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Abstract. Local reachability of two-dimensional (2D) positive systems, by means of positive scalar inputs,
is addressed. The combinatorial nature of this property allows for a graph theoretic approach. Indeed, to every
2D positive system of dimension n with scalar inputs one can associate a 2D influence graph with n vertices, one
source and two types of arcs interconnecting the source and the vertices. Some results concerned with equivalent
conditions for local reachability as well as upper and lower bounds on the reachability indices are provided.
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1. Introduction

Recent years have seen a growing interest in two-dimensional (2D) systems that are subject
to a positivity constraint on their dynamical variables. There are actually several different
motivations for this interest, coming from various domains of science and technology. Positive
2D systems arise, for instance, when discretizing pollution and self-purification processes along
a river stream, or when providing a discrete model for the traffic flow in a motorway. More
generally, the positivity assumption is a natural one when describing, by means of 2D systems,
distributed processes whose variables represent quantities that are intrinsically nonnegative, such
as pressures, concentrations, population levels, etc. The first contributions to the analysis of
2D positive systems [4, 5, 7, 11] mainly focused on the free evolution of the state variables,
and therefore on the investigation of algebraic and combinatorial properties of positive matrix
pairs appearing in the state equations. More recently, Tadeusz Kaczorek afforded other topics
related to the forced dynamics of 2D positive systems and, specifically, control, estimation and
stabilization problems in a positive environment [8, 9].

2D positive systems considered in this paper are driven by scalar inputs and are described
by the following state-updating equation [2, 6]:

(1.1) x(h+1,k+1) = Aix(h k +1) + Asx(h + 1,k) + Biu(h, k + 1) + Bau(h + 1, k),

where the local states x(-,) and the scalar input u(:,) take nonnegative values, A; and As are
nonnegative n x n matrices, By and Bs are nonnegative n-dimensional column vectors, and the
initial conditions are assigned by specifying the nonnegative values of the state vectors on the

separation set
Co :={(h,k) : h,k € ZL,h + k = 0},

namely by assigning all local states of the initial global state Xy := {x(h,k) : (h, k) € Co}.
In this paper we address the positive local reachability property. To this end, we assume a
combinatorial point of view and hence consider just the nonzero patterns of the matrices and

vectors involved in the system description. 2D influence graphs (namely direct graphs which
exhibit two types of arcs and two types of input flows [5, 7]) turn out to be the appropriate tools




for formalizing and solving the problem. The results presented here are preliminary. The general
solution of the problem seems nontrivial, as the facts and counter-examples here provided will
clearly enlighten.

Before proceeding, it is convenient to introduce some notation. Two positive matrices M
and N, with the same dimensions, are said to have the same nonzero pattern it m;; # 0 implies
n;; # 0 and vice versa. A positive vector v is said to be an ith monomial vector if it can
be expressed as «a;e;, where e; denotes the ith canonical vector and «; is some positive real
coefficient. A monomial matrix is a nonsingular (square) matrix whose columns are monomial
vectors.

The Hurwitz products of two square matrices A; and Ay (of the same size) are inductively defined
as

A4, = Al for i>0,
AT A, = Ag, for 7 >0,
AliLUjAQ = Al(Ali_lLLEjAg) + AQ(AliLIJj_lAg), for ’E,j Z U,

meanwhile
A'w? Ay =0, when either i or j is negative.

A 2D influence graph D) is a sextuple (s, V, A1, Az, By, By), where s is the source, V =
{v1,v2,...,v,} is the set of vertices, A; and A5 are subsets of V x V' whose elements are called
Aj-ares and Ag-arcs, respectively, meanwhile By and By are subsets of s x ¥V whose elements are
called Bi-arcs and Bs-arcs, respectively.

To every 2D positive system (1.1) with scalar inputs of size n we associate a 2D influence
graph D(Q}(AI,AQ,Bl,Bg) of source s, with n vertices, vy, vs,...,v,. There is an A;-arc (an
Aj-arc) from v; to v; if and only if the (7, j)th entry of Ay (of Ay) is nonzero. There is a B;-arc
(a Bg-arc) from s to v; if and only if the ith entry of B; (of Bs) is nonzero.

For instance, the positive system described by the following matrices

05 0] [o o o] [1 0
(A1, A2,B1,B)= (|0 2 o|,]o o 4|,|o0],|10
1 00| |20 0] |0 0

corresponds to the 2D digraph of Fig. 1.1. We have represented .A;-arcs and B;i-arcs by means
of thick lines, while Az-arcs and Bs-arcs by means of thin lines.

D) (A4, Ao, By, Bs)

Fig. 1.1

A path p in D) (A;, Ay, By, By) is a sequence of adjacent arcs and, in particular, an s-path is a
path which originates from the source s. In order to specify a path (in particular, an s-path)
p one has to specify not only the extreme vertices of each arc but also the type of arc they are
connected by. If we denote by |p|1 the number of Aj-arcs and Bi-arcs, and by |p|2 the number
of As-arcs and Bs-arcs occurring in p, then [|p|1 |p|2] is the composition of p and |p| = |p|1 + |p|2
its length. A path whose extreme vertices coincide is called a eycle. In particular, if each vertex
in a cycle appears exactly once as the first vertex of an arc, the cycle is called a circuit.



2. Reachability and positive reachability definitions

For 2D state-space models (1.1) two distinct definitions of reachability are usually considered
[2]: local reachability and global reachability. Local reachability refers to the possibility of
“reaching” an arbitrary local state x* € R", starting from zero initial conditions, meanwhile
global reachability amounts to the possibility (starting, again, from zero initial conditions) of
obtaining arbitrary sequences of local states x(h, k) on an assigned separation set C; := {(h, k) :
h,k € Zi,h + k = t}, provided that t € N is large enough.

DEFINITION 2.1. A 2D state-space model (1.1) is

e locally reachable if, upon assuming Xo = 0, for every x* € R” there exists (h, k) €
2o x & with h+ k > 0 and an input sequence u(-,-) such that x(h, k) = x*;

e globally reachable if, upon assuming Xy = 0, for every sequence {x} }pcz, there exists
t € N and an input sequence u(:,-) such that x(h,t — h) = x}, for every h € Z.

Of course, global reachability implies local reachability. For standard (i.e., not necessarily
positive) 2D systems, local reachability analysis easily reduces to the analysis of the column span
of the reachability matrix in k steps [2]

Ry =[B1 By A1B; ABy+ A;B; AsBy A?B; (A1'w'As)By + A3By ... AN'By]
1 c
= [(Al’ﬁ LUJAQ)Bl - (AJ_”LU-"' I‘AQ)BQLJZO, O<iti<k
as k varies over the set of positive integers. Reachable states in k steps, i.e. local states that can
be reached on the separation set Cj, starting from X, = 0, constitute a linear subspace X, C R",
spanned by the columns of Ry. Clearly, the ascending chain

X CXy EX e

eventually reaches stationarity and this necessarily happens, by the 2D Cayley-Hamilton theorem,
in no more than n steps. As a consequence, if the system is locally reachable, the point (h, k)
such that x(h, k) has the desired value can always be chosen on the separation set C,.

On the other hand, a 2D system is globally reachable if and only if

rank [T, — Ayz — Aszo | Biz1+ Bazm] =n, Y 21,20 € C.

Again, when the system is globally reachable, every global state can be reached in no more than
n steps.

The definitions of positive local reachability and positive global reachability are im-
mediately obtained from Definition 2.1, once we constrain both the input sequence and the state
vectors we aim at reaching to be nonnegative. In this contribution we focus on positive local
reachability for 2D positive systems with scalar inputs. A comparison with the analogous prob-
lem in the 1D setting could erroneously lead to underestimate the problem difficulty. As we shall
see, most of the intuitions one may have about the problem solution are immediately disproved
by very simple examples.

Once we constrain the input sequence to be nonnegative, the reachability subspaces X, k €
N, are replaced by the reachability cones X;',k € N. In fact, the set X; of all local states
that can be reached on the separation set Cj, by means of nonnegative inputs and starting from
initial zero conditions (Xy = 0), obviously coincides with the set of all nonnegative combinations

of the columns of Ry, namely
X;: = ConeRy.

As in the case of 1D positive systems (see [10]), the chain of reachability cones does not neces-
sarily reach stationarity and, indeed, certain positive states can be reached only asymptotically.



Moreover, positive local reachability is trivially equivalent to the possibility of reaching (starting
from zero initial conditions) every vector of the canonical basis in R™ by means of nonnegative
inputs, which in turn amounts to saying that there exists some k € N such that the reachability
matrix in k steps, Ry, includes an n x n monomial submatrix [1]. This is, of course, a structural
property of the system, by this meaning that it only depends on the nonzero patterns of the 4
system matrices and not on the specific values of their nonzero elements. However, differently
from the 1D positive case, the reachability index I of a (locally reachable) 2D positive system,
namely the minimum index k such that

X;' = ConeRy = Ri,
is not bounded by n.
Example 1 Consider the positive system described by the following matrices

wnumo= ([ 212 32D

which corresponds to the 2D-digraph of Fig. 2.1.
@ 4_/;1\ > o

Fig. 2.1 D®)(A;, Az, By, By) corresponding to Example 1

It is easy to verify that the system is positive locally reachable and the reachability index is
3 > 2 = n. Indeed,

Ry =[B; B= B 8}

1 01 0 0
Ro=[B1 B: AiB1 AyBy + A1By A232]={ }

0 01 00

RQ:[B]_ By A1By AsBi+ A By AB» A%Bl (AllLulAg)B]_+A%Bg
101 0 01000

001 00110 0"

A%Bl + (AllmlAg)Bg A%Bg} = {
Example 2 Consider the following 2D positive system:
(Al,AQ,Bl,Bz) — ([62 e; e +e4 e eg 0} ,[0 0000 84} 5 [0] ; [e1 D,

which corresponds to the 2D-digraph of Fig. 2.2.

Fig. 2.2 D@(A,, Ay, By, Bs) corresponding to Example 2

In this case, the reachability index proves to be 9 while the system dimension is n = 6. The
above structure can be generalized. If the 2D influence graph of a 2D positive system has the
previous structure, by this meaning that it counsists of two loops, each of them including n/2



vertices and connected by arcs of type 1 and 2 as indicated in Fig. 2.2, then the reachability
index turns out to be 3n/2.

—b— - 5 - O

Fig. 2.3 D?(Ay, Ay, By, By) generalizing Example 2

Example 3 Consider the following 2D positive system:
(Al,Ag,Bl,Bg) = ([0 e3 e;1 0 e ey 94] ,[ez 00 e 0O 0] 5 [e1 +64] ,[{)J),

which corresponds to the 2D-digraph of Fig. 2.4.

U] )t w@ (V1)
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Fig. 2.4 D®)(A;, Ay, By, By) corresponding to Example 3

In this case, the reachability index proves to be 13 while the system dimension is n = 7.
Again, the above structure can be generalized. In fact, if the 2D influence graph of a 2D positive
system has the previous structure, by this meaning that it consists of two loops including n;
vertices and ny + 1 vertices, respectively, connected by arcs of type 1 and 2 as indicated in Fig.
2.5, then the reachability index turns out to be of the same order as 11 - (n1 + 1), namely of the
same order as n®/4, since n = ny + (ny + 1).

;@1 1+

""‘-1"5— 11 +3

Fig. 2.5 D(g)(Al,Ag,Bl,Bz) generalizing Example 3

Example 3 has proved that for a locally reachable 2D positive system the reachability index
may reach the value n?/4. It seems reasonable to conjecture that n?/4 represents an upper
bound for the reachability index of every 2D positive system. Even though several examples we
have analyzed seem to confirm this conjecture, up to now a formal proof of this result is not
available.

A necessary condition for positive reachability is the following one.



PROPOSITION 2.2. If the positive system (1.1 ) is positively locally reachable then the matriz
(A1 Ay By Bs]

ineludes an n x n monomial submatriz.

Proof. If the system is locally reachable, then there exist n nonnegative pairs (h;, k;) €
Z+ X Z+,i = 1,2,.. -, 1, SuCh that

(Alh*'ulLUkiAg)Bl + (Alh"LIJki—lAQ)BZ

is an ith monomial vector. If h; + k; = 1 then the ith monomial vector is a column of By or of
By. If hy 4+ k; > 1 then the ith monomial vector is a column of Ay or of Ay (possibly both). O

As for 1D positive systems, local reachability property admits an interesting and useful char-
acterization in terms of the 2D influence graph associated with the system. Indeed, saying that

(Alhi_lu_lkiAg)Bl + (Alh"‘LLFk’_lAg)Bz

is an 7th monomial vector just means that every s-path p of composition [|p|y [pla] = [hi ki
necessarily reaches the vertex v; alone. If so, we will say that the s-path p deterministically
reaches the vertex v;.

As a consequence, the 2D system (1.1) is positively locally reachable if and only if for every
i € {1,2,...,n} there exists an s-path p; that deterministically reaches the vertex v;. Even more,
the reachability index I coincides with

min{k : 3 an s-path p;, with |p;| < k deterministically reaching v;, ¥ i}.

In the sequel, we will confine our attention to 2D positive systems (1.1) having one of the
two input-to-state matrices which is zero. We will assume, without loss of generality, By = 0
and, consequently, denote B; as B, for the sake of simplicity. These systems are described by
the following equation:

(2.1) x(h+1,k+1) = Aix(h,k + 1) + Aox(h + 1, k) + Bu(h, k + 1),

. X &
where Ay, Ay are in R} and B is in RT.

3. 2D influence graphs devoid of cycles

In this section we consider 2D positive systems (2.1) whose 2D influence graph is devoid of cycles.
This amounts to saying that the system (1.1) is findite memory [3] or, equivalently [4], due to the
positivity assumption, that A; + Aj is nilpotent.

PROPOSITION 3.1.  Given a 2D positive system (1.1), its 2D influence graph 79(2)(A1,
Az, By, By) is devoid of cycles if and only if the system is finite memory.

Proof. We first observe that since the source exhibits no incoming arcs, D(z)(Al,Ag,Bl,
By) is devoid of cycles if and only if D("Z)(Al, A2,0,0) is. On the other hand, if v is a cycle in
DR)(Ay, A,,0, 0) and the vertex v; belongs to ~, then (A1 + A2)™ M) > 0 for every positive
integer m.

So, if (1.1) is finite memory, namely A; + Ay is nilpotent, then (A4; + A3)* = 0 for every
k > n. Therefore, no cycle v can exist in D2 (A1, A2,0,0). Conversely, if there is a cycle v in
D2 (A1, A5,0,0) then condition (A1 + A2)* = 0 for every k > n cannot be satisfied. 0

PROPOSITION 3.2.  If a 2D positive system (2.1), with 2D influence graph DR)( A, A,,
B,0) devoid of cycles, is positively locally reachable then



i) B is a canonical vector, and

ii) the reachability index I satisfies

k
min{keN:Zi>n}§IR§n.

i=1

Proof. 1) Since A1+ Ay is (positive and) nilpotent, it entails no loss of generality [4] assuming
that A;+ A4, (and hence Ay and A, separately) is in upper triangular form with zero diagonal (in
fact, we can always reduce ourselves to this situation by resorting to some suitable permutation
of the state components). So, if A; and As have the following structure

0 + +
e+
0

and the system is positively locally reachable, then, by Proposition 2.2, in [4; A, B 0]
there must appear also the nth canonical vector e,,. This necessarily implies B = e,,.

ii) Since (A1 + A)™ = 0, all Hurwitz products A;iu9 A4, are zero whenever i +7>n
So, X, = X, and, in general, X; = Xf Wk >nIf B=e,,itis easily seen that after
one step the only outgoing arc from the source reaches vertex v,. On the other hand, due to
the fact that only two types of arcs are available, paths of length 2 with a common initial are
(from the source to vertex v,) and distinct compositions may reach deterministically at most
two vertices. Again, paths of length 3 with a common initial arc and distinct compositions may
deterministically reach at most three vertices, and so on. This means that the minimum number
of steps required to deterministically reach each vertex is the smallest positive integer k such

that 1+2+3+...+k>n.0O

Examples of 2D positive systems (2.1) of order n, with A; + Ay nilpotent and minimum
reachability index I, can be easily constructed for every n € N. To that purpose, once we
assume B = e, and hence connect the source to v1, we construct a 2D influence digraph with
the structure of a binary tree, having at each level k no more than k vertices for all k € N. The
outgoing arcs from each vertex have to be suitably chosen in order to guarantee that all s-paths
of the same length (i.e., reaching vertices of the same level) have distinct compositions.

Fig. 3.1 D(z)(Al, AQ,Bl,BQ) with minimum IR

The worst case, Ir = n, can be obtained by simply connecting the source and all vertices
along a single path. What may seem less obvious is the fact that, under the assumptions 1)
and 2), even though in D@ (4,, A3, B, 0) some vertex may exhibit two or more outgoing arcs of
the same type, nonetheless the system can still be positively locally reachable. This is the case
depicted in Figure 3.2.
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Fig. 3.2 D®) (A, Ay, By, By) with I =n — 1

4. 2D influence graphs consisting of either one or two (disjoint) circuits

In this section we consider, first, systems (2.1) with 2D influence graphs consisting of a single
circuit, by this meaning that all vertices vy,vs,..., v, belong to a circuit (and each pair of
adjacent vertices is connected by one single arc). This assumption amounts to saying that
Ay + Ay is a permutation matrix, while 4; x Ay = 0, where * denotes the Hadamard product.
S0, by resorting to some suitable permutation of the state components we can always obtain

0 + 0 0
0 0 + 0

(4.1) Ay Ly = ,
-
+ 0 0

where + represents a strictly positive entry and each nonzero entry + appears only in one of the
two matrices Ay and As. Notice that vertex Vi+1 accesses vertex v;, for v =1,2,...,n — 1, while
vertex v; accesses v,.

We first remark that differently from the 1D case, the positive local reachability of such a
system (A;, A, B,0) does not require B to be a monomial vector.

Example 4 Consider the positive system described by the following matrices
(A1,42,B1,B2) = ([ez e3 0 0],[0 0 ey e1],[e;+es],0),

and corresponding to the 2D-digraph of Fig. 4.1.

Fig. 41 D@ (A;, Ay, By, By) a single cycle

This system is locally reachable, with reachability index 3 = % L

The situation depicted in the previous example easily generalizes to the case of n = 2n,
vertices with two outgoing arcs from the source, n; consecutive arcs of type 1 and n; consecutive
arcs of type 2. If the structure is the same as in the previous figure, then the system is locally
reachable and Ip = & .



As a further remark, when ’D(2)(A1,A2,B,D) consists of a single circuit, every monomial
vector B makes (A, Ay, B,0) positively locally reachable with reachability index Iz = n. When
B is the sum of k distinct monomial vectors and the system is locally reachable, the reachability
index may take quite smaller values. If k = 2, then a lower bound for the reachability index is
7 + 1. This is a consequence of the following proposition.

PROPOSITION 4.1. Let (A1, As, B,0) be a 2D positive system such that D?)(A;, Ag, B,0)
conststs of a single circuit and assume w.l.o.g. that A; + Ay is expressed as in (4.1) with
Av x Ay = 0. If the system is positively locally reachable and B has k nonzero entries, say
1<, <i2<...<ik§n, then

Ir > max{is — i1,43 — 49,... ik — Th—1,1 — i +i1} + 1.
Proof. Suppose, for the sake of simplicity, that max{iys — 41,43 — i2,...,ip — ip_1,Mm — ig +
i1} =iz —i1. By the ordering assumptions introduced on the system vertices and on the labels
©1,%2, . ., ik, it is clear that the shortest s-path that deterministically reaches v;, (keeping in mind

that at the first step we get B and hence not a monomial vector) is the s-path that, starting
from the source, reaches vertex v, at the first step and later enters vertex v;, without passing
through the other vertices v;, for £ # 1,2. Such an s-path has length is — i; + 1. Condition

Ir = min{k : 3 an s-path p;, with |p;| < k deterministically reaching v;, V i} > iy — iy +1
completes the proof. O

Clearly, when & = 2 the minimum value of max{iz — iy,i3 — f2,..., 0% — if_1,7 — ik + 11} is
just n/2 and this proves that the minimum value of the reachability index is § + 1.

We consider, now, the case of a 2D influence graph consisting of two disjoint circuits. We
have the following result.

ProOPOSITION 4.2, Let (A, As, B,0) be a 2D positive system such that D) (A4;, As,0, 0)

consists of two disjoint circuits y and ' of length n and n' , respectively. If B has only two nonzero
entries, one for each cycle, then the reachability index I'r, cannot exceed Le.m{n, n'} +max{n,n'}.

Proof. Assume that the vertices in ~ are (ordinately) vq,va,. .., v, while the vertices in ol
are (ordinately) v1,v5,...,v),. Suppose, also, that the two nonzero entries in B correspond to
the vertices vy and v{. The situation is depicted in Figure 4.2.

Vg )t V1 ) (s) 4_@
- - et

g. 4.2 D®)(A1, Ay, By, By) in Proposition 4.2
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Due to the previous assumptions, any vertex v; € v (v} € 7') is periodically visited after
JJ+n,7+2n,... steps (j,j +n',5+2n/,... steps, respectively). Moreover, for every k € N
there exist exactly two s-paths of length & in D (A1, A2, B,0), and they reach vertices vj, mod n



in v and vy, .4 v 10 7Y, respectively. Such vertices are reached deterministically if and only if
the two s-paths have distinct compositions.

Let N be the l.c.m. of n and n’ and suppose that none of the paths of length j,j+n,...,j4+ N
deterministically reaches v;. Since after j + N steps we reach, at the same time and with the
same composition, the two vertices v; and v; just like after j steps, the subsequent evolution will
periodically repeat the same nonzero pattern, thus preventing the possibility of deterministically
reaching v;.

As this reasoning applies to all vertices of v and +' (in particular to v, and v/,), the given
bound immediately follows. O

Example 5 Consider the 2D positive system described by the following 2D influence graph.

(s)

U1 et —(5) :Tj\:. vy
)

t—

Fig. 43 D@ (A4,, As, By, By) corresponding to Example 5

In this case we have two circuits one of length n = 3 and the other of length n’ = 4 and
N = Lem{n,n'} = n-n'. Simple (but tedious) calculations show that the 2D system is
positively locally reachable with reachability index Iz = n - n’ +n/ = 16. The last vertex to be
deterministically reached (after exactly 16 steps) is v}.
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