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Abstract The paper deals with the state space realization of autonomous
autoregressive 2D systems in the context of the behavioural approach. An
arbitrary autoregressive 2D system X can be viewed as the sum of an ex-
ternally controllable subsystem X° with an autonomous one X%, so that
a state space realization of ¥ can be obtained by separately realizing X°
and X*. Since a procedure for realizing externally controllable systems in
state/driving-variable form is already available in the literature, the general
realization problem is easily reduced to the autonomous case. Here some
properties of finite dimensional autonomous systems are discussed allowing
for a realization procedure that uses the Grobner bases theory.
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1 Introduction

In this paper we will present some results and algorithms involved in the
construction of 2D state space models on the basis of external data. Follow-
ing the behavioural approach to dynamical systems introduced in (1]- [3],
external data are characterized by means of a family of laws telling us that
certain signals can occur and others cannot. Moreover all the components of



the external data play completely symmetric roles, so that no input/output
structure is a priori assumed.

Realization theory has been developed for the most part in the 1D en-
vironment, where state space models have shown to be a very convenient
framework for the mathematical analysis and synthesis of real time data
processors and controllers. In this context the state is very naturally viewed
as a set of latent variables which parametrize the content of system memory
and the realization problems are inextricably connected with the definitions
of past and future, that underlie the notion of memory.

When trying to formulate state concepts for 2D systems, it is of central
importance to realize that there is often no natural, intrinsic direction of the
evolution for systems defined over a two dimensional domain. In this case
any choice of a preferred direction is artificial, and there are various possible
definitions of past and future. Some of them are discussed in (3], where
their connections with 2D state representations available in the literature
are illustrated in detail. Obviously, the most classical example is provided
by the quarter plane causality structure. It underlies the so called SW-state
representation, which is the behavioural counterpart of the state space model
of quarter plane impulse responses, introduced by Attasi [4], Roesser [5] and
Fornasini and Marchesini [6] within the classical input/output framework.

Singular state space models have been analyzed to cope with more gen-
eral causality structures in e.g. Lévy [7], Kaczorek [8] and Lewis [9]. In
this paper an alternative approach to non causal structures is considered,
basing on the introduction of a set of auxiliary free variables in SW state
representation. These act in some sense like an input driving the system
dynamics and are therefore called the “driving-variables”. State /driving-
variable models allow to compute recursively joint input-output trajectories
from the values of the auxiliary free variables via the state. Although only
the realization of 2D AR equations is considered, we remark however that
transfer functions can also be handled in this context, since they can be
identified with (externally) controllable AR systems, see [1].

It is shown in (1] that every controllable AR 2D system ( and hence every
2D rational transfer function ) can be realized in SW state/driving-variable
form, independently of the existence of quarter plane causal structure be-
tween the system variables. This results from the possibility of generating
the joint input-output trajectories w = col(u, y) of a controllable AR system
from (auxiliary) driving-variables trajectories v such that the relationship
between w and v is quarter plane causal, even if u and y are not causally re-
lated. Viewing v as the new “input” and w as the new “output”, a 2D state



space model ( for instance, of the FM type [6] ) can then be obtained by the
classical realization procedures, yielding the desired state/driving-variable
realization.

The realizability of arbitrary, i.e. not necessarily controllable, AR sys-
tems is still an open problem. Reducing this problem to the realization of
autonomous systems is the first goal of our paper. Indeed, we show that
every AR system ¥ can be viewed as the sum of an externally controllable
system X° and an autonomous one 2? and, therefore, the realization of X
can be obtained by realizing separately £° and X°. Since a procedure for
realizing externally controllable systems is given in (1], it will be enough to
derive a realization procedure for autonomous systems.

This contribution focuses on finite dimensional autonomous AR systems
with ¢ (real-valued) variables defined over Z%. It turns out that, in this
case, the admissible system trajectories constitute a finite dimensional vector
space B, given by 8 = {w : Z2 — R? | R(o1,02,07,05)w = 0}, with 01
and o3 the two dimensional shifts and R(z1, 23, 27!, 2;°!) a factor right prime
2D polynomial matrix.

The second goal we pursue in this paper is that of representing the au-
tonomous behaviour via a state model, characterized by a pair of commuting
matrices that describe the state evolution in the two directions of the grid.
The realization algorithm exploits the algebraic duality between B and a
suitable quotient module over the space of 2D polynomial rows, as well as
the correspondence betweeen the shift operators in 8 and a pair of adjoint
operators in the quotient module. These operators are represented by a
pair of commutative invertible matrices and can be obtained by computer
algebra techniques and linear manipulations.

2 Autonomous 2D systems

Following the behavioural approach to dynamical systems introduced in [2]
and [3|, we characterize a 2D system by means of its behaviour, which
consists of the set of all the signals which are compatible with the system
laws. Moreover, we do not start with a given input/output structure, i.e.,
the system signals are stacked ogether in a (multivariate) signal w instead
of being divided into inputs u and outputs y. A 2D system ¥ with ¢ real
valued variables defined over Z? and with behaviour 8 C {w : Z* — R7}
will be denoted by £ = (Z% R, B).

In the sequel we will be interested in the class of autoregressive 2D



systems. ¥ = (Z2%,RY, B) is said to be an autoregressive (AR) system if
there exists a 2D Laurent polynomial matrix R(z1, 22,21 !, ;1) such that

B = {w:Z? - R?| R(01,02,07 " ,05 " )w = 0} =: ker R(01,02,07",03}),
with o; and o3 the 2D shift operators. These are respectively defined by
O'Iw(t]_,tg) = w(t1 + 1,tz)

Uzw(tl,tg) = w(tl,tg + 1)

for all w : Z* — R? and all (t;,t2) € Z2.

Clearly, the set {w : Z? — R} of R%valued functions defined on ZZ
is a real vector space with respect to functions (pointwise) addition and
(pointwise) scalar multiplication. A 2D system ¥ = (Z2 RY, B) is said to
be linear if 8 is a linear subspace of {w : Z2 — RY}. A linear 2D system is
said to be finite dimensional if its behaviour B8 is a finite dimensional vector
space, otherwise X is said to be infinite dimensional.

In order to define the notion of autonomy we introduce the following
nomenclature. A subset of R? is said to be 2D-unbounded if it contains a
plane sector $(v, vy, v3) := {v+avy+ PBvs | @, 8 > 0} with v,v;,v; € R? and
v1, vg linearly independent. U C Z? is a 2D-unbounded set if U = U N Z?
for some 2D-unbounded set U in RZ2.

Definition 1 £ = (Z% R?, B) is an autonomous 2D system if there exists a
subset 7' C Z? such that Z*\ T is 2D unbounded and satisfies the following

condition:
{wi,ws € B and wy|p = we|7} = {wy = wa}.

So, intuitively, a system is autonomous if the evolution of its traiectories in a
sufficently large portion of the discrete plane is completely specified by what
occurs in remaining portion of the domain Z2. As stated in proposition 2.1,
for autoregressive systems the autonomy is equivalent to the absence of free
variables.

Notation Let £ = (Z?,RY, B) be a system in the variables (wy, ..., w,)T :=
w. The variable w;, 1 € {1,...,q}, is a free variable if, for every a : Z? — R,
there exists some w € B such that w; = «. Similarly, a vector (wj,,. .. ,w,-,)T,
with ¢; € J C {1,...,q} and ¢; # i if § # k, is a vector of free variables if



for every 3 : Z? — R there exists w € B such that (w;,,...,w;)T = 8. The
number of free variables in a system X is defined as the maximum dimension
of a vector of free variables in .

Lemma 2.1 Let £ = (Zz, RY,B) be an autoregressive 2D system such that
B ={w:Z? - R7| R(o1,02,07',07})w = 0}. Then:

1. The number ! of free variables in X is ¢ — rank E.

2. If I > 0, there exists a nonzero ¢ X ! polynomial matrix M(zy, 23,
271, z;1) such that B8 2 imM(oy,02,071,05!) , where M(01,02,071,051)
is viewed as an operator from {v : Z* — R!} into {w : Z® — R9}.
Moreover, im M has [ free variables,

PROOF: In order to prove the statement 1 we first consider the case where R
has full row rank. In this case, there is a column permutation II such that
RII =[ P | Q ] with P square r X r and nonsingular. This means that the
equation Rw = 0 is equivalent to

Puwy = —Quws, (2.1)

with col(wy,w;) = ITw. Since P is full row rank, it can be shown that
P(o1,02,071,051) is a surjective operator, and ws is a ¢ — r dimensional
vector of free variables. So [ > ¢ — r. Now, it remains to see that none of
the components of w; is free. Let P*(z1, 22,27, 2; 1) be such that P*P =
diag(p) =: D, with p := det P, and define E := —P*Q. Premultiplying
(2.1) by P* yields
Dwy = Ew, (2.2).

In particular, if we = 0, (2.2) implies that the components wy; of w; must
satisfy:

plo, 02,07 07 Dwii =0 i=1,...,r (2.3)
and are hence not free. This shows that the number [ of free variables in
B:=ker Risexactlyl=q—r.
If R has not full row rank, there exists a factorization

R=FR (2.4)

such that F has full column rank, R has full row rank and rank F =
rank R = rank R. Let F be an r x r submatrix of F obtained by selecting
r linearly independent rows. It is not difficult to see that

Rw=0 =>FRw=0 = F Rw=0,



or, equivalently,
By :=ker RC B:=ker RCker F R =: B,.

Since R and F R are both matrices with full row rank r, it follows from the
previous reasoning that both By and B2 have [ = ¢ — r free variables proving
the first statement of the lemma.

As for 2, if | = ¢ — r, without loss of generality the matrix R in the factor-
ization (2.4) can be taken to be a full rank factor left prime 2D polynomial
matrix of size r X ¢ ( note that if R is not left prime its nontrivial left fac-
tors can be extracted and included in F' ). In this case it follows from [1,
Theorem 1] that there exists a ¢ x { matrix M(z1, 22,27}, 2;!) such that
ker R(o1,02,07,051) = im M(o1,02,07%,051). So, B D ker R = im M.
Finally, we note that the number of free variables in ker R is still /, and
hence im M = ker R has [ free variables.

Proposition 2.1 An autoregressive system £ = (Z? RY, B) is autonomous
if and only if it has no free variables.

PROOF: (i) Suppose that I is a system without free variables. This means
that B = ker R, for some full rank matrix R(z1,zs,27%,2;1). Let P be
a ¢ X g matrix obtained by taking ¢ rows of R, and define P* := DP~1
with D := diag(p) and p := det P ( note that P* is a polynomial matrix ).
Clearly,

Rw=0=Pw=0= Dw=04% p(o,09,07 07 N)w; =0 i=1,...,q,

where ‘:v,- denotes the i-th component of w.
We next show that ker D is an autonomous behaviour. Since B C ker D,
this implies that also B ( and hence ¥ ) is autonomous. Since the support
of p if finite, then there exist integers [y, Ly, ls, Ly such that such support is
included in the set 7' := {(h1,h2) € Z% | Iy < hy < Ly orls < hy < Ly}, It
can be shown that the solutions of the equation are completely determined
by their values on T, i.e., if wy, wy are elements of ker D and w;|r = wal7T,
then wy; = ws. Since Z?\ T is 2D-unbounded, this means that ker D is
autonomous.

(i) Assume that X has{ > 0 free variables and let M be as in lemma 2.1.
Denote respectively by m; and m; the maximum and the minimum of the
exponents of z; in the entries of M, and define the extent of M as e(M) :=



V2 max {f; — my;, My — my}. Further, denote the Euclidean distance
by d(-,-). Given any subset T C Z% such that Z?\ T is 2D-unbounded,
define two trajectories v' and v’ € {v : Z* — R?} in the following way.
The trajectory v' is simply the zero trajectory. As for v”, we require that
v” (t1, t2) = 0 if d((t1,22),T) < e(M); for (t1,t2) with d((t1,t2),T) > e(M),
we define v”(ty,t;) in such a way that Mv” # 0. Note that this is possible
since the value of Mv” at a point (t],t3) € Z depends only on the values of
v” at the points (¢1,%3) such that d((t1,2), (¢1,3)) < e(M). Let now w' :=
Mv' =0 and w” := Mv”. Clearly, w',w” € B. Moreover w'|r = w”|r =0,
and w” # 0 = w'. This shows that ¥ is not autonomous.

il

Contrary to the one dimensional case, where autonomous linear systems
are necessarily finite dimensional [2], autonomous 2D systems may be infinite
dimensional. The following proposition characterizes the autonomy and the
finite dimensionality properties of AR 2D systems.

Proposition 2.2 Let £ = (Z%,RY, 8) be an AR 2D system with behaviour
B ={w:Z?* - RI| R(o1,02,07%,07')w = 0}, where R(z1,22,27},2;!) is
a 2D polynomial matrix. Then ¥ is autonomous if and only if R has full
column rank. Moreover ¥ is finite dimensional if and only if R is right factor

prime.

PROOF The first part of the result is an immediate consequence of lemma
2.1 and proposition 2.1. The second statement follows from [7, Theorem
3.8].

]

An extreme example of non-autonomous systems is the class of (exter-
nally) controllable systems. For these systems, the evolution of the trajec-
tories outside a restricted part T of the domain eventually becomes inde-
pendent of what occurs in T'. Formally, we define (external) controllability
as follows.

Definition 2 A 2D system ¥ = (Z2,RY, B) is (externally) controllable if
the following condition holds. There exists a positive real number p such
that, for all Ty, T> C Z? with d(T1,T:) > p and for all wy, w; € B, there
exists w € B such that w|r, = w;|r,,7 = 1,2. Here d(T1,T2) denotes the
euclidean distance between the sets Ty and T5.



Remark We refer to the above notion of controllability as to external con-
trollability in order to make a distinction from the classical notion, which
applies to state space realization. Our definition is given at an external level,
as it only refers to the (external) system variables w € B. However, when
no possibility of confusion arises, we will simply refer to it as controllability.

The next result provides a characterization of controllability for autore-
gressive systems.

Proposition 2.3 [1] Let & = (Z% R7,8) be an AR 2D system. Then I is
controllable if and only if there exists a factor left-prime polynomial matrix
P(z1, 23,271, 231) such that

B:{w:ZZaRq|P(al,02,a;1,a{1)w:0}. I
An interesting feature of controllability and autonomy is the fact that
these are complementary properties, in the sense that an arbitrary AR sys-

tem can be viewed as the sum of a controllable system with an autonomous

one.

Notation Given two systems &; = (Z%,RY, B;),i = 1,2, the sum £; + £,
of £; and ¥ is defined as ¥ + 3 := (Z%,RY, B), where B := B; + B,

Proposition 2.4 Let & = (Z%,R?,8) a 2D system. Then there exist AR
systems £° = (Z%, R, 8°) and £ = (Z%, R?, 8°%) such that:

1. ¢ is controllable,
2. ¥? is autonomous, and

3. T=X+1%

PROOF: Let R(z1,22,27,25!) such that
B={w:2? - R? | R(ey,00,07%, 05 )w =0}.

Then there exist polynomial matrices F(zy, 29,271, 251), with full column
rank, and P(zy,z22,27%,23!), with full row rank and factor left prime, such
that R = FP. Without loss of generality we can assume that P = [P; P,
with P; a square and full rank matrix. Define

B ={w:Z* - R?| Pw =0},



Ba:{wizz—qu ’w: [::)1] ’wZ:Oand FPlT-Ul:O},
2

¢ = (2%, RY,B8°) and £° = (22, R, B%). Clearly, by proposition 2.3, I¢ is
controllable and, by proposition 2.2, £? is autonomous. We will show that
¥ = X°+ X% Since both B¢ and B* are subspaces of B,

B+ B* C B.

In order to prove the reciprocal inclusion, assume that w € B is given.
a

Let w® := [i}.}, with w§ := 0 and w{ such that Pyw§ = Pw ( note that
2

Pi(01,02,071,05!) is a surjective operator, as P; has full row rank). Further

define w® := w — w®. Now, since FPyw{ = FPw = Rw = 0, it follows that

w?® € B®. Moreover,

a

Pw® = Pw— Pw® = Pw— [P, P, [ié] =Pw—- Pwi{ =0
and hence w® € B°. So, w = w® + w?® with w® € 8° and w® € 8%, proving

that B C B¢+ B®. This yields the desired result.

[l

Remark Note that the above sum B = B° + B® (and hence ¥ = X° + £%)
is not necessarily a direct sum, i.e. we may have B¢ B® # {0}. However,
it can be shown that B = B® @ B? if and only if in the decomposition
R = FP the matrix P is zero-left-prime. Moreover, it is not difficult to
prove that ¥ = X{+X{ = E§ + X2 imply £{ = X%, i.e. in the decomposition
Y = X%+ X° the system X° is unique. In fact, it turns out that X¢ is the
largest controllable subsystem of ¥. Curiously, this uniqueness does not
necessarily hold for £%. This is illustrated in the example below.

Example Let & = (Z%, R?, B) with
B ={w:Z* - R*®| R(01,02,07",05 )w = 0}.

where

1oy [;—1 0 (21— 1)(21 + 22)
R(z1, 22,21 527 ) 1= [ 0 z2—1 (22—1)(22—21)]"

Then, clearly, R can be decomposed as £ = F P with

-1 — z1—1 0



and
1 0 21+22]

P(zla zZazl_lﬁzz_l) = {0 1 Zp — 21

Constructing ¥¢ and ¥£° as in the proof of the proposition 2.4 yields X¢ =
(Z2,R3, B°) with

B¢ :={w:Z* - R?®| Pw =0},
and 5% = (2% R?, B°) with

w1
B*={w:Z* >R} |w= [‘LU2] ,w3=O,F[w1] =0}

w2
w3
So, & = % + X°. Let now £% = (Z%, R3, B%), with
B%am {w:Zz—vRs[w-z:O,FP[il} =0}
3

and i

_ _ _ 21+ Z9
Applying the same reasoning as in the proof of proposition 2.4, it is easily
shown that also £% + £¢ = . So, in the decomposition & = £°¢ + ¢ the

autonomous subsystem is not unique.

The decomposition of an arbitrary AR 2D system X into the sum of a
controllable part £° and an autonomous part £ can be used to obtain state
space realizations of £ by separately realizing ¢ and X°.

As shown in [1], every controllable AR system admits a state/driving
variable realization of the form

o1x = (Ajo+ Ag)x + (Byo + By)v (2.6)

S(o)x =0 (2.5)
{ w =Cx+ Dy (2.7)

with o := o510 the diagonal shift, x the state and v an auxiliary free driving
variable. Moreover, the matrices S(z), A(z) := A1z + Ay and B(z) :=
Byz+ By are such that A(g)ker S(o) C ker S(o) and im B(c) C ker S(o).

This model can be interpreted as follows. On each diagonal line £; :=
{(i,k—1)|f € Z}, k € Z, the state trajectories must satisfy the constraint of
(2.5). Equation (2.6) yields the state on L;,; once the state and the driving

10



variable on [, are given. We remark that, due to the special structure of
S(z), A(z) and B(z), if x|, satisfies (2.5), then the corrisponding state
x|g,,, computed from (2.6) also satisfies this restriction. Therefore we can
view the equation (2.5) as a constraint on the admissible initial states along
the diagonal line, say Lo, and use (2.6) and (2.7) to propagate the (x,w)-
trajectories on the half-plane ¥ := 5o L. By means of (2.6) the state
x(f+1,7) is computed from the values of x and v on the nearest neighbours
(¢,7) and (§ + 1,7 — 1) of (1 + 1,7) (see figure 1).

This updating structure is the same as for the 2D input-state-output
(i/s8/0) model introduced in [6] known in the literature as the FM model.
However, here the system dynamics is driven by the auxiliary variable v
instead of being driven by the system inputs, and the model output is the
system variable w,which includes both inputs and outputs. Another im-
portant distinction is that the FM i/s/o model does not include an explicit
restriction on the admissible initial states as in (2.5). As it will later become
clear, such restriction is essential for the realization of autonomous systems
in state/driving variable form.

In view of foregoing considerations, it turns out that in order to study the
realizability of an arbitrary 2D system ¥ = X¢+X? by state/driving variable
model as (2.5), (2.6) and (2.7) it is enough to focus on the realizability of the
autonomous part X®. This problem will be considered in the next section
for the autonomous finite dimensional case.

3 Autonomous finite dimensional systems

We shall assume throughout that R is a full column rank, factor right prime
matrix, with elements in the Laurent polynomial ring R|[zy, 22, z7 1, 23] :=
At. Moreover, for sake of simplicity, we shall first restrict to scalar be-
haviours, by assuming that R=[r; ry --- rt]T is a column vector, and
successively extend the results to the general case.

3.1 Scalar case

In the subsequent discussion a significant role will be played by some con-
nections between the ideals in A+ and the ideals in Ay := Rz, z3] and by
an abstract characterization of the system behaviour based on the algebraic
properties of dual spaces. Let us first consider the following map

|-]: Ax = Ay ip |l =272 7p

11



where ¢ and j are the minimum degrees of the monomials that appear in the
nonzero Laurent polynomial p w.r. to the variables z; and zz respectively.

More precisely, if
h _k
p= Z Phk?1 22
h.keZ

then
i :=min{h € Z|3k € Z, pnr # 0}

j:=min{k € Z|3h € Z,pu; # 0}.

In case p = 0, we define [p| = 0. Clearly, for every nonzero Laurent poly-
nomial p, |p| includes a monomial in z; and a monomial in z; with nonzero

coefficients.

The operation just described, of shifting the support of a Laurent poly-
nomial into the positive orthant of Z x Z, associates with the ideal I+ :=
(r1,r2,...,7:)+ generated in A+ by the elements of the matrix R an ideal
Iy := (|r1l,|r2l, - - -, |7¢|)+ generated in At by |ry],|r2],...,|rt|. Some rel-
evant connections between J; and J. are summarized in the following
Lemma.

Lemma 3.1 i) p € I, if and only if there exists a pair of integers (1, 7)
such that z{zgp € Iy.

ii) The quotient space Ay /Iy is finite dimensional if and only if the same
holds for Ay /I,.

PROOF 1) is obvious. As far as ii) is concerned, suppose first that A, /I,
is a nonzero finite dimensional space. This implies that I., and hence
I+, include two nonzero polynomials f(z1) and g(z2), with deg f > 0 and
deg g > 0. It is easily seen that the cosets

2] :=2izd + I, 0<i<degf, 0< < degg

constitute a finite set of generators for the quotient space A+/Iy.
Conversely suppose that A4 /Iy is finite dimensional and let d be any com-

mon factor of |r1],|rs|,...,|r]
It is clear that i C (d)+, where (d). is the principal ideal of A4 generated
by d. We therefore have

dim Aj:/]:t > dim Ai/(d)i
and A4 /(d)+ is finite dimensional. This implies that the polynomial sets

{zi,i € Z} and {2,,j € Z} are linearly dependent modulo (d)+, and hence

12



(d)+ includes two nonzero polynomials f(z;) and g(z2). Since d must be the
constant polynomial, rq,...,r; are coprime and A4 /I, is finite dimensional.

We introduce next a special nondegenerate bilinear function
() : Ax x RZ*Z L R,
by assuming

{p,w) = Zpijw(iaj)

for all polynomials p = Ep;jz{zg in A+ and all signals w in RZ*Z,
For instance, if p is the Laurent polynomial z; + 2% — 2712, + 3 — 2
and w(i,7) = €7, then (p,w) = e* +e+2—¢73.

-3
2

In this way, the “universe” RZ*Z of all signals with support in Z x Z
is isomorphic to the algebraic dual of Ay, i.e. to the space of the linear
functionals on Ay. Moreover the behaviour 8 can be identified with the
orthogonal complement of /1 w.r. to such bilinear function

B=1It, (3.1
and, by duality,
Blt=r1tt =1,

The proof of (3.1) is an easy consequence of the following identity
ploy, 02,07 03 w(h, k) = (pzz5, w)

In fact w € B implies p(oy,02,07 ,07})w = 0 and, therefore, (p,w) =
0, ¥p € I+. Viceversa, given w € If and p € I+, we have (pz}zF w) =
0, Vh,k € Z, which implies p(oy,02,071,07)w = 0.

We now restrict our attention on the space B and on the quotient space
Ay /I:. Using standard techniques of linear algebra [13], it can be shown
that Ay /B = Ay/I. and B constitute a dual pair w.r. to the bilinear
function

(ol w) = (5, 0).

Moreover, the canonical injection

i:B __)RZXZ

13



is dual w.r.to the canonical projection = of A+ onto A4 /I+
Ay /I — Ay

For reasons that will be clear later on, we then wish to exhibit explicitely
an isomorphism (for the vector space structure) of B8 onto A+ /I;.

Proposition 3.1 If the matrix R is right factor prime, then 8 and A+ /I
are finite dimensional isomorphic vector spaces.

PROOF Since R is right factor prime, A /I is finite dimensional. There-
fore, by lemma 3.1, A+ /I+ is finite dimensional too. Let now

([p1]; [Pzl - - - [pnl)

be a basis of A+/I+ and consider the linear map

Vv:8— AL/l iw— Zn:(p,-, w) [p;].

=1

If [01 @2 ... an]T € R™is orthogonal to [{p1, w) (p2, w) ... {pp, w)]T for all
w € B, then (3 aypi,w) =0, Vw € B and

Zaipi €Bt=1I

This implies oy = 0, + = 1,2,...,n and, consequently, [(p1,w) (pz,w) ...
(P, w)]T span R™ as w varies over B. Therefore 1 is surjective.
Suppose now that w € B satisfies ¢(w) = 0 or, equivalently, (w,p;) =0, 1 =
1,2,...n. Since every pin A; can be expressed asp = > ", aypi+r, r € Iy,
for all p € A+ we have (w,p) = (w,r) = 0, which implies w = 0. Therefore
1) is injective.

1]

From now on , we suppose that a basis ([p1],[pz],...,[pn]) has been
chosen in A4/ I+, and consider the corresponding dual basis (wy, wa,. .., wy)

in B.
The relations ([p;|,w;) = 6;, {,7 =1,2,...n imply

n

[Pl = > _(lpl,w:)lpil, V[pl € Ax/I+

g=1
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and, on the other hand,

n

w= Z([p;],w)w.-, Yw e B.

i=1
Introduce the following invertible linear maps
Z1:Ax /Iy — Ax/Is : [p] = [21p]

Zz H Ai/Ii - Ai/Ii . [p] — [22p].

Clearly Z1Z3 = Z3Z, and the adjoint maps of Z; and Z5 in B are oy and

oy respectively.
The matrices N; = [nhk , + = 1,2 representing the linear transforma-

tions Z;, 1 = 1,2 w.r. to the basis ([p1], [p2),..-,[pn]) are given by "S:JZ =

{[#ipk), wn). Hence, the matrices representing oy a.nd oy w.r. to the dual ba-
sis are N and N7 respectively. In fact, letting o;w; = 3, tg:}wh, 1="1.2;

we have _ .
([pi), oiws) = >t {(pe], wa) = ¢ (3.2)
h

and, using the duality,
(s ovws) = (palywy) = 3o (pryws) = mi (3.3)

Comparing (3.2) and (3.3) gives the result.

We are now in a position for providing a state driving variable realization
of an autonomous finite dimensional system X°.
For any w € B, we introduce the following signal

([m],aiagw)
x:ZxZ—R":(hk)— ([pa], o1 o3 w)
([pn], 0t o5 w)

The value of x at (h, k) provides the components of o?o%w with respect to

the basis (wy,ws,...wy,). It is clear that, once x(0,0) is known, x(h, k) is
easily computed for all (h,k) € Z x Z

x(h, k) = (NT)*(T)¥x(0,0)

Moreover, the value of w at (h, k) can be recovered from x(h, k) as follows

15



w(h, k) = (oofw)(0,0) = (1], 0705 w)
= {e1[p1] + ez[pa] + ... + cn[pn], 070k w) = Cx(h, k)

Here C :=[¢; ¢z ... cpn| denotes the row vector of the components of
[1] w.r.to the basis ([p1], [p2],---,[pn]) In Ax/Is.
The above results are summarized in the following recursive model
o1x = Nix
{ O3X = NzTX
w=Cx

Every signal of the autonomous behaviour B is uniquely determined by
the corresponding value of the state x at any point (k, k) and, conversely,
different states at (h, k) induce different signals in the autonomous system.
Finally, letting o := 01051, S(0) := o — NI(NT)™! and A(c) = Nf, we
end up with a state driving variable realization of B, as follows

S(e)w=0
{ o1x = A(o)x
w=Cx

When p;, 7 = 1,2,...n are monic monomials, i.e. p; = zf‘fz;j, =
1,2,...,n, the structure of the corresponding dual basis is very appealing.
In fact the element w; is the unique element of B taking the values 1 at
(uj,v;) and O at (pi,4), £ =1,2,...,7—1,7+1,...,n. Moreover, for every
(h,k) € Z x Z, the components of the state vector x(h, k) are the values of
w at {(u1+ h,v1 + k), (p2 + h,v2a+ k), ..., (n+ h,vn + k) }.

A further reason for using a monomial basis in A4 /], will be made ap-
parent in the following subsection, where an algorithm for the computation
of the matrices NI and N7 is outlined. Some concepts on computer algebra,
and in particular on Grobner basis theory are required; for details see [10].

3.2 Computational Methods

Let G = {91,92,---,9n}, 9i € A4, be a Grobner basis of the ideal I,
and denote by {¢1 = 1,92,...,¢m} the set of monic monomials that are not
multiple of the leading power products of any of the polynomials in §. Then

(o1 + Tsipa + Ts oo s+ 04 )
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is a basis of A} /I and the linear transformations
¢t Ar/I = A/ g+ Iy —zig+ I, 1=1,2

are represented by a pair of commuting matrices M; and M, .

Our purpose here is to supplement the algorithm discussed in [11] for
obtaining M; and M,, so as to provide a constructive technique for obtaining
the invertible matrices N; and N, introduced in the previous subsection.
The procedure we are going to describe will shed also some light on the
connections between the ideals Iy and I,.

Let p be a positive integer with the property that the subspace of A1 /I,
spanned by {zf+hz§'+kq,- + I+ }i=1,2,..m is independent of h and k, for all h

and k > 0. Therefore
L :=span{zi2;q; + I}
is a @1-¢o-invariant subspace, satisfying
r1L=¢2L=1L

and the restrictions of ¢; and ¢2 to L constitute a couple of invertible
commutative linear transformations.
Upon assuming in £ a basis given by

(V2 qi, + To 2 25 qe, + T4y oo 2 b g, + 134) (3.4)
the restriction of ¢; to L is associated with a v X v invertible matrix Ny as
follows

+1 +1 1
(Z‘f Z;Qil + I.{..,Zi‘ Z;Qig + I+) .. ')ziH- Z;Qiu + I+)
= (212 g, + Iy, 2028 qe, + It .., 2¥20q + I )Ny

Let S; be the boolean matrix that selects the basis (3.4) out of the ordered
array (bzbas + T, 2beba + Iy, 2ebam + 1)

(zzsq+ Ie, 2tz + Iy, 2 2 g + 1) S1
= (zi‘ngil + I+,Zi‘2;q"2 + I+’ CR }zi‘z“;qi'u + I+)
Then, recalling that M; and M, represent the linear transformations ¢; and
@2 with respect to the basis (g1 + I+, g2+ I4,...,qm + I4), we have

(zi‘+1z;q‘1 + I+3zf+1zgqﬁ + I+s v ,21#4'12;‘%,” uy I-’r)
=(zfzhqu + Iy, 2z qa + Iy 2 2 qm + 14 )S1N: (3.5)
=g+ Iy, @2+ T4y tm+ L)MIMESI N
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On the other hand, the definitions of M;, M, and S also imply
(2l + I, 2 g, + Iy, 2 R + 1)
=(2Mq + I, zi‘“zgqg + I, ..., zf“z;qm + I4)S (3.6)
=@+ I+ ey am+ I )METIME'S,

Comparing (3.5) and (3.8) gives M MY S, = M¥MP S, Ny. Since M{MYS,
has full column rank, letting

H := (MY (MF )M MY

we obtain
Ny = (STHS,) Y(STHM,S:) (3.7)
and, similarly,
Ny = (ST HS,) " Y(ST HM,S,) (3.8)
The next proposition shows that the monomials ¢;,, gi,, . ..q1, resulting

from the previous procedure and associated, as shown, to a basis of the
subspace £ C Ay /I, also provide the basis of the quotient space Ay /I
we are looking for.

Proposition 3.2 The monomials ¢;,,¢;,,...,q, constitute a basis of Ay,
modulo I4.

PROOF Suppose that > 5_; ang;, isin Iy.

By Lemma 3.1 there exists a positive integer £ such that Y )_, ang, zlzz
and, a fortiors, 3 n_; angi, 2} P ”“ belong to I;.

Since the monormials

pté ,u+£ utl _p+t pte ,u+€
9,2 3 Qi %1 2B - Qi 2 2

are linearly independent modulo I, we have o, = 0, h = 1,2,...,v, and
¢i,,h=1,2,...,v are linearly independent modulo I;.

It remains to show that they generate Ay modulo I1 To that purpose,
consider any polynomial p € A;. Then there exists a positive integer £ such
that z{zfp € A,. Therefore

+E& _p+t
(313’2}’)21 22 = Z a’h%hzl 32 = Zﬂh%h # # mod ],
h=1

= Zﬁhq.,, e+t modIs
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Upon multiplying on both sides by 2; “422— # _t, we have

v
p=> PBhrg, modls,
h=1

showing that the monomials ¢;, generate A+ modulo ..

[l

As a consequence of Proposition 3.2, the matrices N; and N associated
with the restrictions to £ of ¢; and ¢2, with respect to the basis (3.4)
represent Z; and Z; with respect to the basis

([ql'l]:[ql':a]?"'!{qiy]) (39)

in Ax/Is. This result is almost obvious. Upon introducing the following
isomorphism

v v
Vil — Ar/Ie: ) an(2fw,) + I D anlg,]
h=1 h=1
one checks that the following diagram

J . IS

o la

JA IO

commutes. With respect to the bases (3.4) and (3.9), v is represented by
the identity matrix and therefore the same matrix N; represents both ¢
and Z;. Similarly ¢, and Z; are both represented by N,.

Remark In [11] it has been shown that the annihilating polynomials of M;
and Mj are exactly the polynomials of the ideal I, i.e.

p(M1, M) =0 & pe ly

It is quite natural to ask whether the Laurent polynomials in J; do ex-
hibit the characteristic property of annihilating the commutative invertible
matrices N7 and Ns. Actually this is true and we have

p(Nl,Nz) =0 & pely (3.10)
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To prove (3.10), we note first that, by Lemma 3.1, p € Ii if and only
if there exists a pair of nonnegative integers ¢ and j, such that ¢(z1, z3) :=
24 23p(21, 22) € I;. Thisin turn is equivalent to assume that 0 = ¢(My, M) =
q(¢1, ¢2) and therefore (3.10) can restated as follows

p(Nl, Ng) =0 & q(M]_, Mg) =0 (311)

for some ¢ = z{zgp € Ay. To prove (3.11), assume first g(M;, M3) =
0. Then g(¢1,¢2) = O implies q(¢1|z,P2|z) = O and, consequently, 0 =
q(N1, N2) = N{szp(Nl, N3) = p(Ny, N3), because of the invertibility of Ny
and Nz.
Viceversa, consider any polynomial p € A1 that annihilates the commu-
tative pair Ny, Ng, i.e.
p(N1, N2) =0 (3.12).

Select a pair of nonnegative integers h, k such that p' = zi-"zé‘p is a polynomial
in Ay. Rewrite p' as follows

m
p = Zﬂj‘h’“i”": rel;

i=1
and let

m
S S T BB BB
q:=22p —Zﬁ,zlzzq,—i—zlzzr
7=1

Note that (3.12) implies p'(Ny, N2) = ¢(N1,N2) = 0 and r € I; implies

r(My, M3) = 0. Restricting ¢; and ¢, to L gives r(Ny, N3) = 0 and hence
T=1879;(N1, N2) = 0. To prove that g(Mj, M3) is the zero matrix, we will

show that g(¢1,#2) annihilates ¢; + Iy, 1 = 1,2,...m. Actually we have

2(é1, 62) (@ + It Z 19105 4;(1,phiz) (g + 1) + @Y da (61, d2) (g + 14)
Z Bia; (b1, b2) (24 25'q: + I4)

Since z;z5¢i + I+, 1+ = 1,2...,m belong to £ and }_; B;¢;(¢1,¢2) acts
on £ as the zero transformation, we are done.

i

20



3.3 Vector case

Suppose now that R is a t X ¢ full column rank right prime matrix, describing
a q variables behaviour 8. All concepts previously introduced for the scalar
case have an immediate extension to the vector case. Let

AL =Rz, 2]
Aqi = Rlxq[zl) 22, zl_ls 22_”
and define the map
[-]: AL — AL i r o |r] i= 2l 2,

where 1 and 7 are the minimum degrees of r w.r. to the indeterminates z;
and z; respectively. In case p = 0, we define |p| = 0.
Let My :=(r1,...,7¢)+ be the module in A} generated by the rows of

R and M4 = (|r1],...,|r|)+ the module in A1 generated by the rows of
the matrix
|4
Rr=| ; | = 4R
kel
where A := diag {2]"23",...,2{*23"} and v; and p; satisfy 2{"2;'r; = |ri| ,
t=1,....t

Lemma 3.2 (i) A row r belongs to My if and only if there exists a pair
of integers (1, 7) such that zizJr is in M.

(i) AL/My is finite dimensional if and only if A% /M is finite dimen-
sional.
PROOF: (i) Obvious.

(ii) Suppose that A% /M is finite dimensional. This implies that there
exist polynomials f;(z1) and g;(22),1 =1,...,q, such that

fi(z1)el € My

g;(22)e;7r € M4
where e; is the element of the canonical basis of R? with 1 in position 1. It

is easily seen that

q
(J{ztzkel + M4,0 < h < degf;,0 < k < degg;}
=1
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constitutes a set of generators for A% /M.
Conversely suppose that A% /M4 is finite dimensional and let D be any
right factor of R
R=RD.
It follows that R = AR = A_II'?D, where A™1 is still a polynomial matrix
with elements in A;. Since the module M4 (D) generated by the rows of D,
satisfies M+ C M+(D), we have

dim AL /Ms > dim A1 /M4(D)

and AL/M4y(D) is finite dimensional. Therefore there exist polynomials
fi(z1) and gi(22),t =1,...,q, such that

fi(z1)eF € M+(D)
9i(22)ef € M+(D)
and, consequently, there exist polynomial matrices # and K such that
HD = diag{fi(z1),..., f3(z1)} (3.13)

KD = diag{g1(z2),...,9q(22)} (3.14).

(3.13) implies that det D is a polynomial in z; and (3.14) implies that det D
is a polynomial in z3. Therefore D is unimodular, R is right factor prime
and A% /M, is finite dimensional.

Il

Introduce a nondegenerate bilinear function
() : AL x (R)®% S R,
such that (r,w) = 3 r;;w(¢,7), where r = 3 r,-]-zizg is a polynomial row in
A% and w € (R?)%Z*Z

Then (R9)%*Z is isomorphic to the algebraic dual of A% and we still
have

Moreover B and A% /My are finite dimensional isomorphic vector spaces.
+ P P
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As in the scalar case, let N; and N2 be the matrices of the linear trasfor-

mations
Z1: AL/ My — AL /My [r] — [z17]

Zy: AL/ My — AL /My 2 [r] > [22r]
w.r. to the basis ([r1],...,[rn]) of AL/M.. If the state vector relative to a
signal w € B is defined as
(Z2Z§[r1] , w)
x(h, k) == : ;
(ZPZ5[rn] » w)

and C is a g X n constant matrix such that

lef] [r1]
D =cl |,
[eT] [rn]

q

then we have
x(h, k) := (N{)™(NV7 )*x(0,0)

and
w(h, k) = Cx(h,k).

By applying the theory of Grobner basis over the polynomial modules

[12], a basis in A% /M, with elements of the type z'zkel + M, is easily

obtained. After computing the matrices M; and M; that represent the
transformations

¢t AL/ My > AL /My ir+ My zir+ My, i=1,2

w.r. to that basis, the procedure for extracting N, and N, from M; and M,
is the same introduced in the scalar case.
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