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Feedback Strategies in
Two-Dimensional Control Theory

M. BISIACCO, E. FORNASINI, and G. MARCHESINI
University of Padova, Padova, Italy

1 INTRODUCTION

In this chapter we illustrate the main features of feedback control strategies in
the field of two-dimensional (2-D) systems and their use in solving the problems
of pole placement, LQ optimal control, and input—output decoupling. As is well
known, in one-dimension (1-D) theory there are essentially two approaches to
tackle feedback problems. The first consists of constructing the input value at
some instant ¢ as a static linear function of the state or output values at the
same instant. In the second approach the input value is generated by a dynamic
feedback compensator, whose output is obtained by causally processing the state
or the output of the system.

Both schemes also apply to 2-D systems. Within this context, however, the par-
tial ordering structure that characterizes 2-D dynamics (quarter-plane causality)
allows us to consider a class of feedback schemes where the state or output values
at the instant (h, k) influence the input values at instants that are not causally
related to (h, k), leading to a closed-loop system where in general the original
quarter-plane causality is lost. Of course, this is not acceptable if we look for a
solution that maintains the original 2-D causality.
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450 Bisiacco et al.

The state equation [1] of a 2-D system ¥ = (A;,Az, B1,B2,C, D) having m
inputs and p outputs is given by
xth+1L,k+ 1) =A1x(h+ 1,k)+Axx(h,k+ 1)
+ Byu(h + 1,k) + Bou(h,k+ 1) (1)
y(h, k) = Cx(h,k) + Du(h, k)
where u is the m-dimensional vector of input values, y the p-dimensional vector
of output values, x the n-dimensional local state vector, and A4, A, By, B;, C,

and D are matrices of appropriate dimensions.
The transfer matrix of X,

W(z1,22) :=C( — A z; — A223) '(B121 + B22)) + D (2)

is a p X m matrix whose entries are proper rational functions in two variables.
The system (1) is called strictly proper if D = 0 and bicausal if D is an invertible
matrix.

Having in mind the dynamical structure of (1), the control laws that preserve
the quarter-plane causality of the closed-loop system are provided [2—4] by the
static state feedback

u(h,k) = Kx(h,k), K € R™" 3)

and by the dynamic state feedback (2-D state feedback compensator) represented
by the following recursive equation:

u(h, k)= > Hjju(h—ik—j)+ > x(h— i,k ),
i iJ

(4)
HE,J-' E Rmxm, I(IU' E RmXﬂ

Denoting by

+oo
Xo= > x(i+t,-i)y

the “global state” on the separation set C, = {(i + ¢, —i), € Z} and by

+o0

U= u(i+t,—-i)7

i=—0o

the restriction of the input function to C,, the state updating equation (1) can be
rewritten in the form

Xop1 = (A1 + A22)X, + (By + Bo2)Y, (5)
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Since (5) can be viewed as a linear 1-D system, evolving on the vector space of
global states, the feedback control law

N
Uyz) = (Z K,-z*') Xi(2) (6)
I=—N

preserves the 1-D causality of the system (5). From the 2-D point of view,
however, by expressing (6) in the form

N
u(t, k)= > Kix(h—i,k+i), K € R™ (7
i=—N

we can see that the resulting 2-D feedback system does not preserve the original
quarter-plane causality. In fact, because of (1), x(h, k) depends on the input values
at (1 —1, k) and (h, k — 1), which in turn depend on the states at (h—1—N,k+N),
(h—N,k+N—-1),...,(h+N,k—1—N). The closed-loop system that results by
applying (7) belongs to the class of weakly causal 2-D systems [5,6]. Assuming
that K = KH, K; = K;H, and Ky = KJ-H, in (3), (4), and (7), one obtains the
explicit expression for the corresponding output feedback laws.

As mentioned above, 2-D feedback control strategies can be used to tackle
the following problems:

P1: Stabilization
P2: Noninteracting control
P3: Minimization of a quadratic cost functional

In solving problems P1 and P2, dynamic feedback laws preserving quarter-
plane causality are allowed, while these are no longer suitable for solving problem
P3. As we shall see, the input that minimizes the cost functional is generated
through a feedback scheme where all values of the local states on the separation
set Cpik = {(h + i,k —i),i € Z} enter in the expression of the input value at (h, k).

2 STABILIZATION

This section is devoted to illustrating the synthesis of output feedback com-
pensators that (internally) stabilize the plants represented by strictly proper 2-D
systems. By definition, a 2-D system ¥ = (A1,A2,B1, B;,C) is internally stable
if for any global state Xy = {x(i, —i),i € Z} with

sup (5, ~i)| < o0

the free evolution of the local states satisfies

lim x(hk)=0 (8)

htk—4o0
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According to the previous definition, a stabilizing output feedback compensator
is a p-input, m-output 2-D system ¥ = (A1, Ay, By, B2, C, D) that makes internally
stable the closed-loop system resulting from the feedback interconnection of ¥
and .

Both stability and stabilizability properties can be checked by analyzing the
intersection of suitable polynomial varieties with the closed unit bidisk

Pr=A{(z1,2) : |z| £ 1, || £ 1}
The following results have been obtained in [7,8]:
1. X is internally stable if and only if the characteristic polynomial
det(l — A1z — Ayz;) 9)

associated with the pair (41,A2) is devoid of zeros in P;.
2. ¥ admits a stabilizing output feedback compensator if and only if

VRYUVOINP, =0 (10)

Here V(RR) and V(O) denote the complex varieties of the ideals generated
by the maximal order minors of the following polynomial matrices in two

variables:
R = [] — A1z — Az Bizg +BZZZ] (11)
and

0= (12)

I —A]_Z; —A222
c

The meaning of condition (10) can be fully understood by examining the
analogous condition in the 1-D framework. It is well known that a discrete-time
1-D system (A, B, C) is stabilizable via dynamic output feedback if and only if

VRHUVONIND; =0

where D; denotes the closed unit disk {z : |z] <1}, and R and O; are the PBH
controllability and reconstructibility matrices:

L —AE
¢
If Ng(z)Dy ' (2) is a right coprime MFD of the transfer matrix of (A, B, C), s0

that det Dy divides det( — Az), then [V(R1) U V(Oy)] is the zero set of det(l —
Az)/det Dg:

Ri=[I—-Az Bz, =

det(l — Az) )

VR)UV(O) =V (5 5,

(13)
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This implies that the points of [V(RR1) U V(Oy)] are naturally associated with the
so-called “hidden modes” of the system and 1-D stabilizability reduces to have
all hidden modes converging to zero.

The situation is quite different in the 2-D case. Given any factor right coprime
MFD NR(zl,ZZ)DEI(zl,zﬂ of the transfer matrix W(z;,z;) of X, the ideal of
the maximal order minors of [Ng Dg] does not depend on the particular right
coprime MFD and coincides with the analogous ideal of any left coprime MFD
of W(z1,22) (see [9]). This ideal will be unambiguously denoted by Z(W) and
the points of the corresponding finite, possibly nonempty, variety V(W) are called
“rank singularities” of £ [or W(z1, 22)].

The variety V(W) turns out to be of great importance in investigating the
relationship between the set of points [V(R) U V()] and the variety of the char-
acteristic polynomial V(det(I — A;z; —A322)). For the 2-D case this relationship
is more complex than (13), essentially because V(W) is an invariant subset of
[V(R) U V(O)] with respect to the specific realization taken into account.

In [9,10] the following result has been obtained:

THEOREM 1 Let W(z;,2;) be the transfer matrix of a 2-D system % =
(A1,Aq, By, B2, C) and Ng(z1,22)Dy ' (21, 22) be a right coprime MFD of W. Then
the variety of the maximal order minors of (11) and (12) is given by

(14)

det([ ——A121 *AzZz)
V(R)UV(O) = V(W)U V ( e )
Equation (14) shows that the set of critical points for 2-D stabilizability includes
both the hidden modes variety [i.e., the algebraic curve associated with the poly-
nomial h(zy,z) := det(I — Ay1z; — Ay2)/ det Dp(z1,22), and the variety of rank
singularities V(W)]. The difference between the structures of (13) and (14) has
important consequences on the stabilizability of the state-space realizations of
input—output maps given by transfer matrices.

Clearly, minimal realizations in the 1-D case are stabilizable, since no hidden
modes are left in the system, and therefore the polynomial matrices 7% and O,
are full rank everywhere. On the other hand, as a consequence of Theorem 1,
the 2-D stabilizability condition (10) requires that both V() and V(W) do not
intersect P;. For a given transfer matrix W(zy, z2) it is always possible to compute
a realization which fulfills the requirement that V(h) N Py = @; nevertheless, if
V(W) N Py # 0, there are no stabilizable realizations of W, since the set of the
rank singularities V(W) is independent of the realization.

Theorem 1 contains a first result about the constraints that have to be fulfilled
by the closed-loop polynomial variety, but it does not specify to what extent it
can be modified using output feedback. The assignability of the variety has been
further investigated and the key result is given by the following theorem.
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THEOREM 2 [9] Let ¥ = (A1,A2,B1,B,,C) be a realization of a s’Erictly
proper transfer matrix W(zy,22). For any output feedback compensator X, the
variety of the closed-loop polynomial A(zy, z;) satisfies the inclusion

V(A) D V(h) U V(W)
Vice versa, given any algebraic curve C that includes V(h) U V(W) and excludes
the origin, there exists a compensator 2 such that V(A) = C.

At this point two problems naturally arise:

1. Given a polynomial ¢(z1,z2) in R[z1,22], decide about the assignability of
the variety V(c) := C. i
2. If V(c) is assignable, find algorithms for realizing a compensator ..

The solution of the first problem consists in verifying if

0,0 ¢C (15)
V(hyCcC (16)
V(W) cC (17)

Checking (15) is trivial. Moreover, once the polynomial A(z;, z;) has been com-
puted, we can easily verify (16) using a linear algorithm to see if & divides ¢d*.
Condition (17) can be checked by first computing a set of generators of Z(W)
and successively exploiting them for constructing a pair of commuting matrices
M; and M;, with the property

P(z1,22) € (W) & p(M, M) =0 (18)

Thus V(W) C Cifand only if ¢(M;, M3) is a nilpotent matrix. For the construction
of M; and M; the reader is referred to [11].

It remains to show how to compute the polynomial & and a set of generators
for Z(W) starting from the system matrices Ay, Ay, By, B, C. For this, let

[Cadi(l —A1z1 — A222)(B1z1 + Baz)|[Im det(l — A1z1 — Azz)] ' = ND™!

be a MFD of the transfer matrix W(z;,2;). The generators set can be obtained
by evaluating the maximal order minors my, my, ..., m, in [NT D] and then
by eliminating their greatest common denominator (g.c.d.) d(z1,2z;). Thus 4 is
given by

B det(l —Alz] -—AzZz) . det(I—A121 —AzZz)d(Zl,Zz)

N det Dp N detD

As far as the second problem is concerned, suppose that a variety C = V(c)
that fulfills conditions (15)~(17) has been given, and suppose that we want to

synthesize a compensator ¥ that produces a closed-loop polynomial A whose
variety is C. The procedure can be summarized as follows:
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1. Evaluate a right coprime MFD NRD};1 of W. This can be performed by
using the primitive factorization algorithm [12] or other algorithms that do
not require primitive factorizations [13].

2. Compute the maximal order minors my, ma, ..., m,.

3. Compute an integer r and a Grdbner basis Bis 2o, vy Sy Hiich that € =

2_;migi. A technique for performing this step has been presented in [11].

Solve the Bézout equation ¢'I,, = XDg + YNx.

5. Use the realization algorithm given in [9] for computing a coprime realization
of XY,

e

3 NONINTERACTING CONTROL

The noninteracting control problem consists in designing a 2-D dynamic state
feedback compensator and a static precompensator which guarantee that the
transfer matrix of the resulting closed-loop system is diagonal. As is well known
[14,15], in the 1-D environment the problem above can be solved if and only if it
is possible to find a bicausal precompensator that decouples the original system.
Moreover, if we are not interested in stabilizing the system and we only look at the
realization of a noninteracting control, it has been proved that a static state feed-
back compensator can be substituted for the dynamic, with no augmentation of the
order of the system. The properties above do not hold for 2-D systems. In particu-
lar, it has been shown [16] that a 2-D bicausal decoupling precompensator cannot
be replaced by a feedback scheme unless some assumptions are introduced on the
structure of system (1). The simplest of these consists in assuming that the matrix

[B1 B:] (19)

is injective. Confining ourselves to systems that fulfill this restriction, we can
prove the following theorem, which provides necessary and sufficient conditions
for solving the noninteracting control problem.

THEOREM 3 [14] Let £ = (A;,A2, By, B2,C) be an m-input, m-output 2-D
system with dimension n and consider the polynomial matrix
[ Ci(A1z1 + Ayzp)* (Bizy + Bazp) |

Ca(A121 + Apz3)™(Biz) + Bazy)
My = _ (20)

| Cm(A1z1 + A22)™(B, 2y + B223) |

where C; is the ith row of C and

d; =min {j : Ci(A1z1 + A222Y (B121 + Baza) # 0}
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Assume also that [B; B,] is injective. Then ¥ can be decoupled by a dynamic
state feedback compensator plus a static precompensator if and only if:
(a) There exists a constant nonsingular matrix Qg such that MyQ is diagonal:

MoQo = diag {e1, €2,...,6n}
where¢;,i=1,2,..., mare homogeneous polynomials in R[z1, z;] of degree d;+1.

by Mjlcd — Az —A223)71(B121 + Byzy) is proper rational.

Interestingly enough, the proof of the theorem is constructive and provides a
synthesis procedure for a decoupling compensator. Here we shall only outline

the sufficiency part, which will be needed in the subsequent discussion on stable
decoupling.
First, recalling assumption (a), we have

CU —Ayz1 — Ay2) Y (Biz) + Byz2)
X My (I — Arzi — A22,) " Y(By2y + By2:)] 710
= MoQo = diag {e1, €2,...,€x} (21)
Now, using assumption (b), it can be shown that
MGICU — Aizy — Ayzy) \(Biz) + Byzy)
is a bicausal transfer matrix, which in turn implies that
P(21,22) == [My 'C(I — A1z1 — Ar2) ™ (Baz1 + By22)] 10, (22)

is the transfer matrix of a bicausal decoupling precompensator.
So the sufficiency part of the proof reduces to show that W(z1,2,)P(z1,2;3) can
be expressed as the transfer matrix of an interconnected system that includes the

static precompensator Qg and a suitable causal feedback compensator K(zy,z;)
that solves the following equation:

W(z1,22)P(z1,25)
=Cl —A1z — Az — (Bizi + By2p)K(21,2)) ' (Buzy + Baz)Qy  (23)
Note that the right-hand side of (23) can be rewritten as
C(I —Ayz; — Ayz) " (B1z; + Bazp)
‘[ = K(z1,22)( — A1z1 — A2z) ' (Byz1 + Baz)] ' Qo

Hence, expressing P(z1,27) as Ps + Qp, where Pg denotes the strictly proper part
of P and taking the inverse on both sides of (23), one gets

[I +P5(Z],22)Q61]7] =7 —K(Zl,Zz)(f ¥A121 —AZZQ)_I(812’1 +3222)
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‘namic Now introduce a 2-D realization & = (Al,ﬁg,fi’l,éz, C’,I) of [I +Ps(zl,22)Q51]_1
and let
gonal:

If(zl,zz) =K(z1,22)(I — A1z ——Ang)*l

‘ Then the search for a causal K(z;,z3) that solves (23) reduces to finding a causal
cd;i+1. rational matrix K(z1, z;) that solves the following equation:

é(f —1‘{121 -AgZz)ﬁl(Blll +1§222) = —K'(Zl,Zg)(B121 + Bz}_’z)

By the injectivity of [B;  B;], there exists a constant matrix F such that

vides a i
dutline ‘ F(3121 + B2z3) :Blll +1§222
stable i _ ) _ . )
We therefore have that a solution of (23) is provided by the proper rational matrix
K(Zl,Zz) = w(f'(] ——1“1'121 —AHQZQ)_IF([ ——A121 ——AgZz) (24)
which constitutes the transfer matrix of a causal decoupling compensator.
If the original system X satisfies both the decouplability conditions of
! Theorem 3 and the state feedback stabilizability condition,
21
(1) rank[f —A;z; — Az Biz; —}—Bng] =n V(z,n) € P
we can solve simultaneously the stabilization and decoupling problems. In other
| words, it is possible to synthesize a decoupling compensator that stabilizes the
I closed-loop system. This property is an immediate consequence of the following
facts:
(22) : 1. State feedback stabilization preserves decouplability.
' 2. Decoupling can be performed by a state feedback compensator that preserves
internal stability.
2;) can
des the These enable us to solve the stable decoupling problem using a two-step
(21,22) procedure: first, state feedback stabilization is performed on the plant; and second,

the resulting system is decoupled using an appropriate state feedback compensator
that does not affect internal stability.

The proof of the first fact is immediate since the matrix My in the original
(23) 1 system coincides with the corresponding matrix in the closed-loop system. So
| both the original and the closed-loop systems satisfy condition 1 of Theorem 3.
| Moreover, the transfer matrix Wr of the feedback system differs from W in a
| bicausal multiplicative factor. Therefore, MO_IWF is proper rational.

To prove the second fact, note that if the plant ¥ is internally stable, det(I —
| A12z; — Azz;) does not vanish in P; and consequently, in (22) all singularities
of P(z1,2,)"! are external to P;. Assuming that ¥ is a coprime realization of
(1 +P5Q61)‘1, the characteristic polynomial det(/ —Alzl —Ang) does not vanish
in Py and therefore K(z1,z2) in (24) admits an internally stable realization ¥.
Moreover, MyQy is the transfer matrix of the series connection of the bicausal

der part
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precompensator P(zy,2;) and the plant 2. Therefore, the feedback connection of
% and ¥ is internally stable.

4 OPTIMAL CONTROL

The compensator synthesis procedure illustrated in Section 2 enables us to ob-
tain any preassigned variety of the closed-loop polynomial provided that the
constraints specified by Theorem 2 are satisfied. However, the pole placement
design essentially affects the asymptotic behavior and exhibits a poor control of
the short-term system response.

In this section we tackle the problem from a different point of view and outline
a state feedback synthesis procedure based on the minimization of a quadratic
cost functional J. The system that constitutes the end result of the optimal design
is not merely internally stable but satisfies additional requirements on the state
and input evolutions that are summarized by J.

Assume that the initial global state (8) is an /; sequence and consider the cost
functional

T =" x"(h,k)Qx(h, k) + u” (h, )Ru(h, k) (25)

h+k>0

with Q@ > 0 and R > 0. Theorems 4 and 5 provide a complete solution to the
following optimal control problems:

1. Given A}, derive conditions for the existence and the uniqueness of an input
function u(.,-) that minimizes J.

2. Whenever these conditions are satisfied, explicitly compute the optimal input
function and the corresponding value of J.

The following theorem shows that the existence and uniqueness of a stabilizing
optimal control reduce to rank conditions on polynomial matrices in two variables.

THEOREM 4 [17] Forany Ap € I, there exists an -solution of the optimal
control problem [i.e., an input u(-, -) in [ such that the corresponding state evolu-
tion x(-,+) is in [, and the value of J is minimized] if and only if the polynomial
matrix (10) has full rank on the set

M={(z21,22) e Cx C: || = |z L1}
and the polynomial matrix

I——Alzl —A222:| (26)
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has full rank on the unit torus

T = {(z1,22) € Cx C:|z| = |z| = 1}

When the conditions of Theorem 4 are fulfilled, the optimal control law is
obtained via an algebraic Riccati equation whose coefficients are polynomial
matrices in one variable.

THEOREM 5[17] Assume that (10) is full rank on M and (26) is full rank
on 7;. Then the following algebraic Riccati equation (ARE-z)

P(Z) = Q + (AT + ATz )P(2)(A1 + Azz) — (A] + 4327 P(2)(B1 + Ba2)

R + (BT + BLz7)P(2)(B1 + B22)] (B + B3z )P(2)(A1 +A22)

in the unknown matrix P(z) admits a unique solution in an open annulus that
includes the unit circle i, with the following properties:

(a) P(e) = P*(e¥) > 0, Vw € [0,27]

(b) The matrix

K(2) i= —[R + (BT + BLz7)P(z)(Bi + B22)] " (B] + B3z )P(2)(A1 +A22)

is analytic in an open annulus that includes 1.
The coefficients of its Laurent series expansion

+oo
K@= ) Kk (27)

i=—0c0

provide a stabilizing feedback law

+oo
u(h, k)= > Kix(h+ik—10) (28)

[=—00

and the minimum value of J is given by

1

2
Jmin = -“f X5(w)P(e*)Xo(w) dw
2 0

where z’f‘o(w) denotes the Fourier transform of the l-sequence Ap.

The proofs of Theorems 4 and 5 are quite long and the interested reader is
referred to [17]. We shall give here two examples. The first one shows how the
solvability conditions based on the rank of (10) and (26) reflect into the analytic
structure of P(e/*). The second one gives an idea of some difficulties involved in
the computation of the feedback matrices K;, even in dimension 1.
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EXAMPLE 1 Assume in (1)
m=n=1, A1 =B =B;=1, Ay =—1
and in (25)
R=0Q=1
In this case the solution of (ARE-z) can be obtained in closed form as

—1FV5+2z+ 221

—22+z+z7YH

Letting z = ¢/, the first solution is negative and the second is given by

Plz)=

P(e*) =

1
—14++v5+4cosw

Since we are looking for nonnegative solutions, we consider only the second
one, which is positive for w € [0, 27], except at w = 7, where P(e/*) diverges.
Actually, this is not surprising because (10) is not full rank at (4, —%2) € M. Hence
for some initial global state in [ a stabilizing optimal feedback law does not exist.

EXAMPLE 2 Let’s change only the sign of A, in Example 1. In this case the
unique positive definite solution of (ARE-z) along 1 is given by

2
V14 16(1 4 cosw)? — (3 + 4cosw)
and the corresponding feedback matrix is
4(1 + cos w)
14 /14 16(1 4 cosw)?

A plot of P(e/*) is given in Figure 1. Since P(e/*) attains its minimum value
at w = m, we have

P(*) =

K(e) =

1 o jw e 2 2 i
T = 5= [ P 2o do > | PP

and Jin(Xo) can be made arbitrarily close to the lower bound if we consider initial
global states whose spectral content is concentrated in a narrow neighborhood

of /™.

The computation of the values of K}, depends on evaluation of the following
integrals:

e 1 2 4(1 + cosw) cos(wh) do, h=01,...

2 Jo 14 +/1+ (1 +cosw)?
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P(ﬂjw) '

15/8

Figure 1. Plot of P(e/*).

When infinitely many K, ’s are different from zero, the optimal feedback law
(28) cannot be implemented by a finite-dimensional device and the resulting
closed-loop system is a half-plane causal 2-D system, whose updating equation,
in principle, requires coping with an infinite-dimensional state vector.

To overcome storage and computation problems, it seems natural to investigate
whether, when (1) satisfies the rank condition of Theorem 4, the stabilizing feed-
back matrix could be constrained to have all elements in the bilateral polynomials
ring R[z,z7']. An obvious advantage of this control law is that u(h, k) would de-
pend only on a finite number of local states, which makes the closed-loop system
weakly causal [5,6]. The question above can be answered positively. Actually,
the bilateral polynomial matrix

N
Ky@) =) K
i=—N

obtained by truncation of the Laurent series (27) gives a stabilizing state feedback,
provided that N is large enough. Even more, when N diverges and /; initial states
are considered, the corresponding cost functional Jy converges asymptotically to
the minimum value J,;,.

5 CONCLUSIONS

The classical problems of stabilization, noninteracting control, and minimization
of a quadratic cost functional, which are solved in 1-D theory using control
strategies based on static-state feedback, require dynamic feedback in the 2-D
context.
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It has been shown that stabilization and decoupling can be achieved under
fairly general assumptions using 2-D dynamic compensators. In both problems,
static feedback laws are quite inefficient and one has to resort to methods based on
dynamic compensation. However, if the conditions given in Theorems 2 and 3 are
fulfilled, the solutions one obtains lead to closed-loop systems that still preserve
the quarter-plane causality.

This is no longer true when we solve the optimal control problem. In this case
the feedback solution gives rise to half-plane causal systems and to weakly causal
systems when suboptimal strategies are adopted.
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