PROPERTIES OF PAIRS OF MATRICES AND
STATE MODELS FOR TWO-DIMENSIONAL
SYSTEMS.

PART 2: MODELS STRUCTURE AND
REALIZATION PROBLEMS

. FORNASINT and G. MARCHESINI

1. Introduction

In this chapter we shall focus on some aspeets of the construction of two-
dimensional state space realizations.

We take into account external descriptions given by rational transfer
matrices and autoregressive behaviours represented as kernels of polyno-
mial matrices. Qur investigation mainly concentrales on some connections
hetween the structure of state model matrices and the algebraic varieties
associnted with the polynomials involved in the external representations.

2. Realization and transfer function singularitics

(liven a two-dimensional rational proper matrix Wz, z3), it is well-known
[1 4] that it is always possible to construct state models with structure
(1,2,1) whose transfer matrices coincide with 1W(zy, z2).

The problem we shall tackle in this section consists in connecting the
structure of Wiz, z0) with the properties of the pairs (A, Aq) entering

he state model

In particular the dimension of the realizations and

the features of the minimal ones constilute and inferesting and still non
entirely understood aspect of this matter. 'To avoid cnmbersome notations,
we shall consider here sealar transfer functions.

Let

Wiz, z) = plzr, ) fglzr, ) (2.1
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be an irreducible proper rational function, with

m n
_\" i
p(z1,22) = M M Pij 71 %3,
g(z1,20) = M M Q:N_Nu
i=05=0
Properness implies qoo 0, so we can assume qgg = 1. Moreover, in
I I q q )

solving the realization problem, we can restrict to the case of a strictly
proper W(zy,z9) (i.e.popg = 0). Assume that m and n represent the de-
grees in z; and in 2, of at least one between p(zy, z3) and q(zy, z2). Then

multiplication of p and g by z7™ 25" provides an irreducible representation
W2y, 25) = plar" 25 ") alet 25 h), ©(2.3)
with
m n
cp wel] gl Rl - o
ﬁﬁ.w_ y €9 _v == M\ M\ Pm—in—j%, HNN L.__
i=0 j=0 .
P (2.4)
o | -
QAN» ) VHMMUQEI,: -7 Nw.u
=010
Note that q includes the _:o:o::m_ zy™z7" and that all monomials in

1 -1

i) ; = o
P(z7 7,25 ') and in §(z7 ', 25 ") have degrees in z7' and 23! less than or
equal to m and n, Sm_:wn:g_w.
In the sequel it will be convient to adopt the change of variables

:\n_._, mlu_r_n..“. (2.h)
and refer to the following representation of the transfer function
’ f(n.€)
W Aw?hv =gl 2.6
UURY) i

with

\ﬁ:_mg\‘mzmxmm__wm_:wﬂ_u:aﬂ_s-
H,_.N:T_V:J_Q_AMV + :.:TT:\ DMAMV +. ey P:.T:AMV

a(n,&) = €"(q( ur_, \_: Tlener oy
= e, (E) 4 it :lmrwﬁmv + oo b (6).
‘The nonzero monomials of f and g are represented as points of the dashed
parallelogram in Figure 1. In general (2.6) needs not be irreducible. An
obvious necessary condition for the irreducibility of (2.6) is that a4, (€)
or by yn(€) be nonzero. This condition is also suflicient. Actually, we shall

prove that if p and ¢ arc coprime, powers of 1 are the only possible common

(2.7)
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factors of f and g. Indeed, suppose e¢(n,£) be a common factor of f and g,

so that

JT(0,8€) =c(n,€)f(n,6),
g(n,&) = e(n,£)a(n,&).

Using (2.5), we get,
i s
G o = =4 = =1
plz; __Nm e 2E e Au_ _ MWﬁv J Af ) W\J_Q )

S| =1
~c =1 _=1y _ —n -1 2 — -1 2
G(zy 2y ) =227 "¢ A & _N\_v.qﬁm: ,N\_v,

il

(2.8)

(2.9)

Cles :_u\ there exist _5::::, integers v oand s with » 4+ s > n such that

&N G250 and ezy " are in R[z; ', 25 "] Thus, letting ¢ = r 4+ 5 —
c_:&_: the following factorizations in Rz, z;'],

e (o B 1G]
el ) e ) ]

1

-1, —t~

2y My P2y

Il

25")

I

2 "2y e 2 )

n, we

. =1
Since i and § are coprime, the __2,;_: _7_., factors of «N\ are z; ' and/or

1 | - .._

zg , which implies that e(z]

\Nu ) must be 2 r: some non-

negative h and k. Beeause g(1),£) is monic in 1, a?.mu is necessarily a

nonnegative power of 7.
Ivery state space realization X = (Ay, Ay, BBy, I3y, () of W(zy,24)
fies

C(I = Avzy = Avza) ™ (Bizy 4 Bazy) = W(zy, 29)

salis-

(2.10)
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or, equivalently,
C(nl — Ay — Asf) ™ (By + Ba) = W'(n,8). (2.11)

When no cancellations arise between [ and g in (2.6), the degree of g(, £)
with regards to 5, and [as a consequence of (2.11)], a lower bound for the
dimension of ¥, are given by n 4+ m. Actually, it is not known whether all
transfer functions admit a realization of dimension m+n. In the following
we shall give some evidence to support this conjecture, by providing a
constructive procedure for obtaining a pair of (m + n) x (m + n) matrices
Ay, Ao, such that

det(nl — Ay — A2€) = g(n,£). (2.12)
It is not known if the condition
Cadj(nl — Ay — A28)( By + B2€) = [(n,§) (2.13)

can always be safisfied using the entries of By, By, C and exploiting the fact
that not all entries of A; and Ay are determined by (2.12).
The procedure can be summarized in the following steps [5].

Step 1. Since the case m = 0 corresponds to a one- dimensional realization
problem and can be solved by standard techniques, we assume in (2.7)
m > 1. Write A; and A, in the form

0 . o ]

0 0
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n. Then we have

det(nl — Ay — Ay€)

70
=€
|Qﬁ_. |m.
=g 1
30
4-& det, ¢ ,dm
~§
8
- 7
+né det "
=£
H\:1_
m ) - czlmm
=D (v s ) |
=0 m:.l_

and realization problems 159

80
81
82

Sm

(2.14)

where 79,71, ...,"m,80,51,...,8m are arbitrary row vectors of dimension

—£ 1

+ o (._u i:._.zﬂ Awwmv
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Step 2. Rewrite g(n, £) as a sum of homogeneous polynomials in 5 and €

ﬁ:_ u_.__:
::t m 1
g(n,€)=[go0] : +[g1]n a . ¢
m: m:
(2.16)
u&:
d:l_m

+.oo[gm 9™

: 1

m.:

S0 that (2.12) is equivalent to the following set of independent linear equa-
tions in the unknowns r; and s;,

roat—1

n
::IMM

o ;
.m:.lu

— ::1_ -1 i n -

T_.Hd_lT.h:mv . ==

— (2.17)
1 1 ot
::Imm ::.I_M
ﬁﬂ.w._.w r*r hwm.u : = —m\w_ _ . 1
L m:.IH ] L m:
— ::\_ B ::
::rwm ::I_m
(rmnt+snd) | . | =lam]| .
L m:.\ﬂ ] m: <y
While rq is uniquely determined by (2.15), the pairs #y,8;, i = 1,20,

are not, and each of them contributes n — 1 degrees of freedom to system
(2.15).
Note that, once (2.12) has been satistied, the number mn + 3n + 2m of

free ._53::;35 in Ay, Ay.By, Ba, C exceeds the number mn 4+ n 4 m of
cocflicients of f(n,£).

In presence of cancellations between f and g, we can show that there are
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cases where realizations with dimension less than n+m can be constructed.
So the degree of the denominator in (2.3) nceds not constitute a lower
bound for the dimension of minimal realizations.

Example. The following transfer function

W(z1,22) = (21 + 22)° + 223 + 29 .
B (271 4+ 23" + 227 2251 4 i (2.18)

A
Zy 2%

can be rewritten as

o
and is realized by a fourth-order system (see Section 3). In this case the
dimension of the realization is less than m +n. As it will be shown, fourth-
order realizations are minimal and, conscquently, the n-degree of the de-
nominator of W'(1.€), once comimon factors have been climinated, needs
not. provide the dimension of minimal reali

(2.19)

Remark. It is worthwhile to notice that if we adopt the particular struc-

ture of the matrices Ay, Ay, By, Ba,C that characterizes the Roesser’s

model, n+m effectively represents a lower bound for the dimension of mini-

mal realizations. Indeed the transfer function of Roesser’s model, [Chapter

8, (2.3)], is given by

N_I_m\\;_ \\m_u :_
.\\Mm._ Nwl_ I — \mmm _—ww

-1
e (2.20)
and, therefore, has a denominator with z; "and z, ' degrees given by the
ditmensions of Ay and Agg, respectively. Consequently Roesser’s models
that realize the transfer function [Chapter 8, (2.3)] must have a state space
with dimension greater than or equal to m + n.

So far our discussion of state models mainly concentrated on the con-
nection hetween the characteristic polynomial of the pair (A1, A2) and the
rational transfer function of the system.

There are other polynomial structures, besides the characteristic poly-
nomial det(I = Ayzy = Agzy), that play an important role in analyzing the
dynamical properties of two-dimensional systems. These constitute the
two- dimensional counterpart of the well known PBII controllability and
reconstructibility matrices [6 8], and will be denoted as

R —~E.\:N_ |\.me :wm_n_,.am‘mm_. AMM_V

ml\_ﬂn__ e \:Nm
«

0= A (2.22)
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Through the rest of this section we shall investigate how the structure
of the transfer function influences, through the so-called rank singularities,
the rank of the matrices R and @ associated with any realization of W

and, consequently, the possibility of synthesing asymptotic observers and
stabilizing compensators.

As an aid to discuss the connections between W(zy,z3) and its state
models, we proceed to introduce the class of coprime realizations, A re-
alization ¥ = (A, Ay, 31, B2, C) of (2.1) is called ‘coprime’ if the charac-
teristic polynomial det(] — Ayzy — Agzy) coincides with q(z1, z2). Since it
is always possible to get coprime realizations of W(z1, z;) with arbitrarily
high dimension, these need not be minimal. On the other hand, as it will
be shown in Section 3, the minimality of a realization of W(z;, z3) does not
imply its coprimeness. Note that since two-dimensional minimal realiza-
tions in general are not algebraically equivalent, the existence of a minimal
noncoprime realization does not imply that all minimal realizations of W
are not coprime. In particular W(zy, z3) in Section 3 admnits both coprime
and noncoprime minimal realizations. However, it is not. known whether
all two-dimensional transfer functions have minimal coprime realizations.

Let V(R) and V(@) denote the varieties of the points where R and O
are not full rank, and V(W) the set of rank singularities of W, i.e., the
variety of the ideal generated by the polynomials p and ¢ in (2.1). For all
realizations of W, we have

V(W) C V(R) U V(O) (2.23)

and the equality sign holds if and only if R and O are relative to a coprime
rcalization.

If (21, 22)Q 7 '(21, 22) is a right coprime MI'D of a p x 1 transfer matrix
W(z1,z2), (2.23) still holds. In this case V(W) is the varicty of the maximal
order minors of [@T  PT] and coprime realizations are characterized by
the condition

det(] — Az — Apza) = det Q(z1, 22).

To illustrate the consequences of (2.23), let £ = (A1, Ay, 31, B2,C) be a

coprime realization of a given p x m strictly proper transfer matrix
, e B

Wiz, 22) = P(21,22)Q7 (21, 22) (2.24)

and B = (I, Iy, Gy, Gy, 1, J) an arbitrary two- dimensional system with

p inputs and m outputs. 11 R='(zy, 29)S(21, 22) is any MFD of the transfer

matrix of ¥, satisfying det(] — I'yzy — I'yzq) = det R(21, 22) the closed loop

characteristic polynomial of the feedbak connection of ¥ and ¥, is given

by
Ac(21,29) = det(RQ + SP). (2.25)
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Using the Binet-Chauchy formula, A.(z1,22) is expressed as the sum
of the products of all possible minors of maximal order ¢;, 1 = ;2.0 of
[ S]into the corresponding minors of the same order m;, 1 = 1,2,.....p,
of [QT PT), that is

P
det(RQ + SP) = M CRUTE
i=1
Hence det(1RQ+ SP) belongs to the ideal Z(my, my, . .. ,m,) for any ornmno
of the compensator. Conversely, given any polynomial p € I, there exists
a compensator R~1S such that

RQ+SP = pl. (2.26)

Hence the characteristic polynomial A, is a power of p and téwv.mm freely
assignable except that it must include V(W) and does not contain (0,0).
We summarize our conclusions.

Proposition 1. The system ¥ admils a stabilizing compensator if and only
if V(W) does not intersect the closed unit polydisc Py .

An interesting issue associated with the synthesis of two- n_.._:\_m:mmo:m_
compensators is that of checking feedback stabilizability. ,_..r.i. s, __Ee can
a particular two-dimensional system be recognized as being stabilizable
without an explicit computation of V(W)7?

As we shall see, the stabilizability property can be expressed in terms of
the spectral properties of a pair of commutative matrices My, My that can
be obtained nsing a Grobner basis of 7.

Let G = {g1, 92y, 9u} be a Grébner basis of I, andlet gy = 1,q9,... 1o
be the monic mononials in Iz, z3] which are not multiple of the leading
power products of any of the polynomials in G. Thus consider (g, +7,q2 +
T,...,qs +7T) as a basis for the finite-dimensional vector space Rz, mu_\H
and let My, My be apair of commutative matrices that represents the linear

commutative transformations
diq+ITrqn+I, 1=12 (2.27)

acting on R[zy, z3]/Z. 'The matrices My, My (and, consequently, the trans-
formations ¢, and ¢4) have some interesting properties, we surnmarize in

the following proposition.

Proposition 2. [9 11] The matrices My, My of size 0 X @ defined above

have the following properties: .
(1) the smallest My, Ma-invariant subspace of 7 that includes

el =10 ... 0]
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1s R ;
(2) p(z1,22) € T tf and only if p(M,, M) = 0;

b@v (a1,a2) € V(W) if and only if there erists a nonzero veclor v such
that

Miv = ayv, Myv = aqv; (2.31)

(4) (a1, az) € V(W) if and only if in the Frobenius upper triangular form
of My, My given by

(1 =
i o
t *
Ty=Z"'M\Z = o .
| RS
2.
“1:1 nmu
t *
HWHNI_EMNH 22
i 152 |

(o, p) = QM-CLM.MJ for some i.

1

Proof. Property (1) is immediate, since &“_&m: +1I), 4,j=0,1,..., gen-
erate IR[z1, z2]/T or, equivalently, %:.Em.m: i

(2) Let

p(21,22) = MU_:.,...“NMNW e,
i

,3=20,1,..., span R°.

This implies

0= pi(i + D)4+ 1) = > pydied(1 +1) (2.33)
I i
and equivalently
0= pi; MiMS. Y (2.34)
i

Multiplying (2.31) on the left by M7 M3e, and recalling the matrix com-
mutativity we have

0= AM?ER& (M{Miey), rs=01,....

This proves that p(M;, M) = 0.
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The viceversa is easily obtained by following backward the lines of the

proof above.
(3) Assume that (2.28) holds and consider any polynomial p(z;,z2) =

S pijziz € I. By property (1),
0=p(My, My) =Y pi;M{M],
0= Mu?.u.?_._..gme & Mﬁczﬂswﬁ‘
0= Mﬁ&é__ﬂmw = plog, ag).

Since p(z1,2q) is arbitrary in I, (@, @) € V(W). Viceversa, assume
that (a), @) belongs to V(W). Let 1:(€) be the minimum polynomial of
M;, i = 1,2, and denote by k; and k the algebraic multiplicities of 23 —a

and z3 — a9, in ¥;(21) and ¥a(22) respectively:

Pi(z1) = hi(21)(z1 = ), ha(en) #0,
o(22) = ho(z2)(22 — AS%G_ Iy (eg) # 0.

Note that hy(z1)ha(z2) € T, since hy(ar)ha(az) # 0. Let £, 0 <t < ki,
be the largest integer such that

hi(z1)ha(z2)(z1 —0n)' ¢ 7
and let , 0 < 1 < kg, be the largest integer such that
s(z1, z2) = hi(z1)ha(2z2)(z1 — :_V_AS — ) &1
We then have thal
s(z1,22) ¢ 1,

s(z1,22 )(z1 — ) €T,
s(zy, 22 )22 — ) € 1.

Hence

= s(My, My)ey £0 (2.35)
and

(My — o ) =0, (My — gl)v =10

The last two equations show that the vector v defined in (2.32) is a common
eigenvector.

(1) Since Ty and M, as well as Th and M4 are connected by a common
similarity transformation, property (2) holds for matrices T} and Ty too.
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Therefore p(z;, z2) belongs to 7 if and only if p(T1,T2) = 0. Let p(z1,22) €
Z. 'Then

o(ef), 47)

o P15, 153) .
0=p(T1,T7) = .
v:aa_ EJ
Since p(z1, z2) is arbitrary in T, p(t}; ¢, i NJ = 0 implies (¢$)7, 18 v e V(W).

Viceversa, let (o, a2) € V(W) and suppose, by no:q;.w%n:o:.
(o, a2) # (15, 6), i= 1,2, w,

Then, there exists a polynomial p(z;,z;) vanishing in meamw; I =
1,2,...v, and different from zero in (o, @3). We therefore have

0
p(1y,1y) = ..

0

so that
ﬁﬁ..: j mﬁmv: = and fﬁm_ , Nuv_\ cT:

Since p(ay,as)” is different from zero, (o, a2) & V(W), contrary to the
assumption.

Corollary. The following facts are equivalent:

(1) X 15 oulput feedback stabilizable;
(2) any common cigenvector of My and My refers to a pair of etgenvalucs
(vy, cvn) such that |oay| > 1 and/or |ag] > 1;

(3) any pair (1 () _ANJ in the triangular form of My and My salisfies

i1

_hm,C_ > 1 and/or | MC | > 1.

- .l .
u.:::_-E:__::s::»m.,.-.:nn_:.:—n::m:.::;m::\::.:_\;

In this section we reconsider some structural constraints on the matrix
pairs (A, A,), with the aim of investigating what are the implications in
the framework of the realization theory. As we shall see, the assumptions on
Ay and As not only influence the characteristic polynomial of the realization
and, consequently, the denominators of the transfer functions, but, also the
numerators. We shall consider three cases:
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(1) Ay and Ay commute;

(2) A1 and Aa have property P;

(3) Ay and A, are linite memory.

The following proposition provides a precise characterization of the scalar
transfer functions that admit a realization with [A;, A,] = 0.

Proposition 3. A strictly proper two-dimensional transfer function can be
realized by a stale model with [Ay, Ay] = 0 if and only if W(z1,2) admats
the following partial fractions erpansion

t
MYANTNMV
= 3.1

W(z1,2) = m (1= Aizy — priza)" _ (=)
with p;(0,0) =0, i =1,2,...t, and degp; < v; for all i such that (i, ) #
(0,0).
Proof. Assume that A, and Ay commute. Referring to the basis adopted
in Lemma 4 of Section 5 of Chapter 8 for obtaining the block diagonal form

[Chapter 8, (5.23)] of Ay and A, partition I3, By and C conformably. Thus
we have

t
W(e,2) = 3. Gl — Az — APz D' (BW +BPz)  (3.2)
§=1

and letting

dot(7 — A2 (1= Kemp = poay )™,
Ciadj(f — A 2y \__: Bz 4+ B 23) = piler, 22

we get (3.1).
To prove the converse, express each term in (3.1) in the form

pi(z1, 22) _, pi(z1, 22)
:l\f.w_l_:u.wie N H:l».m_l.:.m.hv:_ .
pi (21, 22) (24

toz (1 — Ajzy — ftiza)"

with degpl < vy, degpl < vy, and use the techniques in [12] to get,

’ _ , (:
pi(z1, 72) < EUT o \.M_,:N_ _ \r_: )" _:H:

(1 - W.MM l.m__.h.w.ui_: ) ) (3.5)
Pi 13«2 HN\,_Aw - \_mp:w_ - \»:v vi_::vtu,

22Ty L i1

0= Az = prpze)t

with T__m,:_ \_va_ =) and T#:w \__T:_ = (). So, a commutative realization of
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(3.4) is given by

AP = A . AP = A L
i 0 \_.M_C ) ii 0 \wmwu '
(3.6)
1 B; 2 0 S
.m-ﬁ U” 0 ’ mmu“ mW- ) Q”ﬁ 1 Q__

Finally, (3.1) is realized by the parallel connection of systems (3.6).

As shown by Proposition 3, the factorizability of the denominator of
W(zi, 22) into linear factors is not sufficient to guarantee the existence of
a realization with [A;, A2] = 0 . In other words, the class of commutative
pairs of matrices is not large enough for realizing all transfer functions with
denominators of the form Eu.ﬁ — Ajz1 — pjza).

The larger class, constituted by the pairs of matrices having property
P, fits the requirement, since it allows to realize exactly the set of these
transfer functions. A pair of n x n matrices (A, A;) has the property P if
there is an ordering of the eigenvalues A; of Ay and p; of A, such that for
any noncommutative polynomial 7 (€;,€2) , the eigenvalues of the matrix
w(Ay, Az) are m(Aq, i), 1=1,2,...,n.

This property is equivalent [13] to any one of the following conditions,

(1) there is an invertible matrix 7' such that T~' A, T and T-1A,T are
upper (lower) triangular;

(2) the Lie algebra £ generated by Ay and A, is solvable;

(3) for every noncommutative polynomial m(&;,€2) the matrix
m(Ay, Ag)[Ay, Ag] is nilpotent.

Proposition 4. [14] Let W(zy,22) = p(z1, 22)/q(21, 22) be a proper trans-
fer function, with p and q coprime polynomials. Then W(z1, z2) is realizable
by a two-dimensional system with Ay and Ay having property P if and only
if q(z1, 22) factors completely in the complez field into linear factors.

Proof. Assume that A, and A; have property P. Since g(z1,z2) divide:
det(I — Ayzy — Aazp), it Tactors into linear clenieitts. Conversely, note that,
starting from two-dimensional systems with A; and Ay lower triangular
and connecting them in series and parallel, the Ay and Ay matrices of the
resulting systems still preserve the lower triangular structure. So we need
only to take into account the realization of the following transfer functions,

Wiz, 22) = 21,

Wa(z1,22) =

Walzy, 22) = 22,
1 (37)

1 —Azy — przg

|
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These have realizations (A1, A2, By, B2, C, D) of dimension 1 given by

¥, =(0,0,1,0,1.0),
5, =(0,0,0,1,1.0), (3.8)
By =1A,p, A1, 1),

respectively.

Iinally, consider pairs of matrices (A, Ay) which are finite memory, i.c.
det(I — Ayzy — Apzz) = 1. Clearly every finite memory system is the
realization of a polynomial transfer function in z; and zz. On the other
hand, every polynomial transfer function W(z1,z22) can be realized by a
finite memory system. In fact, it is always possible [7] to construct coprime
realizations of W(zy, z2), and these are finite memory.

However, if we look for minimal realizations of polynomial transfer func-
tions, in general it is not true that these are necessarily finite memory. This
phenomenon holds independently of the (real or complex) field where the
matrix elements take their values and implies that minimal realizations of
polynomial transfer functions need not be internally stable. To prove our
statement, we shall go through the following steps:

1. We show that there exists a two-dimensional polynomial n(zy,22) of
degree 3 that cannot be realized in dimension 3.

2. We construct an (infinite memory) realization of dimension 3 for
the transfer function n(zy,25)/(1 + 225) and a scries connection of such a
realization with a realization of dimension 1 for 1 4 2z5. The realization of
n(z1,z3) obtained in this way is minimal, internally unstable and exhibits
pole/zero cancellations.

Step 1. Assume that A, and A, belong to C?*3 and are the state updating
matrices of a finite memory two-dimensional system.
For all matrices

C'= —ﬁ_ Co ﬁ“w_
in €13 and By, By € €' the system transfer function is a polynormial,

S\AN?N.M.V — ﬁ\{m:_.@ﬁN - \:N_ — \*NNMVA:_NH + MWNNMV_ AWCV

"

of degree not greater than 3, that we shall rewrite as
W (z1,22) = pi(z1, 22) + palz1, 22) + pa(21, 22), (3.10)

where p; are homogeneous forms of degree i, i = 1,2, 3.

Referring to the cases considered in Section 3 of Chapter 8, we see that,
independently of the choice of 13y, By and ', the polynomials p; must
satisly the following constraints:
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Case 1: ps belongs either to the principal ideal (21)? or to the principal
ideal (22)%;

Case 2: p3 belongs to the principal ideal (z122);

Case 3: if ps = ¢°, where g is a first-order form, then either ¢ = z, or
q = z2;

Case 4: if p3 = ¢°, where ¢ is a first-order form, then q is also a factor
of Pa.

The above constraints show that the polynomial

n(zy,z2) = (=1 +Svm+www+~u (3.11)

cannot be realized by a finite memory third-order two- dimensional sys-
tem. Therefore, if we look for a third-order two-dimensional realization of
n(z1,z2), a system with

&no:. [ \_:NH — \_NNNV =1

would be needed. However, in that case pole/zero cancellations between
det(I — Ayzy — Aaza) and Cadj(! —Ay21 — Ag22)(Byz1 + Baza) must occur,
and therefore the degree of the latter must be greater than or equal to 4,
which is impossible for third-order systems.

Consequently, the dimension of any state space realization of n(z, z2) is
greater than 3.

Step 2. Consider the following two-dimensional systems:

mm = ﬁ\w_._\—w_b*wm.mw_o.v

with
[0 -1 0 0o —1 0
\.:| 0 0 —1 y \_w” 0 0 -1 y
0 0 0 0 0 -2
K 1
By=]|0], By= 0] c=[1 0 0]
L1 1
and
Yo = (I, Iy, Gy, Ga, 1, D) Sy
with

=1y =0, G =0, Go = 2, I, =0, i1=1.

They realize n(zy, z2)/(1 -+ 229) and 1+ 2z, respectively. ‘Then the series
connection of ¥ and s is a striclly proper two-dimensional system

Y = (A, Ay, Br, By, 0)
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with
s I 0 . Iy 0
A=lpn a0 MT B A (3.12)
=~ _| G L A _ .
B=| gl =g C=10 €

which provides a fourth-order, and hence a minimal realization of n(z1, 22)
Since the characteristic polynomials of ¥ is

det(I — Arzy — Agza) = 14 222 (3.13)

the realization ¥ above is not finite mermory.
The above example allows to point out some interesting consequences:
(1) Minimal realizations of polynomial transfer functions need not be
finite memory.

(2) Pole/zero cancellations are allowed in minimal realizations. Actually
in 33 we have

Q&LX& S \M_NH iz &,uvaT@—N_ + __wwmmmw = ZmeNmuﬁﬁ + MNMV.
Qoﬁﬁ~ - \M_N_ — \MMNMV =1 + MNm

(3) Minimal realizations of polynomial (and hence BIBO stable) transfer
functions may be unstable.

In fact in the above example the variety of 1+ 223 intersecls the unit
closed polydisc P;.

4. Two-dimensional behaviours

The state models and the realization problems considered so far make ex-
plicit reference to input-output maps with quarter plane causality and,
consequently, to local state updating equations that preserve this causal-
ity. Actually, it is of central importance to realize that there is often no
natural, intrinsic direction of the evolution for systerns defined over a two-
dimmensional domain. In this case any choice of a preferred direction is
somewhat artificial, and there are various possible definitions of past and
future. The behavioural approach to dynamical systems [14-16] allows to
cope with general causality structures in the two-dimensional context and
avoids any a priori assumplion concerning the input output representation
of the external data.

Although in a more general context, some algebraic problems which are
typical of the state space realizations discussed in the previous sections,
arise also when we look for state models of two-dimensional behaviours.

Let :AN__S_N_L_N.MJ be a p x q polynomial matrix and consider the
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autoregressive two-dimensional system & = (Z?,R?,B), where the ‘be-
haviour’

B:={w:2Z*— RI ..E??S.QHTQWJEHS (4.1)

represents the set of all admissible trajectories of S.
As usual, oy and o5 denote the shift operators, defined by

oyw(h, k) =w(h + 1, k),

ol B = wli & + 1. 2

In general it is not specified which components wy,wy, ... w, are inputs
(i.e. free variables) and which are outputs. It has been shown [14] that any
behaviour can be considered as the sum of a controllable part, involving the
free variables and an autonomous part. The construction of state models
for controllable behaviours is essentially based on the procedures used for
realizing two-dimensional transfer matrices [16] and, therefore, involves the
same minimality and structure arguments mentioned in Sections 2-3.

Intuitively speaking, a system is autonomous if there exists a portion T’
of Z? with ‘large’ complement, such that the knowledge of the trajectory
in T completely specifies the trajectory in Z?\ T. Here ‘large’ means that
Z?\ T must include the intersection of Z? with a sector of RZ.

The following proposition shows how autonomy, existence of free vari-
ables and structure of I? are related each other.

Proposition 5. [16] The following facts are equivalent:

(1) § = (22,9, B) is autonomous;

(2) § has no free vartables;

(3) B = ker IR implics that It has full column rank.

Moreover, B is finile-dimensional if and only if S is autonomous and R
is right factor prime.

We shall now discuss in some detail the state representation of an au-
tonomous two-dimensional system & = (Z?%, R, B), under the assumption
that B has finite dimension.

The general result we aim to prove is that any such a system can be
represented by a model with the following equations

A,f .
w(h, k) = AT A5 (0,0), _
w(h, k)= Cx(h,k), (1.9)

where A; and Az constitute a pair of commuting invertible matrices. More-
over, when minimal realizations are considered, Ay and Ay are uniquely
determined up to similarity transformations, and their dimension coincides
with that of a suitable quotient over the ring of Laurent polynomials in
two variables.
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To keep the notation simpler, we consider only the scalar case (g = 1),
assuming that the right factor prime matrix 2 which characterizes the
autoregressive structure of B via

B = {w: Rw =0} (4.4)
is a row vector

~WAN__va“~w._AN_.NMV 1MAN_.NMV G § ﬁhAN_,va_. ﬁ\—.ﬂuv

Before embarking into the derivation of a state model, we shall discuss
various connections between the ideals in Ay = :TTNN.NHL_NMJ and
the ideals in Ay = R[z1, 2] as well as an abstract characterization of B
based on some algebraic properties of dual spaces. The relevant facts are
sumrmarized below

4.1. Ideals in Ay and in Ay

Consider the following map
|1 Ag — Ay cpo Ipl = 27257,

where i and j are the minimum degrees of the monomials that appear in
the nonzero Laurent polynomial p with regards to the variables z; and 23,
respectively. More precisely, if

h_k
P= M w::nn__wf

__rme

then

i:=min{h € Z |3k € Z,ppr # 0},
jri=min{k € Z|3h € Z,pu # 0}

In case p = 0, we define |p| = 0. Clearly, for every nonzero Laurent
polynomial p, |p| includes a monomial in z; and a monomial in zy with
nonzero cocflicients.

The operation just described, of shifting the support of a Laurent poly-
nomial into the positive orthant of Z x Z, associales with the ideal
Tg == (1,9, .0y m) ¢ generated in Ay by the elements of the matrix It an
ideal Ty = (Il |2l -, Irel)4 generated in Ay by Il el oy el

The ideals in Z4 and T are connected as follows [17]:

(1) p € Ty if and only if there exists a pair of nonnegative integers (i, j)
such that 2iz)p € Ty;

(2) the quotient space Ay /Ty is finite-dimensional if and only if Lthe same
holds for Ay /Ty.
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4.2.  Duality properties

Introduce a nondegenerate bilinear function
(i) Sda 5 BE*E _um,
by assuming

(p,w) = M)\Fg,:é._u.v
i

for all polynomials p = piizt 21 in Ay and all signals w in RZ*Z 1p
i%1%2 g
this way
(1) the universe RZ*Z of all signals with support in Z x Z is isomorphic

to the algebraic dual of A4, ie., to the space of the linear functionals on
Aa;

(2) the behaviour B can be identified with the orthogonal complement
of T4 with regards to such bilinear function

B=11, (4.6)
and, by duality,

H.w,_. = H%.‘_. = Hum.
The proof of (4.6) is an easy consequence of the following identity

ploy, 09,07 ", 05 Dw(h, k) = (pz} 2%, w),
in fact, w € B implies vAa__Q?Q_ITQWJS = (0 and, therefore, {p,w) =
0, ¥p € Iy, and viceversa, given w € 7{ and p € Ty, we have {pzlel, al} =
0, Yh, k € Z, which implies ﬁﬁqrqm_ﬁ.__qm_vs = 0

(3) Ax/B* = A4 /Iy and B constitute a dual pair with regards to the

bilinear function

(P, w) = (pyw), [p]:=p+Ts;

(4) if the matrix R is right factor prime, then B and Ay /Ty are finite-
dimensional isomorphic vector spaces.
If ]

:»d#”_, ?&. et _Tw:_u

is a basis of A1 /Ty, the linear map

i B Ay/Iy cwi M.\;?..L::?._

i=1

provides explicitely an isomorphism between B and Ay Ta.

e ——

TGS
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From now on, we suppose that a basis ([p1], [p2], - - -, [pn]) has been chosen
in A4/Z+, and consider the corresponding dual basis (wy,wz,...,ws) in
B.
The relations {[pi], w;) = 6, 1,5 = 1,2,...n, imply
n
o] = S (0L wlpd, Vi) € Ax /s, (4.7)
i=1

and, on the other hand,

w = MUAFL_ wyw;, YwebB. (4.8)

1=1

Introduce the following invertible linear maps

\N— u\#W\HuW .Iv\#n_u\H.u_n _?_IHNHE__ AA ov
Zy: Ax )Ty — Ax[Ts : [p] > [227]- )

Clearly 2,2, = Z2Z, and the adjoint maps of 2, and Z, in B are o, and
aq, respectively.

The matrices N; = —:mh , i = 1,2, representing the lincar transforma-
tions Z;, i = 1,2, with respect to the basis ([p1], [pal, - - -, [pn]) are given by
:wm = {[zipx], wn). Hence, the matrices representing o and oy with respect
to the dual basis are N{ and Nj , respectively.

We are now in a position for providing a state variable realization of the
autonomous finite-dimensional system § characterized by the polynomial
matrix (4.5).

For any w € B, we introduce the following signal
h_k
([m), efosw)

v ZxZ— R (hk) {[p2), ot okw)

hok
([pn], o o5 w)
The value of @ at (h, k) provides the components of otokw with respect to
the basis (wy, w2, .. .wy). Since the one step updated value of = is given

by
A::_.am_tqw::v
41
w(h+1,k) = (Ip], o1 o)
Arv_.__qﬂwtaw:o
it is clear that, once ®(0,0) is known, x(h, k) is casily computed for all

(h,k) € Z x 2,
w(h, k) = (N (NS ) e (0,0).

= Nlw®(hk),
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Moreover, the value of w at (h, k) can be recovered from x(h, k) as
w(h, k) = (o} o¥w)(0,0) = (1], 0} o5 w)
= {c1[p1] + calpa] + - - - + ealpn), o ok w) = Ca(h, k).

Here C :=[c; c¢2 ... cn] denotes the row vector of the components of
[1] with regards to the basis ([pi], [p2], ..., [pna]) in Ax/Zy.
Letting Zm‘ = A, and ZM. = A, the above results ean be summarized in

model (4.3) or, equivalently, in the following model

oz = A,
oy = Aqm, (4.10)

w=Cex,

which provides a recursive version of (4.3) Every signal of the autonomous
behaviour B is uniquely determined by the corresponding value of the state
@ at any point (h, k) and, conversely, different states at (h, k) induce dif-
ferent signals in the autonomous system,

When p;, j = 1,2,...n, arc monic monomials, i.c., pj = uﬂ:.um:.. § =
1,2,...,n, the structure of the corresponding dual basis is very appcaling.
In fact the element w; is the unique element of B taking the values 1 at
(¢j,v;) and 0 at (pi,v3), i = 1,2,...,j—1,j+ 1,...,n. Moreover, for
every (h,k) € Z x Z, the components of the state vector x(h, k) are the
values of w at {(p1 + hyv1 + k), (pa + hyva + k), (ptn + hyvn + k)}.

To conclude this section, we present an algorithm for computing the

matrices Ay, A2 and € which realize a finite-dimensional autonomous be-
haviour B. As we shall see, the interest of the procedure exceeds, Lo
some extenl, that of obtaining Ay, Ay and ¢ starting from the polyno-
mials 71,72,...,7. Indeed it provides also some connections between the
ideals 74 and 7, generated in Ay and Ay by ry,7a,..., 7 and relates the
shift maps ¢;, introduced in (4.9), acting on Ay /Ty, with the shift maps
$i, introduced in Section 5 of Chapter 8, acting on Ay /T.
Let 6 = {g1,92,---,9n}, 9 € A4, be a Grobner basis of Iy =
(Ir1l,Iraly - - I7e]) € Ay, and denote by {q1 = 1,q2,...,qm} the set of
monic monomials that are not multiple of the leading power products of
any of the polynomials in G. As in Section 6 %of Chapter 8, the lincar
transformations

.uf” \..+\H+ |..\‘+\H.+_ Q+H+INmQ+H+_ ~.”~_.N, Aév—v
will be represented with respect to the basis
HQ—+H‘+_QM$4H+,_Q:~ n._.H.*v ﬁ\—_&v

by a pair of commuting matrices My and My .

Models structure and realization problems 177

Some relevant properties of the maps ¢; and, consequently, of the matri-
ces M;, i = 1,2, are summarized in the following proposition.

Proposition 6. Let ¢;, i = 1,2, be a pair of commuting linear transfor-
mations acting on a finite-dimensional space X Then

(1) for all nonnegative integers v and s, Im@ ¢} is a {¢y, ¢2}-invariant
subspace of X,

(2)
Im¢[g3t! C Imejds, (4.13)
Im¢[ ! ¢3 C Ime] ¢3; (4.14)
(3) there exists an inleger v >0 such that
L = Img¢} ¢4 = Imdi¢3 (4.15)

for all pairs (r,s) with v > v and 5 > v,
(4) ¢1|L and ¢o|C are invertible linear transformalions.

Proof. (1) Assume 2 be in Img} $, ic., ¢ = ¢ddy, for some y. Then
dix = ¢ o3(diy),i = 1,2, is in Im¢@j¢j too.

(2) Let @ € Img] m.*‘_. Then & = ¢7¢3 'y, which proves (4.13). The
proof of (4.14) is analogous.
(3) Clearly the descending chain

Imgyds D Im@igs D ... (4.16)

becomes stationary for some v < dim X . Consider any pair of integers
(r,8), with r > v and s > v, and let pu = max{r,s}. The stationarity of
the chain and (2) imply

Ime¥ ¢4 D Imeips D Imei by = Imeidy.

(4) Suppose ¢1|L be noninvertible. This would imply
Img* oo t! C ¢\ Imey ¢y C Imaidy,

which contradicts the stationarity of the chain (4.16).
Introduce now the following maps:

n=Ay/Ly = Lop+ Ty 2izy + 1y, (1.17)
x=L— Ay /Ty 225p+Ty — [z} 22 p).

Both of them are well-defined linear maps. Indeed this is obvious for 7. As
far as y is concerned,

2 zyp = 2y 2 modly
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implies that z¥z%(p — q) is in 74 and hence in Zy. So x maps cquiva-
lent polynomials modulo 74 into equivalent polynomials modulo Z1 and is
therefore a well-defined linear map.

Proposition 7. The linear maps n and x defined in (4.17) have the fol-
lowing properties:

(1) 1 ts onto;
(2) x is a bigecltion;
(3) the diagram

AT, £ 5 AyfIs

| ¢ | ¢ilL | ¢
ATy L 5 AL
commutes.

Proof. (1)isobvious. (2) Let x(z{25p+7) = 0. Since 2 eipisin Ty, there
exists a nonnegative integer p such that 22y s in Iy . Therelore,
both N”L.znm.rnv + I, and its image under (¢1|L o @3] L) 7 are the zero
element of £, which implies that z¥25p is in Ty too. So x is injective.
To prove that y is onto, it will be sufficient to check that every monomial
m € Ag is equivalent, modulo Ty, to some polynomial in the ideal of Ay
generated by z¥z4. If so, every clement in Ay /T4 would be expressible as
a linear combination of terms with structure [z} z5p] , which by definition
are in the image of y .

Let £ = dimdyg /Ty and choose ¢ polynowmials poopa, oo, in A4, s0 that
1], [p2], - - [pe isabasisof Ay /T4, Clearly [z¥ k), (28 2pal, ..o (25 28]
is still a basis of Ay/Ty, for any integer k and, on the other hand,
zE2kp;, i=1,2,.,1, are elements of the ideal generated by 2z in Ay,
provided that & is chosen larger enough. So every monomial m € Ay s
a linear combination of N%n.w?_ i =1,2 ... t, modulo Ty, and, therefore,
[m] is the image, under x of some element of L.

The proof of (3) is straightforward and requires to check that the maps
obtained by following the diagram from one initigl point to aterminal point
along cach displayed route are the same.

Basing on the proposition above, the following steps provide an explicit
realization algorithm.

Step 1. Since g is onto, it maps the basis (4.12) of Ay /2, into asel ol
generators of £ . Within this set we can choose a basis of £, which in turn
is mapped by y into a basis of Ay /Ty, The columns of M{ My represent
the components, with regards to the basis (4.12), of the 7 images of the

e e — e
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basis vectors. Therefore, the selection of a basis in £ reduces to choose a
maximal set of linearly independent columns in M{ Mg

Step 2. Once a basis in £ has been selected, the linear maps ¢;|£, 1=
1,2, are represented by a pair of matrices Ny, No. Assuming that in the pre-
vious step the indices of the columms we selected in My Mg are iy,tn,.. iy,
the hith column of Ny (of Np) is constituted by the components of the 7pth
column of \.__il "My (of MY >\_.._\.\_ ") with regards to the iy,4y, ... 4y columns
of My My, The matrices Ny and Ny represent also ¢ and ¢y with regards
o the basis in Ay /Ty,

Step 3. The vector 142y is mapped by 7 into 2yz4 + I, € L. lIts
representation, with regards to the basis of L, is given by a veclor v €
I, whose clements are the components of My Mg e, with regards to the
iy,ia,...,1, columns of My My The components of [1] with regards to the
basis of Ay /T4 are the elements of the vector OF = N7 N7 ",

The connections between the matrices M; and Ny, 7 = 1,2, become
more evident, when, by choosing a suitable basis in Ay /T4, My are put in
the form

Xi
M, = Y, . M= Ya v (4.18)
7 7
with X1, Xy invertible and [Xy, Xa] = 0; Y7 nilpotent and [Y7, Y3] = 0; and
Zy nilpotent and [7y, Z] = 0.
Since, for large k, we have
KEX:
MEME 0

0

£ is generated by the first ¢ = dimX; vectors of the basis of Ay /T4 that
leads to (4.18) and Xy, X represent, DL and o] L.
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