 70’s in the
1D context [1,2], is still far from a complete solution in the 2D
case.

1t is well known that any linear stationary recursive 2D filter,
represented by a proper rational transfer function W (z1, 22), can
be converted to an equivalent first order state space model with
the following structure [3],

z(h, k) = Aiz(h,k +1) + Asz(h + 1,k)
+ Byu(h,k+1) + Beu(h + 1,k) (D)
y(h, k) = Cz(h, k) + Du(h, k)

System (1) is usually denoted as & = (A1, Az, By, B2,C, D)
and called a (state space) realization of W (z1, 22).

The research efforts made in the last few years enlightened
many connections between the input-output description given by
W (z1,22) and the internal one, given by I and opened several
avenues for subsequent investigations.

However if we look for minimal realizations, their structure
still constitutes the bottleneck of the 2D theory. At the moment
several counterexamples are available, that provide negative an-
swers to questions we could naively hope to solve by just extending
1D results. In particular, we know that minimal realizations of
a 2D filter in general are not unique (modulo algebraic equiva-
lence) and their dimension depends on the (complex or real) field
where system matrices take their values. Moreover reachability
and observability properties (whatever may be their definition)
are not suitable for characterizing minimal realizations. An even
more stricking difference w.r. to the classical case is that hid-
den modes are allowed in minimal 2D realizations. This result,
that will be proved in Section IIl, encompasses many interesting
consequences, ranging from the “internal” stability of minimal re-
alizations of “externally stable” filters to the existence of minimal

realizations that are not modally controllable and reconstructible
4,5).

In this paper we shall be concerned with two properties of
2D state models and 2D filters, that are strongly connected each
other. The first one is the so called “finite memory” property (6]
of the state space model or, equivalently, of the pair (4, 4;). A
2D system is finite memory if, for any arbitrary initial set of local
states,

Xo = {a(i,~i),i € Z) 2)
the state free evolution goes to zero in a finite number of steps.
This property depends only on the structure of the pair (Aj, As)
and requires that the 2D characteristic polynomial of the system

satisfies
det(f = Alzl = Azz;_») =1 (3)

The second property is the finite impulse response (FIR) of the
filter or, equivalently, the polynomial character of W (z1,2).

The connections between these properties are very well under-
stood in the 1D situation, where

i) finite memory reduces to the nilpotency of the matrix 4,

ii) finite memory implies that the transfer function is FIR,

iii) minimal realizations of FIR transfer functions are finite
memory.
Only proposition ii) has an immediate extension to 2D systems,
as can be easily seen from the expression ]

W (e, ) = S s = dan)(Fun 3 Boa)
det(f— Ajz) — Agzz)

The objective pursued in section 2 is to investigate some col
nections between the finite memory property of a 2D state space
model and the structure of the pair (A;, Az), while in section 3 we
shall cope with the minimal realization problem of FIR transfer
functions in two variables. One characteristic feature of 2D mim
imal realizations is that the numerator and the denominator of
(4) need not be coprime polynomials. Therefore we expect that
the characteristic polynomial of a minimal 2D state model may
be a multiple of the transfer function denominator.

In that case the FIR property of a transfer function does not
imply the internal stability of its minimal realizations.

II. FINITE MEMORY 2D STATE MODELS

When analyzing the structure of 1D state space models, canor
ical forms with respect to similarity transformations proVide an
extremely useful tool. Actually the interest of canonical forms
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relies in reducing the computation in the analysis and design of
control systems and, also, in evidentiating characteristic prop-
erties which are invariant for the orbits generated under matrix
similarity equivalence.

In the 2D framework, given a finite memory pair (A;, A3) of di-
mension n, all pairs in the orbit {{(T"1A4,7,T~'4,T), T nonsing.}
characterize 2D systems with the same property. Therefore, in or-
der to obtain a complete classification of the set ¥ of finite mem-
ory pairs, all we need is to give a subset C C ¥ having nonempty
intersection with each orbit. In the sequel sets of canonical forms
will be directly computed for n < 3 using techniques which cannot
be extended to higher dimensional systems. As far as we know,
there are no general procedures for computing sets of canonical
forms C with arbitrary dimension of the state space.

What we can easily see is that all pairs in 7 consist of nilpotent
matrices, but the converse is not true, since the nilpotency of A;
and A, does not imply finite memory. To show this, just take

01 0 0
Al = [0 D], Az—[l 0].
So, for instance, C cannot be the set of alla pairs (41, 42} where
A; is any Jordan nilpotent matrix and A is a generic nilpotent
matrix.
On the other hand, ¥ includes the set T of triangular nilpotent

pairs. The orbits generated by the elements of T, however, do
not cover the set 7. In fact, consider the following finite memory

pair
010 0 0 0
Ai=[0 0 1|, 4=[1 0 o (5)
0 0 0 0 -1 0

If the matrices in (5) were triangularizable, every element of
the multiplicative semigroup generated by A; and Ay would be

nilpotent. Since
1 0 0
AjA; =0 -1 0

0 0 0O

is not nilpotent, this is not true and shows that T does not inter-
sect all orbits of 7.

If we confine ourselves to pairs of matrices with dimension less
than or equal to 3, a finite set of canonical forms (w.r. to similarity
transformations) can be computed directly. Since these will be
needed in the next section, we shall sketch here their construction.

If the dimension of A; and A; is 2, then the finite memory con-
dition (3) implies the simultaneous triangylarizability of A; and
Az. Actually, the case A; = 0 is trivial; so there is no restriction
in assuming that A; is a Jordan block,

01
4=[g 7] (6)
and A; any 2 X 2 nilpotent matrix
A2=['ﬂ{a B], uwa+vf=0 (7)

We therefore have, det(]— Ajz; — Az222) = 1— avz2;. Since finite
memory gives av = 0, ua + vf = 0 implies fv = au = 0. We
conclude that the structure of A; is as follows

Agz{g "0‘3].

For n = 3, referring to the ranks of A; and A; , we classify all
possible cases as follows:

Case I (rankA;)(rankA4;) =0

One of the matrices is 0 and the other one can be reduced to
a nilpotent matrix in Jordan form. No further constraints arise
when considering equation (3).

Case 2: (rankA,)(rank4;) =1
Both matrices have rank 1. There is no restriction in assuming
that A; is in Jordan form

010
Ai=1|0 0 o] = g

0 0O
and A is a generic 3 X 3 nilpotent matrix of rank 1
Ay =[u v w]T[a B 7], oaut+pPrv+yw=0 (8)
Similarity transformations induced by
tin tiz fis
T=10 tiy 0], tutss#0
0 tag tss

preserve the structure of J(1) and reduce A to one of the following

structures
0 0 O 0 0 u
Ay=|v 0 0| #0, A’,’:[D 0 v]#o,
w 0 0 0 00
0 u 0 (9)
Ag’ =(0 0 0|#0
0 w O

Finally, equation (3) introduces a further constraint on 4}, so
that the admissible pairs are

} #£0 (10)

Case 3: (rankA,;)(rankA;) = 2
Suppose A; of rank 2 reduced to its Jordan form

010
A =10 0 1:'::.](2)

0
A =J8 a=10

O ¢ 8 o000

A =J0, A= [

cocoog

0
0
0
0
0
0
u
0
w

A=), Ao [0
0

(= =1Nw]

0 00

and A; be a generic 3 x 3 nilpotent matrix of rank 1 (the case
rankAs = 2 can be dealt with by simmetry). Similarity transfor-
mations induced by

{tn tiz tis
T=10 tn tu} , tn#0, (11)
0 0 tn

preserve the structure of J(z), while reducing Az to one of the
structures given in (9). The finite memory condition implies then
that the admissible pairs are only two, namely,
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0 0 u
A=J® A,=|0 0 v|#0
000
12
0 u O ( )
A,=J® 4,=|0 0 0| #0
000

Case 4: (rankA;)(rankAz) = 4
Assume A; = J(2) and let A, be a generic 3x3 nilpotent matrix

of rank 2

r
A2: {fzJ f !‘,‘E:R,lx3
r3

If r; belongs to the row span of ry and r3, then there is no re-
striction in assuming r; = 0. In fact in this case a similarity
transformation exists, as induced by a suitable matrix (11), that
annihilates the first row of Az.

If r; does not belong to the row span of r; and r3, then, using
a similarity transformation as above, we may assume that either
r2 =0 (and ry # 0) or r3 =0 (and rz # 0).

In case r; = O, the finite memory condition induces further
constraints on Az , that reduces to

0 00
Ay=|-u 0 0};&0 (13)

0 u O

In case r, = 0, there is no way of satisfying the finite memory
condition, while in case r3 = 0 the matrix A reduces to

0 u v
A =10 0 w|, uw#0 (14)
0 0 O

which concludes the computation of canonical forms for n = 3.

Although the set 7 has not yet been characterized by canon-
ical forms for matrices of arbitrary dimension, the finite memory
property of a pair (A;, Az) can be always expressed in terms of
equivalent conditions which involve the linear space and the addi-
tive semigroup generated by A; and Aj, or the family of matrices
Ar*l? Ay recursively defined by

AfulA, = AL, AwiA, = A
Afwd Ag = Ay (A Wi Ag) + Ag (AW TiA), if 6,5 >0
The picture is illustrated by the following propasition [5,7]

PROPOSITION The following properties are equivalent:

(i) det(I — A1z — Azz;) =1  (finite memory property)

(i) the additive semigroup generated by A; and A, ie. the
set of matrices ad; +bAg, a,bnon negative integers, is constituted
by nilpotent matrices

(ili) the linear space generated by A; and A, i.e. the set
of matrices aA; + fAz, a,f € R, is constituted by nilpotent
matrices

(iv) A'widy, =0, i+52n

(v) tr(Ar'wiAs) =0, Vi,720

III. STATE SPACE MODELS OF FIR FILTERS

Obtaining a finite memory realization of a polynomial trans-
fer function is quite easy if we are not required to obtain a low
dimensional system [5].
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However if we look for minimal realizations, in general it is
not true that these are necessarily finite memory (which makes a
remarkable difference with the 1D case). In this section we aim
to show that this phenomenon holds independently of the (real
or complex) field where the matrix elements take their values and
implies that minimal realizations of FIR transfer functions need
not be internally stable. To prove our statement, we shall go
through the following steps:

1. we show that there exists a 2D polynomial n(21,2) of
degree 3, that cannot be realized in dimension 3; )

2. we construct an (infinite memory) realization of dimension
3 for the transfer function n(z1, zz2)/(1+2;) and a series connection
of such a realization with a realization of dimension 1 for (1 4
z;). The realization of n(z, 2;) obtained in this way is minimal,
internally unstable and exhibits pole/zero cancellations.

Step 1 Assume that A; and A; belong to C*** and are the state
updating matrices of a finite memory 2D state model.
For all matrices

C= [Cl [} C3]

in C¥% and By, B; in C3%1, the system transfer function is a
polynomial

W (21, 22) = Cadj(I — A121 — A323)(Biz1 + Baz2) (15)
of degree not greater than 3, that we shall rewrite as
W (21, 22) = p1(z1,22) + pa(21, 22) + ps(21, 22),

where p; are homogenous forms of degree i, + = 1,2,3.

Referring to the cases considered in section 2, we see that,
independently of the choice of By, Bz and C, the polynomials p;
must satisfy the following constraints:

case 1) ps belongs either to the principal ideal (z}) or to the
principal ideal (22).

case 2) ps belongs to the principal ideal (222).

case 8) if p3 = ¢ , where g is a first order form, then either
g=2z,0r ¢=2.

case §) if ps = ¢° , where g is a first order form, then ¢ is also a
factor of ps.

The above constraints show that the polynomial
n(z1,22) = (a1 + z2)3 + zzz + 23 (161
3

cannot be realized by a finite memory third order 2D system.
Therefore, if we look for a third order 2D realization of n(z1, z2),
a system with
det(I - A1z1 — Agzz) #1

would be needed. However in that case pole/zero cancellations
between det(] — A;2z; — Az2;) and Cadj(f — A1z1 - Agz)(Binn t
By #;) must occur, and therefore the degree of Cadj(I — A1%1 ~
Azz2)(B1z1 + Byzy) must be greater than or equal to 4, which is
impossible for third order systems.

Consequently, the dimension of any state space realization of

n(z1,22) is greater than 3.

Step 2 The following 2D systems: X; = (41, Az, B1, B;,C)

0 -1 0 0 -1 0
A=|0 0o -1|, 4=|0 0 -1},

0o 0 O 0o 0 -1

, with
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1
0
1

, C=[1 0 0]

0
BIZ 0 ) Bz:
1

and X2 = (F17 FZIGlaGZ;H: D) with

P =F=0G =0G,=H=1,D=1.

realize n(z1,22)/(1 + 22) and 1 + 2, respectively. Then the series
connection of ¥; and X3 is a strictly proper 2D system £ =
(A1, Az, By, Bz, C) with

s [ R0 ;[ Fa OJ
Alﬁ[BIH A,]’ Az_[BzH Az ]’
Ao Gy > G» A C
s-[3] m=[S1]. e=p cl

which provides a fourth order, and hence a minimal realization of

n(21,22). ) ..
Since the characteristic polynomials of ¥ is

det(f — Ayzi— Agz) =1+12

the realization 3} above is not finite memory.

The example allows to point out some interesting consequences:

i) minimal realizations of FIR transfer functions need not be

finite memory
ii) pole/zero cancellations are allowed in minimal realizations.,

Actually in £ we have
Cadj(I - Apzy= ﬁgzz)(élzl + Bzzz) = n(z1, 22)(1 + 22)
det(I — /i;zl - Azzz) =142z

iii) minimal realizations of FIR (and hence BIBO stable) trans-
fer functions may be unstable. In fact in the example the variety
of 1 + z; intersects the unit closed polydisc P, = {(z1,2;) : || <
1,|z| < 1}.

Remark The above example shows that FIR filters can have in-
finite memory (even unstable) minimal realizations. This does
not necessarily imply the existence of FIR filters whose mini-
mal realizations are all infinite memory. As a matter of fact
n(zy, 27) admits also the following finite memory realization £ =
(‘i]_, x‘iz, EI, Bz,é) with

m -1 o0 0 0 -1 0 -1
= 0 0 -10 . 0 0 -1 0
A=y 0 o ol =0 0o o o
lo 0 0 o0 00 0 o0
ra 1
B, = (1), j: A ‘1) , €=[1 0 0 0]
Lo -1

The systems £ and % provide two nonequivalent minimal real-
izations of the same transfer function n(zy,2;). This is not sur-
Prising in the 2D case, since minimal realizations need not be
algebraically equivalent.

Whether an FIR filter exists whose minimal realizations are
all infinite memory systems is still an open question.
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