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Introduction

It is a great pleasure for us to contribute to the Festschrift honoring Tadeusz Kaczorek on
the occasion of his 70th birthday. Tadeusz is a long-time friend of both of us. The story of
our friendship is strictly intertwined with the evolution of the research on 2D systems, which
represents the main field of his and ours scientific interests.

The theory of 2D state space models already reached a certain maturity in the mid of
1970’s. Subsequent developments, involving a systematic use of polynomial matrix methods,
provided new vistas on 2D reachability and observability, allowing for a neat solution to feedback
regulators and state observers synthesis problems. In his book, Two-dimensional linear systems

(1985), Tadeusz provided a first comprehensive and balanced account of the results obtained up
to that time by many researchers, working all over the world.

In the early 1990’s a major obstacle to the representation of 2D systems was the fact that
multidimensional dynamics can exhibit very complicated causal structures, and neither quarter
plane nor weakly causal models were able to completely capture their complexity. An essential
component in the puzzle of how to represent general 2D systems still appeared to be missing.
However, with the maturing of Kaczorek’s theory of singular 2D systems and the introduction by
Rocha, Willems et other researchers of behavioral methods in multidimensional systems analysis,
we can now deal with virtually all classes of 2D systems.

Recent years have seen a growing interest in 2D systems that are subject to positivity constraints
on their dynamical variables. There are actually several different motivations for this interest,
coming from various domains of science and technology. Positive 2D systems arise, for instance,
when discretizing pollution and selfpurification processes along a river stream, or when one tries
to construct a discrete model for the traffic flow in a motorway. More generally, the positivity as-
sumption is a natural one when describing, via 2D systems, distributed processes whose variables
represent quantities that are intrinsically nonnegative, such as pressures, concentrations, popu-
lation levels, etc. This led the authors of this contribution to embark since 1995 on a new path,
where attention is focused essentially on the free evolution of 2D positive systems, and therefore
on the investigation of algebraic and combinatorial properties of positive matrix pairs appearing
in the state equations. Tadeus Kaczorek’s constant concern with emerging research themes led
him, almost at the same time, in the field of positive 2D systems, where he took, however, a more
eclectic attitude. In fact, his relevant contributions are mainly concerned with various control,
estimation and stabilization strategies in a positive environment, and the large number of his
papers on the subject certify his constant commitment to analysing system theoretic problems
in their different facets.

This paper deals with the circle of ideas that includes the theory of positive matrix pairs and the
dynamics of the corresponding 2D state space models. In the next section, the main properties of
the characteristic polynomial of a positive matrix pair are summarized, and some special classes
of positive pairs, as well as their connections with the dynamics behavior of 2D state models,
are investigated. Section 3 is devoted to combinatorial properties of irreducible and primitive
positive pairs and to the analysis of 2D systems whose local states updating is governed by such
pairs. Section 4 sketches some results on dominant eigenvectors and reports further issues and
open problems on matrix pairs arising from current research.

Detailed proofs of the results presented in sections 2 and 3 can be found in [?, ?]. For a more gen-
eral discussion on (nonnecessarily positive) matrix pairs and 2D systems, we refer the interested
reader to [].

Before proceeding, we introduce some notation and recall some basic facts about positive
(and nonnegative) vectors and matrices. If M = [mij ] is a matrix (in particular, a vector), we
write

i) M ≫ 0 (M strictly positive), if mij > 0 for all i, j;



ii) M > 0 (M positive or strictly nonnegative), if mij ≥ 0 for all i, j, and mhk > 0 for at least one
pair (h, k);

iii) M ≥ 0 (M nonnegative), if mij ≥ 0 for all i, j.

Two matrices M and N , with the same dimensions, have the same zero pattern if mij = 0 implies
nij = 0 and vice versa.

A nonnegative n× n matrix M , n ≥ 2, is called reducible if there exists a permutation matrix P
such that

PTMP =

[

M11 M12

0 M22

]

, (1)

where M11 and M22 are square submatrices. Otherwise M is irreducible.
The zero patterns of the powers Mν of an irreducible matrix M can exhibit different behaviours
for large values of ν. If there exists an integer N such that Mν ≫ 0 for all ν ≥ N , then M is
called primitive; otherwise there exist positive integers h and tij , i, j = 1, 2, ..., n, such that for
all ν ≥ tij , [Mν ]ij , the (i, j)-th entry of Mν , is positive if and only if ν = tij + ℓh. The two
cases admit a spectral characterization. Actually, a primitive matrix M has a simple real positive
eigenvalue r, whose module is strictly greater than the module of any other eigenvalue of M . On
the other hand, if M is not primitive, its spectrum includes h simple eigenvalues of maximal
module, i.e. r, rej 2π

h , ..., rej 2π
h

(h−1), r > 0. The integer h is called the imprimitivity index of M .

Finite memory, separability and property L
2D homogeneous positive systems considered in this paper are described by the equation:

x(h+ 1, k + 1) = A x(h, k + 1) +B x(h+ 1, k), (2)

where the doubly indexed local state sequence x(·, ·) takes values in the positive cone Rn
+ :=

{x ∈ Rn : xi ≥ 0, i = 1, 2, ..., n}, A and B are nonnegative n × n matrices, and the initial
conditions are assigned by specifying the nonnegative values of the local states on the separation

set C0 := {(i,−i) : i ∈ Z}.
There are essentially two reasons why the investigation of homogeneous positive systems is

more difficult in 2D than in 1D case. First of all, the dynamics of a 2D system (2) is determined
by the matrix pair (A,B) and, as well known, the algebraic tools we use for studying a pair
of linear transformations are not as simple and effective as those available for the analysis of a
single linear transformation. In particular, as we shall see, a natural 2D extension of the Perron-
Frobenius theorem is not immediately apparent. On the other hand, the free evolution is strongly
influenced by the choice of the nonnegative initial local states and, most of all, by the support of
the states sequence on C0.

For a given matrix pair (A,B) we define the characteristic polynomial

∆A,B(z1, z2) := det(I −Az1 −Bz2), (3)

and denote by V(∆A,B) the corresponding variety, i.e. the set of all (complex) solutions of the
equation ∆A,B(z1, z2) = 0.

When dealing with a generic (i.e. nonnecessarily positive) 2D system, some natural assump-
tions on the structure of the characteristic polynomial allow to single out important classes of
systems, whose dynamical behaviour exhibits very peculiar, distinguishing features. The classes
of systems we will consider in this section are the following ones:
finite memory systems whose state evolution goes to zero in a finite number of steps;
separable systems whose characteristic polynomial factorizes into

∆A,B(z1, z2) = r(z1)s(z2),



for suitable polynomials r(z1) ∈ R[z1] and s(z2) ∈ R[z2];
systems with property L, described by two matrices A and B whose eigenvalues can be ordered
into two n-tuples

Λ(A) = (λ1, λ2, ..., λn) and Λ(B) = (µ1, µ2, ..., µn) (4)

such that, for all α, β in C, the spectrum Λ(αA+ βB) is given by

Λ(αA+ βB) = (αλ1 + βµ1, αλ2 + βµ2, ..., αλn + βµn). (3.12)

The nonnegativity hypothesis introduces further constraints on the structure of the above
systems, we will explore in some detail. To this purpose, we introduce the Hurwitz products of
a matrix pair (A,B) which are inductively defined as

Ai 0B = Ai, A0 jB = Bj (5)

and, when i and j are both greater than zero,

Ai jB = A(Ai−1 jB) +B(Ai j−1B). (6)

Note that the sequence of local states x(·, ·) one obtains by assuming zero initial conditions on
C0, except at (0, 0), is represented by the power series

X(z1, z2)=
∑

h,k≥0

x(h, k)zh
1 z

k
2 = (I −Az1 −Bz2)

−1x(0, 0)

=
∑

h,k≥0

Ah kB x(0, 0)zh
1 z

k
2 .

As a consequence, the local state at (h, k), x(h, k) = Ah kB x(0, 0), has to be interpreted as
the sum of the elementary contributions along all paths connecting (0, 0) to (h, k) in the two-
dimensional grid [Fornasini Marchesini, 1993].

Proposition 2.1 [Finite memory] [?] For a pair of n × n nonnegative matrices (A,B), the
followings are equivalent

i)the associated 2D system (2) is finite memory;
ii)there is only a finite number of nonzero Hurwitz products
iii)∆A,B(z1, z2) = 1;
iv) A+B is nilpotent;
v) there exists a permutation matrix P such that PTAP and PTBP are both upper triangular

matrices with zero diagonal.

As a consequence of v), if we perform a permutation on the basis of the local state space,
so as to reduce matrices A and B into upper triangular form, it is easy to realize that, for
any initial global state on C0, the last t components of the local states on the separation set
Ct = {(h, k) : h+ k = t} are identically zero.

Separability property can be characterized in terms of S(A,B), the multiplicative semigroup
generated by A and B.

Proposition 2.2 [Separability] [?] For a pair of n×n matrices A > 0 and B > 0, the following
facts are equivalent:

i) the associated 2D system (2) is separable, i.e. ∆A,B(z1, z2) = r(z1)s(z2);



ii) every matrix product in S(A,B) has zero trace, provided that both A and B appear at least
once;

iii) w(A,B) is nilpotent, for all w ∈ Ξ∗ such that |w|i > 0, i = 1, 2.

Proof i) ⇔ ii) To prove this equivalence we refer to a characterization of separability, presented
in [Fornasini Marchesini Valcher, 1993], which states that (A,B) is separable if and only if

tr(Ai jB) = 0, ∀ (i, j), i > 0, j > 0. (3.8)

As tr (Ai jB) =
∑

|w|1=i,|w|2=j tr w(A,B), and all the words w(A,B) are nonnegative, (3.8)
implies ii). The converse is always true.

ii) ⇔ iii) By assumption ii), for each w ∈ Ξ∗, with |w|1 > 0 and |w|2 > 0, we have

tr(w(A,B))k = 0, k = 1, 2, ...,

which implies the nilpotency of w(A,B).
Conversely, the nilpotency of w(A,B) trivially implies that tr w(A,B) = 0

Separable nonnegative pairs can be reduced to two different canonical forms. One is obtained
by resorting to permutation matrices, i.e. to a reordering of the basis of the local state space,
while the other is based on a (complex) similarity transformation, namely a more general change
of basis. To construct the canonical forms we need the following Lemma:

Lemma 3.3 Let A > 0 and B > 0 constitute a separable pair; then A+B is a reducible matrix.

Proof Consider any w = ξi1ξi2 · · · ξim
∈ Ξ∗, with |w|1 > 0 and |w|2 > 0. Because of the

characterization ii) of separability given in Proposition 3.2, each diagonal element of w(A,B) is
zero, and therefore for any sequence of integers ℓ1, ℓ2, ..., ℓm ∈ {1, 2, ..., n}

[ψ(ξi1 )]ℓ1ℓ2 [ψ(ξi2)]ℓ2ℓ3 ...[ψ(ξim
)]ℓmℓ1 = 0. (3.9)

As A and B are nonzero, there exist entries [A]ij > 0 and [B]hk > 0. If A+ B were irreducible,
there would be integers p and q such that [(A +B)p]jh > 0 and [(A+B)q]ki > 0. Consequently

[ψ(ξt1)]jℓ1 [ψ(ξt2)]ℓ1ℓ2 ...[ψ(ξtp
)]ℓp−1h > 0

and
[ψ(ξs1

)]kr1
[ψ(ξs2

)]r1r2
...[ψ(ξsq

)]rq−1i > 0

for appropriate choices of ξtν
and ξsµ

and of the indexes ℓν and rµ. Therefore

[A]ij [ψ(ξt1 )]jℓ1 [ψ(ξt2)]ℓ1ℓ2 ...[ψ(ξtp
)]ℓp−1h [B]hk [ψ(ξs1

)]kr1
[ψ(ξs2

)]r1r2
...[ψ(ξsq

)]rq−1i > 0,

which contradicts (3.9)

Proposition 3.4 Let (A,B) be an n × n nonnegative matrix pair, then the followings are
equivalent:

i) ∆A,B(z1, z2) = r(z1)s(z2);
ii) there exists a permutation matrix P such that PTAP and PTBP are conformably partitioned

into block triangular matrices

PTAP =









A11 ∗ ∗ ∗
A22 ∗ ∗

. . . ∗
Att









PTBP =









B11 ∗ ∗ ∗
B22 ∗ ∗

. . . ∗
Btt









, (3.10)



where Aii 6= 0 implies Bii = 0. It entails no loss of generality assuming that the nonzero diagonal
blocks in PTAP and PTBP are irreducible;

iii) there exists a nonsingular matrix T such that Â = T−1AT and B̂ = T−1BT are upper triangular
matrices and âii 6= 0 implies b̂ii = 0.

Proof If one of the matrices is zero, the proposition is trivially true, so we will confine ourselves
to the case of A and B both nonzero.

i) ⇒ ii) By the previous Lemma, there exists a permutation matrix P1 s.t.

PT
1 (A+B)P1 =

[

C11 C12

0 C22

]

and, consequently,

PT
1 AP1 + PT

1 BP1 =

[

A11 A12

0 A22

]

+

[

B11 B12

0 B22

]

,

whereAii, Bii and Cii, i = 1, 2, are square submatrices. As the nonnegative matrix pairs (Aii, Bii)
are separable, we can apply the same procedure as before to both of them. By iterating this
method we end up with a pair of matrices with the structure (3.10).

ii) ⇒ iii) Let P be a permutation matrix that reduces A and B as in (3.10). Recalling
that every square matrix is similar to an upper triangular matrix, consider the matrix Q =
diag{Q11, Q22, ..., Qtt}, where Qii are nonsingular square matrices such that Q−1

ii (Aii + Bii)Qii

is upper triangular. Then T = PQ is the nonsingular matrix we are looking for.

iii) ⇒ i) Obvious

Property L:
the matrix pair (A,B), and corresponds to the possibility of factorizing ∆A,B(z1, z2) into

the product of linear factors, as follows

∆A,B(z1, z2) =

n
∏

i=1

(1 − λiz1 − µiz2). (7)

Under appropriate assumptions, nonnegativity of A and B allows for some precise statements
concerning the coupling of their maximal eigenvalues.

Proposition 3.5 [Property L] Let (A,B) be a nonnegative n × n matrix pair, endowed with
property L w.r.t. the orderings (4), and assume A+B irreducible.
Then there exists a unique index i such that

λi, µi ∈ R+, λi ≥ |λj |, µi ≥ |µj |, j = 1, 2, ..., n,

and, for each α, β > 0, αλi + βµi is the maximal positive eigenvalue of the irreducible matrix
αA+ βB.

Proof Denoting by ν1(α), ν2(α), ..., νn(α) the eigenvalues of αA+ (1−α)B, property L implies
that

νj(α) = αλj + (1 − α)µj , j = 1, 2, ..., n. (3.13)

Moreover, for all α ∈ (0, 1), the matrix αA+ (1 − α)B, having the same zero-pattern as A+ B,
is irreducible and hence has a simple maximal eigenvalue νmax(α). We aim to prove that there
exists an integer i such that for all α, νmax(α) = αλi +(1−α)µi, where λi and µi are real positive
eigenvalues of A and B, respectively.



Note first that the characteristic polynomial

∆A,B(z1, z2) =

n
∏

i=1

(1 − λiz1 − µiz2). (3.14)

belongs to R[z1, z2]. So, if one factor 1−λiz1−µiz2 has not real coefficients, also 1− λ̄iz1− µ̄iz2
appears in (3.14). That amounts to say that, when a nonreal pair (λj , µj) appears in (4), also the
conjugate pair (λ̄j , µ̄j) does, and hence both νj(α) = αλj +(1−α)µj and νk(α) = αλ̄j +(1−α)µ̄j

belong to Λ(αA + (1 − α)B). Moreover, νj(α) is real if and only if νk(α) is, and they take the
same value. As νmax(α), 0 < α < 1, has to be simple, it cannot coincide with any eigenvalue
νj(α) associated with a nonreal pair (λj , µj).
Therefore, an integer j(α) exists, possibly depending on α, such that (λj , µj) is a real pair and

νmax(α) = νj(α)(α). (3.15)

Because of the linear structure of (3.13), we can determine finitely many points, α1, α2, ..., αr,
0 < α1 < α2 < ... < αr < 1, with the property that the index j(α) in (3.15) remains constant on
each interval (αµ, αµ+1), µ = 1, 2, ..., r − 1, and takes different values on different intervals. If r
were greater than zero, νmax(αµ), µ = 1, 2, ..., r, would be a multiple eigenvalue of the irreducible
matrix αA + (1 − α)B, a contradiction. So r has to be zero and j(α) takes in (0, 1) a unique
value i.
Next, we show that λi and µi are maximal eigenvalues of A and B. Suppose, for instance, that
A possesses a positive eigenvalue λh > λi. As the eigenvalues of αA + (1 − α)B are continuous
functions of α, |νh(α)| would be greater than |νi(α)| for all values of α in a suitable neighbourhood
of 1, a contradiction.
Finally, letting ᾱ = α/(α+β) and 1− ᾱ = β/(α+β), we have that ᾱλi +(1− ᾱ)µi is the maximal
positive eigenvalue of ᾱA+ (1− ᾱ)B = 1

α+β
(αA+ βB) and, consequently, αλi + (1−α)µi is the

maximal positive eigenvalue of αA+ βB

Example 1 The pair

A =

[

0 1/2
1 1/2

]

B =

[

2/5 3/10
2/5 4/5

]

is endowed with property L w.r.t. the orderings

Λ(A) = (1, −1/2), Λ(B) = (1, 1/5).

For each α > 0 and β > 0, the maximal eigenvalue α + β of αA + βB is obtained as a linear
combination of the maximal eigenvalues of A and B. Note that A + B is strictly positive, and
hence irreducible. When we drop the irreducibility assumption, as, for instance, with the pair

A =

[

1 2
0 3

]

B =

[

2 0
0 1

]

,

the maximal eigenvalues ofA andB are not necessarily coupled w.r.t. the orderings of the spectra,
and hence do not appear in the same linear factor of the characteristic polynomial ∆A,B(z1, z2).

Cyclic structure of 2D-digraphs
A 2D-digraph D(2) is a triple (V,A,B), where V = {v1, v2, . . . , vn} is the set of vertices, and

A and B are subsets of V × V whose elements are called A-arcs and B-arcs, respectively. There
is an A-arc from vi to vj if (vi, vj) is in A, and a B-arc if (vi, vj) is in B.
When assigning a path p in D(2) one has to specify, for each pair of consecutive vertices, which
kind of arc they are connected by, thus giving p a representation like (vi0 , vi1)A, (vi1 , vi2)B,



. . . , (vik−1
, vik

)B. Sometimes, however, when we are interested only in the vertices p passes
through, we drop the subscripts. Also, when the emphasis is only in the initial and final vertices,
we adopt the shorthand notation vi0 −−→

p
vik

.

If we denote by α(p) and β(p) the number of A-arcs and B-arcs occurring in p, then [α(p) β(p)]
is the composition of p and |p| = α(p) + β(p) its length. A path whose extreme vertices coincide,
i.e. vi0 = vik

, is called a cycle. In particular, if each vertex in a cycle appears exactly once as
the first vertex of an arc, the cycle is called a circuit.

Definition A 2D-digraph D(2) = (V,A,B) is called
i)strongly connected if for every pair of vertices vi and vj in V there is a path p connecting vi to
vj ;

ii)2D-strongly connected if for every pair of vertices vi and vj in V there are two paths vi −−→
p1

vj

and vi −−→
p2

vj , connecting vi to vj , for which

det

[

α(p1) β(p1)
α(p2) β(p2)

]

6= 0. (8)

The 2D-digraph D(2) is naturally associated with a 1-digraph (i.e. a standard digraph) D(1) =
(V, E), having the same vertices as D(2) and E := A ∪ B as its set of arcs. So, property i)
corresponds to the fact that D(1) is strongly connected (in the ordinary sense), while property ii)
requires something more, namely that for every pair of vertices, vi and vj , the ratio β(p)/α(p),
(that is considered ∞ when α(p) = 0), between the number of B-arcs and A-arcs is not invariant
as p varies over the set of all paths connecting vi to vj .

In this paper all 2D-digraphs will be assumed strongly connected with both sets A and B
nonempty.

We associate with the (finite) set {γ1, γ2, . . . , γt} of all circuits in D(2) (arbitrarily ordered)
the circuit matrix

L(D(2)) :=









α(γ1) β(γ1)
α(γ2) β(γ2)

...
...

α(γt) β(γt)









∈ N
t×2

, (9)

and denote by M(D(2)) the Z-module generated by its rows. Since every cycle γ in D(2) de-
composes into a certain number of circuits, it follows that there exist n1, n2, . . . , nt ∈ N, such
that

[α(γ) β(γ)] = [n1 n2 . . . nt] L(D(2)), (10)

i.e. [α(γ) β(γ)] is an element of M(D(2)) ∩ N
2
. In general, however, M(D(2)) ∩ N

2
properly

includes the set of integer pairs representing the compositions of the cycles in D(2).

As a submodule of Z
2
, M(D(2)) admits a basis consisting either of one or of two elements.

In the first case M(D(2)) has only two possible bases, namely {[ℓ m]}, for some positive integers
ℓ and m, and its opposite {−[ℓ m]}, and every circuit γj in D(2) consists of kjℓ A-arcs and kjm
B-arcs, for a suitable kj in N. On the other hand, when L(D(2)) has rank 2, we can consider its
Hermite form over Z

H̄ :=





H

0



 =





h11 h12

0 h22

0



 = ŪL(D(2)), (11)

Ū ∈ Z
t×t

unimodular, and assume (without loss of generality) that h11 and h22 are positive inte-
gers, and 0 ≤ h12 < h22. The rows of H provide a particular basis ofM(D(2)), {[h11 h12], [0 h22]},
and the rows [w11 w12] and [w21 w22] of W = UH , as U varies over the group of unimodular



matrices in Z
2×2

, give all possible bases of M(D(2)). Since the determinants of all matrices UH
have the same modulus, which is the g.c.d. of the second order minors of L(D(2)), all paral-
lelograms {ε[w11 w12] + δ[w21 w22] : ε, δ ∈ [0, 1)}, have the same area, that coincides with the
number of integer pairs they include [?, ?].

The cyclic structure of D(2) and the module M(D(2)) provide enough information to decide
whether the 2D-digraph is 2D-strongly connected, as shown in the following proposition.

Proposition 2.1 Let D(2) be a strongly connected 2D-digraph. The following facts are equiva-
lent

i) D(2) is 2D-strongly connected;
ii) there are a vertex vi and two cycles γ and γ̃, passing through vi, for which

det

[

α(γ) β(γ)
α(γ̃) β(γ̃)

]

6= 0;

iii) there are two circuits γi and γj satisfying

det

[

α(γi) β(γi)
α(γj) β(γj)

]

6= 0;

iv) rank L(D(2)) = 2;
v) M(D(2)) has a basis consisting of two elements.

As it is well-known, the lengths of all cycles in a strongly connected 1-digraph D(1), with
imprimitivity index h, are multiples of h, and there exists a positive integer T such that, for all
integers t ∈ [T,+∞)∩ (h), there is a cycle in D(1) of length t [?]. A similar statement holds for a
2D-strongly connected digraph D(2), upon considering for each cycle γ in D(2) not just its length,
but its composition [α(γ) β(γ)]. In this case the module (h) and the half-line [T,+∞) have to

be replaced by M(D(2)) and by a suitable convex cone in R
2
+, respectively.

Proposition 2.3 Let D(2) be a strongly connected 2D-digraph, and let

S :=
{

[α(γ) β(γ)] ∈ N
2

: γ a cycle in D(2)
}

be the set of compositions of all cycles in D(2).
i) If M(D(2)) has rank 1 and is generated by [ℓ m] ∈ N

2
, there exists τ ∈ N s.t.

{t [ℓ m] : t ∈ N, t ≥ τ} ⊆ S ⊆ {t [ℓ m] : t ∈ N}. (12)

ii) If M(D(2)) has rank 2 and K ⊆ R
2
+ denotes the solid (i.e., with nonempty interior) convex cone

generated by the rows of L(D(2)), there exists [u w] ∈M(D(2)) ∩ K such that

M(D(2)) ∩
(

[u w] + K
)

⊆ S ⊆M(D(2)) ∩ K. (13)

Example 2.1 In the 2D-digraph D(2) of Fig. 2.1 A-arcs are represented by thicklines and
B-arcs by thinlines (this notation will be adopted in all subsequent pictures). The circuit matrix

L(D(2)) =





1 1
3 1
3 0





is right prime and hence generates the Z-module Z
2
. The set of all vectors [α(γ) β(γ)] that

correspond to some cycle γ in D(2) is represented in Fig. 2.2, and we see that all integer pairs
inside [7 3] +K, K the cone generated in R

2
+ by [3 0] and [1 1], correspond to a cycle in D(2).
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Fig. 2.1 Structure of D(2) Fig. 2.2 Cycles in D(2)

Example 2.2 In the 2D-digraph of Fig. 2.3 the circuit matrix

L(D(2)) =

[

1 1
2 2

]

has rank 1 and generates the module Z · [1 1]. The compositions [α(γ) β(γ)] of all cycles are
represented in Fig. 2.4.
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Paths and imprimitivity classes
As a consequence of (??), once a particular 2D-imprimitivity class has been selected as

a reference, all classes can be unambiguously indexed by the elements of the quotient module
Z

2
/M(D(2)), in the sense that each class is indexed by a coset [α(p) β(p)] +M(D(2)), p being

any path that reaches the class, starting from the reference one. We may ask under what
conditions the above correspondence, mapping 2D-imprimitivity classes into cosets, is bijective,
which amounts to say that for every coset [h k] +M(D(2)) there is a path p starting from the
reference class and having composition [α(p) β(p)] ≡ [h k] mod M(D(2)).

Clearly, when M(D(2)) has rank 1, the quotient module Z
2
/M(D(2)) includes infinitely many ele-

ments, and no bijection exists between the (finite) set of 2D-imprimitivity classes and Z
2
/M(D(2)).

On the other hand, when the module M(D(2)) has rank 2, this correspondence always exists.
The result follows from Proposition 3.3, below, which shows that every integer pair of the cone
K, generated by the rows of L(D(2)), represents the composition of some path in D(2).

Proposition 3.3 Let D(2) = (V,A,B) be a strongly connected 2D-digraph and K the solid

convex cone generated in R
2
+ by the rows of L(D(2)). For every integer pair [h k] in K there

exist a pair of vertices vi and vj and a path vi −−→
p

vj such that

[α(p) β(p)] = [h k]. (14)



Example 3.3 Consider the strongly connected 2D-digraph D(2) of Fig. 3.1. The integer pairs
giving the compositions of the paths in D(2) are represented in Fig. 3.3, below, where full circles
correspond to cycles and empty circles to open paths.
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Fig. 3.3 Cycles and paths in D(2)

Example 3.4 Consider the 2D-digraph of Fig. 3.4. It is immediate to verify that M(D(2)) has
rank 1 and basis {[2 2]}. The set of all pairs corresponding to paths/cycles in D(2) is represented
in Fig. 3.5.
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Corollary 3.4 Let D(2) = (V,A,B) be a strongly connected 2D-digraph. If M(D(2)) has rank

2, for every pair [h k] ∈ N
2

there is a pair of vertices vi and vj and a path vi −−→
p

vj such that

[α(p) β(p)] ≡ [h k] mod M(D(2)). (15)



Dynamical characterizations of irreducible matrix pairs
Given a nonnegative matrix F = [fij ] ∈ R

n×n

+ , it is possible to associate it with an essentially
unique 1-digraph, D(1)(F ), with n vertices, v1, v2, . . . , vn. There is an arc from vi to vj if and
only if fji > 0.
This correspondence is highly noninjective, yet several properties of the multiplicative semigroup
generated by F and of the asymptotic behavior of F ν , as ν tends to +∞, only depend on D(F ).
More precisely, paths and cycles in D(F ) are strictly related to the nonzero patterns of the powers
of F , since the (i, j)th entry of F ν is positive if and only if there exists a path of length ν from vj

to vi. On the other hand, the structure of a 1-digraph D can obviously be investigated in terms
of the algebraic properties of any nonnegative matrix F for which D(1)(F ) = D.

In this section we aim to extend the above correspondence to matrix pairs, by associating
with every pair (A,B) of n × n nonnegative matrices a 2D-digraph D(2)(A,B) with n vertices,
v1, v2, . . . , vn. There is an A-arc (a B-arc) from vj to vi if and only if the (i, j)th entry of A (of
B) is nonzero 1. For instance, the pair of positive matrices

(A,B) =









0 0 1
1 2 0
0 0 0



 ,





0 0 2
0 0 0
0 1 0









corresponds to the 2D-digraph of Fig. 4.1.
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We will show that the combinatorial properties of a pair (A,B) with a 2D-strongly connected
digraph can be viewed as natural generalizations of those of an irreducible matrix, i.e. a matrix
with a strongly connected digraph. Moreover, the dynamical behavior of the 2D state model
described by (A,B) eventually exhibits a two-dimensional periodic pattern, and the “extremal”
zeros of its characteristic polynomial are periodically distributed on a torus. This motivates the
following definition.

Definition A pair (A,B) of n × n positive matrices is irreducible if D(2)(A,B) is 2D-strongly
connected.

It is worth noticing that this amounts to require that A+B is irreducible and LA,B has rank 2.
So, in particular, all pairs (A,B) with A + B primitive are irreducible, but the converse is not
true.

As in the sequel we always refer to the 2D-digraph D(2)(A,B), associated with a specific matrix
pair (A,B), we denote the circuit matrix L(D(2)(A,B)) by LA,B and the corresponding module
by MA,B.



In positive matrix theory, the irreducibility of a single matrix F has received several equivalent
descriptions. Among the others, there are algebraic and system theoretic characterizations, which
connect this property to the zero-patterns of the powers of F and to the behavior of the associated
state model. More precisely, a positive matrix F ∈ R

n×n
is irreducible if and only if positive

integers h and T can be found, such that for every t ≥ T

t+h
∑

i=t+1

F i ≫ 0, (16)

or equivalently, if for every positive initial condition x(0) > 0 the dynamical model

x(t+ 1) = Fx(t), t = 0, 1, . . . (17)

produces state vectors satisfying
t+h
∑

i=t+1

x(i) ≫ 0,

for sufficiently large values of t.
Similar results hold true for irreducible matrix pairs, if we refer to the 2D system [?]

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k), h, k ∈ Z, h+ k ≥ 0, (18)

where the doubly indexed local states x(h, k) are elements of R
n

+ and initial conditions are given
by assigning a sequence X0 := {x(ℓ,−ℓ) : ℓ ∈ Z} of nonnegative local states on the separation

set S0 := {(ℓ,−ℓ) : ℓ ∈ Z}.
If the initial conditions on S0 are all zero, except at (0, 0), we have

x(h, k) = (Ah kB) x(0, 0), ∀ h, k ∈ N,

where the Hurwitz products Ah kB of A and B are inductively defined [?] as

Ah 0B = Ah, h ≥ 0, and A0 kB = Bk, k ≥ 0, (19)

and, when h and k are both positive,

Ah kB = A(Ah−1 kB) +B(Ah k−1B). (20)

One easily sees that Ah kB is the sum of all matrix products that include the factors A and B,
h and k times, respectively.
For an arbitrary set of initial conditions X0, each local state in an arbitrary point (h, k) ∈ Z

2
,

h+ k ≥ 0, can be obtained by linearity as

x(h, k) =
∑

ℓ

(Ah−ℓ k+ℓB) x(ℓ,−ℓ), (21)

where the Hurwitz product Ah−ℓ k+ℓB is assumed zero when either h− ℓ or k + ℓ is negative.
An alternative description of irreducible matrix pairs, that is reminiscent of that in (16),

can be obtained by replacing the power matrices with the Hurwitz products, and the half-line
[T,+∞) with a suitable solid convex cone. In fact, it turns out that a positive matrix pair (A,B)
is irreducible if and only if there are a finite “window” F and a solid convex cone such that,
independently of how the window has been positioned within the cone, the sum of all Hurwitz
products Ar sB corresponding to integer pairs in the window, is strictly positive.



If X0 consists of a single nonzero local state at (0, 0), condition (23) can be restated as

∑

[i j]∈[h k]+F

x(i, j) ≫ 0, (22)

for every pair [h k] ∈ N
2

s.t. [h k] +F ⊂ K∗. When there is an infinite number of nonzero local

states on S0, the state evolution possibly affects the whole half-plane {(h, k) ∈ Z
2

: h+ k ≥ 0}.

We may ask whether there is a separation set Sν = {(h, k) ∈ Z
2

: h+ k = ν} such that condition
(22) is fulfilled by all pairs [h k] beyond Sν , i.e. satisfying h+ k ≥ ν.
This is clearly impossible if no upper bound exists on the distance between consecutive nonzero
local states on S0. If we confine ourselves to admissible sets of initial conditions, namely to
nonnegative sequences X0 which satisfy the following constraint: there is an integer N > 0 such
that

∑h+N
ℓ=h x(ℓ,−ℓ) > 0 for all h ∈ Z, irreducibility can be characterized as follows.

Proposition 4.1 Let (A,B) be a pair of n × n positive matrices. The following facts are
equivalent:

i)(A,B) is irreducible;

ii)there are a solid convex cone K∗ and a finite set F ⊂ N
2

such that

∑

[r s]∈[h k]+F

Ar sB ≫ 0, ∀ [h k] ∈ N
2

s.t. [h k] + F ⊂ K∗; (23)

iii)there is a finite set F ⊂ N
2

such that for every admissible set of initial conditions X0 a positive
integer T can be found such that

∑

[i j]∈[h k]+F

x(i, j) ≫ 0, ∀ [h k] ∈ Z
2

s.t. h+ k ≥ T. (24)

The above proposition makes it clear that as in the case of a single positive matrix, where
condition (16) involves h consecutive powers of F (h the imprimitivity index), (23) involves the
Hurwitz products corresponding to h(2) integer pairs within any shifted version of the window
F .

Characteristic polynomials of irreducible matrix pairs
Up to this point, we have considered nonnegative matrix pairs only from the point of view

of the corresponding graph. Important tools for analysing the properties of a pair (A,B) are its
characteristic polynomial, defined as

∆A,B(z1, z2) := det(In −Az1 −Bz2) =
∑

h,k∈N

dhkz
h
1 z

k
2 , d00 = 1,

and the associated variety V(∆A,B), namely the set of points (λ, µ) ∈ C
2

such that det(In−Aλ−
Bµ) = 0. Indeed, many features of the pair and of the corresponding 2D system, like internal
stability, finite memory, separability, etc. [?], can be expressed directly in terms of ∆A,B(z1, z2).
The positivity constraint on the matrix entries makes these tools even more powerful, as there
exists a strict relation between the cyclic structure of the 2D-digraph D(2)(A,B) and the support

of ∆A,B(z1, z2), defined as

supp(∆A,B) := {(hi, ki) ∈ N
2

: dhiki
6= 0}.



In this section we aim to enlighten certain connections between supp(∆A,B) and the circuit
matrix LA,B, and to show that the support matrix

SA,B :=









h1 k1

h2 k2
...

...
hr kr









(25)

and LA,B provide the same information about the irreducibility of (A,B). This approach is
intimately connected with the classical Perron-Frobenius theory for a single positive matrix, and
suggests the possibility of obtaining a description of irreducible pairs in terms of the associated
characteristic polynomials.

Proposition 5.1 Let A and B be positive matrices with A+ B irreducible and ρ(A+B) = r.
For any θ and ω ∈ R the following facts are equivalent:

i)(r−1eiθ, r−1eiω) belongs to V(∆A,B);
ii)for every cycle γ in D(2)(A,B), including α(γ) A-arcs and β(γ) B-arcs,

α(γ)θ + β(γ)ω ≡ 0 mod 2π; (26)

iii)the characteristic polynomial of the pair (A,B) satisfies

∆A,B(z1, z2) = ∆A,B(z1e
iθ, z2e

iω); (27)

iv)for every pair (h, k) ∈ supp(∆A,B)

hθ + kω ≡ 0 mod 2π. (28)

We aim to show that the circuit matrix and the support matrix of any pair (A,B) generate
the same Z-module, thus extending an analogous result [?] connecting the support of det(I−zF )
with the lengths of all circuits in D(1)(F ). The proof depends upon the following technical lemma.

Proposition 5.3 Let (A,B) be a pair of n× n positive matrices, with A+B irreducible. The
Z-modules generated by the rows of LA,B and by the rows of SA,B coincide.

The Perron-Frobenius theorem undoubtely constitutes the most significative result about
irreducible matrices, as it clarifies their spectral structure and provides useful information on
the asymptotic behavior of the associated state models. Interestingly enough, the varieties of
irreducible matrix pairs exhibit features that appear as natural extensions of the properties
enlightened by Perron-Frobenius theorem, a result that further corroborates the definition of
irreducibility introduced in section 4.

Proposition 5.4 [2D Perron-Frobenius theorem] Let (A,B) be an irreducible pair of n × n
positive matrices, with ρ(A+B) = r, and let

H̄ :=





H

0



 =





h11 h12

0 h22

0



 ∈ N
t×2

be the Hermite form of LA,B. The variety V(∆A,B) intersects the polydisc

Pr−1 := {(z1, z2) ∈ C
2

: |z1| ≤ r−1, |z2| ≤ r−1} (29)



only in a finite number of points of its distinguished boundary Tr−1 := {(z1, z2) ∈ C
2

: |z1| =
r−1, |z2| = r−1}, namely in the points (r−1eiθ, r−1eiω), one obtains by varying (θ, ω) in the set

{(

α
2π

h11
+ β

2πh12

h11h22
, β

2π

h22

)

;α, β ∈ N

}

. (30)

Moreover, (r−1, r−1) is a regular point of the variety and there exists a strictly positive vector w
such that

(

In − r−1A− r−1B
)

w = 0. (31)

Primitivity and strictly positive asymptotic dynamics
An issue that arises quite naturally when considering the asymptotic behaviour of positive

systems is that of guaranteeing that the states eventually become strictly positive vectors. For
1D positive systems

x(h+ 1) = A x(h), x(0) > 0,

the primitivity of the system matrix A [Minc, 1988] is necessary and sufficient for x(h) beeing
strictly positive when h is large enough.
For 2D systems described as in (2), we say that the state evolution eventually becomes strictly
positive if there exists a positive integer T such that x(h, k) ≫ 0 for all (h, k), h+k ≥ T . Clearly
it’s impossible that every nonzero initial global state X0 = {x(i,−i) : i ∈ Z} produces a strictly
positive asymptotic dynamics. Actually, when X0 includes only a finite number of nonzero states,
the support of the free evolution is included in a quarter plane causal cone of Z × Z.
As a consequence, we have to take into account not only the properties of the matrix pair (A,B),
but also the zero-pattern of the nonnegative initial global state X0, and we will confine our
attention to global states which satisfy the following condition: there exists an integer M such
that

M
∑

h=1

x(i+ h,−i− h) > 0, ∀i ∈ Z. (4.1)

In other words, the maximal distance between two consecutive positive states on the separation
set C0 is upper bounded by M .

In the sequel we will provide a set of sufficient conditions on the pair (A,B) guaranteeing a
strictly positive asymptotic dynamics for all initial global states satisfying (4.1).

Proposition 4.1 Suppose that A > 0 and B > 0 are n × n positive matrices and there exists
(i, j) such that Ai jB is primitive. Then, for each initial global state satisfying (4.1), there
exists a positive integer T such that x(h, k) ≫ 0 whenever h+ k ≥ T .

Remark The existence of a primitive Hurwitz product Ai jB implies that, for a suitable
p > 0, (Ai jB)p, and hence (A + B)(i+j)p, are strictly positive. Therefore A + B is primitive.
The converse in general is not true, as shown by the following example. The pair of irreducible
matrices

A =





0 1 0
0 0 1
1 0 0



 B =





0 0 1
1 0 0
0 1 0



 (4.2)

has a primitive sum. However, as B = A2, each Hurwitz product can be expressed as Ah kB =
(

h+k
h

)

Ah+2k, and hence is not primitive.

Corollary 4.2 If A > 0 and B > 0 are n × n matrices and there exists a word w ∈ Ξ∗ s.t.
w(A,B) is primitive, then for all initial global states satisfying (4.1) the asymptotic behaviour of
system (2) is strictly positive.



Primitivity
The analysis of irreducibility just carried on allows to derive in a different way, and to

partially extend, some results on primitive matrix pairs presented in a previous contribution.
In [?] the notion of primitivity for a positive pair (A,B) was introduced as a strict positivity
constraint on the asymptotic dynamics of the associated 2D state model.
Introducing irreducibility has required a careful analysis of the equivalent characterizations avail-
able for a single irreducible matrix, and has highlighted the graph-theoretic approach as par-
ticularly suitable to this purpose. So, irreducible pairs have been first defined in terms of the
associated 2D-digraph and later endowed with alternative descriptions.

In this framework primitivity is introduced as a special case of irreducibility, as an irreducible
pair is called primitive if its circuit matrix LA,B is right prime, and it is characterized in several
alternative ways by resorting to the results derived in the previous sections. Indeed, the proof of
the following proposition is an immediate corollary of the previous propositions.

Proposition 6.1 Let (A,B) be an irreducible pair of n×n positive matrices, with ρ(A+B) = r.
The following facts are equivalent:

i) (A,B) is primitive;
ii) SA,B is a right prime integer matrix;

iii???)MA,B coincides with Z
2
;

iv) there exists a strictly positive Hurwitz product;

v) there is a solid convex cone K∗ in R
2
+ such that for all (h, k) ∈ N

2
∩ K∗ the Hurwitz product

Ah kB is strictly positive;
vi) for every admissible set of initial conditions there is a positive integer T such that x(h, k) ≫ 0

for all (h, k) ∈ N
2
, h+ k ≥ T ;

vii) the variety V(∆A,B) intersects the polydisk Pr−1 only in (r−1, r−1).

It is worthwhile to remark that the results of the paper easily extend to kD-digraphs, i.e.

digraphs with k kinds of arcs, and to kD systems evolving on Z
k
, for any k ∈ N. We preferred,

however, to discuss only the case k = 2 and to avoid the notational and graphical burden
connected with the general case, since, in our opinion, it tends to obscure the main features of
the theory, without providing any conceptual advantage.

Further aspects of the asymptotic dynamics
The problems that will be addressed in this section concern some aspects of the two-

dimensional dynamics which entail a finer analysis of the asymptotic behaviour. Indeed our
interest here does not merely concentrate on nonzero patterns; it involves also the values of the
local state and a qualitative description of the vectors distribution along the separation sets
Ct = {(i, j) : i+ j = t} as t goes to infinity.
The first problem is that concerning the zeroing of state oscillations on the separation sets Ct, as
t→ +∞, when scalar positive systems are considered.

Definition 1 : A scalar (nonnecessarily nonnegative) global state X0 = {x(i,−i) : i ∈ Z} has
(finite) mean value µ if, given any ε > 0, there exists a positive integer N(ε) such that, for all
ν ≥ N(ε) and h ∈ Z

∣

∣

∣

∣

∣

1

ν

h+ν−1
∑

i=h

x(i,−i) − µ

∣

∣

∣

∣

∣

< ε. (5.1)

The mean value will be denoted as µ = limν→∞ ν−1
∑

x(i,−i), where the summation is extended
to all intervals of length ν, and the convergence is uniform w.r.t. the position of the interval along
the separation set C0.

The following properties are straightforward consequences of Definition 1:
i) if X0 has mean value µ, X0 − µ = {x(i,−i) − µ : i ∈ Z} has mean value zero;



ii) if X0 has mean value µ, Xt = {x(i, j), i+ j = t} has mean value (A+B)tµ;
iii) if X0 has mean value µ, then X0 is bounded, i.e. there exists a positive integer M such that

|x(i,−i)| < M, i ∈ Z;
iv) the set of scalar global states constitutes a complete subspace of ℓ∞(Z), the space of bilateral

bounded sequences.

Given a bounded scalar global state X0 with mean value µ, the oscillation and (when µ 6= 0) the
oscillation rate of X0 are defined as

Osc(X0) := sup
i,j∈Z

|x(i,−i) − x(j,−j)| (5.2)

and

osc(X0) :=
Osc(X0)

|µ|
, (5.3)

respectively. The following technical lemma shows that a convexity assumption on the pair (A,B)
guarantees that the oscillations of the local states on the separation sets Ct are damped down to
zero by the 2D system structure, as t→ +∞.

Lemma 5.1 Assume that in the scalar 2D system (2) A and B are both positive, and A+B = 1.
Then, for all global states X0 satisfying the mean value condition (5.1), Osc(Xt) → 0 as t→ ∞.

Proof As the amplitude of the oscillations along the separation set is unaffected when a constant
value is added to all initial local states, there is no loss of generality in assuming that X0, and
hence Xt, t = 1, 2, . . ., have zero mean.

Let ε be an arbitrary real number in (0, 1). By the zero mean assumption, there exists an
integer N1 ≥ 0 such that, for all ν ≥ N1,

x̄(ν)(i,−i) :=
1

2ν + 1

ν
∑

j=−ν

x(i+ j,−i− j) (5.4)

satisfy, for all i ∈ Z, |x̄(ν)(i,−i)| < ε/4.
In the sequel, we shall compare the asymptotic behaviour of (2) induced by the original global

state X0 = {x(i,−i), i ∈ Z} with that induced by the global state X̄
(ν)
0 = {x̄(ν)(i,−i), i ∈ Z}.

When the initial conditions are provided by X̄
(ν)
0 , we get

|x̄(ν)(t+ h,−h)| ≤
ε

4

t
∑

i=0

(

t

i

)

At−iBi =
ε

4
(5.5)

for all t ≥ 0 and h ∈ Z. So, all local states x̄(ν)(i, j) in the half plane {(i, j), i+ j ≥ 0} have an

absolute value less than ε/4 and, consequently, Osc
(

X̄
(ν)
t

)

≤ ε/2 for all t ≥ 0. Moreover,

x̄(ν)(t+ h,−h) =

t+ν
∑

i=−ν

x(i+ h,−i− h)
1

2ν + 1

ν
∑

λ=−ν

(

t

i− λ

)

At−i+λBi−λ, (5.6)

where
(

t
i−λ

)

is zero if i− λ > t or i− λ < 0.
On the other hand, when the initial conditions are provided by X0, we get

x(t+ h,−h) =
t

∑

i=0

x(i+ h,−i− h)

(

t

i

)

At−iBi. (5.7)



So, comparing (5.6) and (5.7), we see that the dynamics induced by X̄
(ν)
0 approximates x(·, ·) on

Ct within an error given by

e(t+ h,−h) := x̄(ν)(t+ h,−h) − x(t+ h,−h)

=
∑

i∈[−ν,−1]∪[t+1,t+ν]

x(i+ h,−i− h)
1

2ν + 1

ν
∑

λ=−ν

(

t

i− λ

)

At−i+λBi−λ

+
t

∑

i=0

x(i+ h,−i− h)
[

ν
∑

λ=−ν

(

t

i− λ

)

1

2ν + 1
At−i+λBi−λ −

(

t

i

)

At−iBi
]

. (5.8)

We consider separately the behaviour of the two addenda in (5.8), as ν and t go to infinity.

(i) Since X0 ∈ ℓ∞(Z), a positive M exists, such that, for all i ∈ Z, |x(i,−i)| < M . Once ν
has been fixed, there exists a positive integer N2 such that, for all t ≥ N2, both

(

t
ν

)

At−νBν and
(

t
t−ν

)

AνBt−ν are less than ε/4M(2ν + 1), and therefore the modulus of the first addendum in
(5.8) is less than ε/4.

(ii) We resort to the following statement of the classical Bernoulli theorem [Cramer, 1971]: “Let
σ ∈ (0, 1), and consider

ω :=
∑

tB(1−σ)<i<tB(1+σ)

(

t

i

)

At−iBi. (5.9)

Then the ratio ω/(1 − ω) may be made to exceed any given quantity by choosing t sufficiently
large”.
So, given σ, a positive N3 exists, such that 1 − ω < ε/16M for all t ≥ N3. Moreover, as the
values of

(

t
i

)

At−iBi at the boundaries of the interval (tB(1−σ), tB(1+σ)) can be made as small
as convenient if t is large enough, we can assume also

(

t

i

)

At−iBi <
ε

2ν + 1

1

8M

when i − ⌊tB(1 − σ)⌋ = 1, 2, . . . , ν or ⌊tB(1 + σ)⌋ − i = 0, 1, . . . , ν − 1. Consequently, for all
t ≥ N3, the summation in the second addendum of (5.8), when restricted to the values of i
satisfying |i− tB| > tσ, gives

∑

|i−tB|>tσ

x(i+ b,−i− h)
[

ν
∑

λ=−ν

(

t

i− λ

)

1

2ν + 1
At−i−λBi−λ −

(

t

i

)

At−iBi
]

<
ε

4
. (5.10)

Finally, we look for a suitable bound for the complementary part, namely

∑

tB(1−σ)<i<tb(1+σ)

x(i+ h,−i− h)
[

ν
∑

λ=−ν

(

t

i− λ

)

1

2ν + 1
At−i−λBi−λ −

(

t

i

)

At−iBi
]

. (5.11)

Letting i = t(B + δ), the term in square brackets can be rewritten as

Ti=

(

t

i

)

At−iBi
[

−1 +
1

2ν + 1

(

1 +
(1 + δ

B
)

(1 + δ
A

+ 1
At

)
+

(1 − δ
A

)

(1 + δ
B

+ 1
Bt

)

+
(1 + δ

B
)(1 + δ

B
+ 1

tB
)

(1 + δ
A

+ 1
At

) + (1 + δ
A

+ 2
At

)
+ . . .+

(1 − δ
A

)(1 − δ
A
− 1

At
) . . . (1 − δ

A
− ν+1

At
)

(1 + δ
B

+ 1
Bt

) . . . (1 + δ
B

+ ν
Bt

)

)]

As t goes to infinity, all terms k/At and k/Bt can be neglected. Moreover, for small values of σ,
|δ| is a fortiori small, and all powers δ3, δ4 . . . can be neglected w.r.t. δ2. This gives

Ti
∼
=

(

t

i

)

At−iBi
(

−1 +
1

2ν + 1
(1 + 2ν + γδ2)

)

=

(

t

i

)

At−iBi γδ2

2ν + 1
(5.12)



where γ is a suitable constant. As the absolute value of (5.11) is not greater than

∑

tB(1−σ)<i<tB(1+σ)

M

(

t

i

)

At−iBi |γ|σ2

2ν + 1
≤

M |γ|

2ν + 1
σ2,

it can be made smaller than ε/4 when σ is small enough. Therefore, for large values of t, we have
|e(t+ h,−h)| < ε/2 and consequently

Osc(Xt) ≤ Osc(X̄
(ν)
t ) + 2 suph|e(t+ h,−h)| ≤

3

2
ε (5.13)

The following proposition is now an immediate consequence of Lemma 5.1.

Proposition 5.2 Consider an homogeneous 2D system (2) with n = 1 (scalar local states) and
A,B > 0. Assume moreover that the initial global state X0 has a mean value µ > 0. Then the
oscillation rate osc(Xt) goes to zero as t goes to infinity.

Proof Lemma 5.1 implies that the oscillation of the global state X̂t in the system

x̂(h+ 1, k + 1) = Â x̂(h, k + 1) + B̂ x̂(h+ 1, k),

Â = A/(A+B), B̂ = B/(A+B), goes to zero when its initial conditions are given by X̂0 = X0.
Since we have x(i+ t,−i) = (A+B)tx̂(i+ t,−i) and the mean value of Xt is (A+B)tµ,

osc(Xt) =
Osc(Xt)

µ(A+B)t
=

Osc(X̂t)

µ
(5.14)

goes to zero as t→ ∞

If we drop the hypothesis that (2) is a scalar system, the qualitative description of the
asymptotic dynamics is by far more interesting, and more difficult. Actually, there is a diversity
of questions one may ask, concerning the shape Xt eventually reaches as t goes to infinity, and
answers depend like enough both on the pair (A,B) and on the structure of X0.

There is, first of all, the question of guaranteeing that the normalized state vector x(h, k)/||x(h, k)||
converges towards a unique vector v as h+k→ ∞. That is, how can a particular direction in the
local state space be recognized as the 2D analogue of a 1D dominant eigenvector? If such a direc-
tion exists, a natural issue is to analyse the properties of the scalar sequences (||x(i+ t,−i)||)i∈Z

and the possibility of obtaining global states Xt eventually free from oscillations. Finally, the
questions above can be viewed as particular instances of the more general problem of classify-
ing the asymptotic behaviours of the global states and detecting recurrencies that underlie their
limiting structure.

The results so far available deal with two rather restrictive classes of positive 2D systems,
that is 2D Markov chains [Fornasini 1990] and 2D systems with commutative A and B. Further
research will lead, it is hoped, to more comprehensive theorems. For sake of brevity, we discuss
only some aspects of commutative 2D systems, that partly supplement the treatment of this
subject presented in [Fornasini Marchesini 1993].

Lemma 5.3 Let A > 0 and B > 0 be n × n commutative matrices, whose sum A + B is
irreducible. Then A and B have a strictly positive common eigenvector v

Av = rAv, Bv = rBv (5.15)

and rA, rB are the spectral radii of A and B, respectively.



Proof Assume first that A is irreducible, and let v ≫ 0 be the eigenvector of A corresponding
to the eigenvalue rA, that is Av = rAv. The commutativity of A and B and the assumption
B > 0 imply A(Bv) = rA(Bv) and Bv > 0 respectively. Since an irreducible matrix has exactly
one eigenvector [Minc 1988] in En := {x ∈ Rn

+ :
∑n

i=1 xi = 1}, and both v and Bv are positive
eigenvectors of A, we have

Bv = λv, λ > 0 (5.16)

Consequently, v is a strictly positive eigenvector of B, corresponding to its maximal eigenvalue
rB, and in (5.16) λ = rB .
Assume now that A + B is irreducible, and let Aε := A + εB,Bε := B + εA, where ε is an
arbitrary positive real number. As Aε and Bε commute and are both irreducible, the first part
of the proof gives, for all ε > 0 Aεv

(ε) = rAε
v(ε), Bεv

(ε) = rBε
v(ε) where v(ε) ≫ 0 is a common

eigenvector of Aε and Bε, uniquely determined by the condition v(ε) ∈ En, and rAε
, rBε

are the
spectral radii of Aε and Bε respectively.
Now eigenvalues and eigenvectors are continuous functions of the entries of the matrices. Hence
Aε → A, Bε → B, rAε

→ rA, rBε
→ rB as ε → 0+. Moreover, there exists v ∈ En such

that v(ε) → v, and v is a common eigenvector of A and B which fulfills equations (5.15). To
conclude the proof, it remains to show that the limiting vector v is strictly positive. Indeed,
(5.21) gives (A+B)v = (rA +rB)v So, v is a positive eigenvector of the irreducible matrix A+B,
which implies v ≫ 0

We are now in a position to provide a stronger version of some results published in [Fornasini
Marchesini, 1993], and summarized in the following lemma

Lemma 5.4 Suppose that in system (2) A,B and the initial global state X0 satisfy the following
assumptions:

(i) A and B are positive commuting matrices
(ii) A and B have a strictly positive common dominant eigenvector v
(iii) There exists ℓ and L, both positive, such that

0 < ℓ[ 1 1 . . . 1 ]T ≤ x(i,−i) ≤ L[ 1 1 . . . 1 ]T , ∀i ∈ Z. (5.17)

Then

lim
h+k→+∞

x(h, k)

||x(h, k)||
=

v

||v||

Proposition 5.5 Suppose that in system (2)
a) A and B are primitive commuting matrices
b) there exist an integer M > 0 and two positive real numbers r and R such that

r ≤ [ 1 1 . . . 1 ]

M
∑

h=1

x(i+ h,−i− h) ≤ R, ∀i ∈ Z

Then

lim
h+k→+∞

x(h, k)

||x(h, k)||
=

v

||v||

where v ≫ 0 is a common eigenvector of A and B.

Proof As A+B is irreducible, by Lemma 5.3 there exists v ≫ 0 that satisfies equations (5.15).
The primitivity assumption guarantees that v is a dominant eigenvector of both A and B. Thus
conditions (i) and (ii) of Lemma 5.4 are fulfilled. On the other hand, when N is large enough,



all matrices Aν N−νB, 0 ≤ ν ≤ N , are strictly positive. So, denoting by sN and SN their
minimum and maximum entries

sN := minνminh,k[Aν N−νB]hk > 0, SN := maxνmaxh,k[Aν N−νB]hk > 0

respectively, and assuming N ≥M , we have

xj(i+N,−i)=
N

∑

ν=0

rowj(A
ν N−νB)x(i +N − ν,−i+ ν −N)

≥sN

N
∑

ν=0

[ 1 1 . . . 1 ]x(i+N − ν,−i−N + ν) ≥ sNr j = 1, 2, . . . , n

and

xj(i+N,−i) ≤ SN

N
∑

ν=0

[ 1 1 . . . 1 ]x(i+N − ν,−i−N + ν) ≤ SNNR j = 1, 2, . . . , n.

Therefore, for large values of N , XN fulfills condition (iii) of Lemma 5.4 , with ℓ = sNr and
L = SNNR, and the proof is complete
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