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Abstract In this contribution the local structure of
finite support nD signals is analysed according to the be-
havioral approach. Observability and local detectability
are introduced, and characterized in terms of polynomial
matrix descriptions. The problem of extending into a le-
gal trajectory a set of data that satisfies the parity checks
on a suitable subset of Z" is then considered and nec-
essary and sufficient conditions for its solution provided.
The main properties of locally undetectable behaviors and
their connections with the notion of constrained variables
are investigated. A general representation result for finite
support behaviors is finally discussed.

1. Introduction and preliminary definitions

Multidimensional behavior theory is concerned with
the representation, analysis and recognition of the tra-
jectories which characterize the dynamics of a discrete
multidimensional (nD) system.

In recent times, research efforts mostly concentrated

on 2D behaviors with infinite support trajectories,
which constitute a natural, yet non trivial, extension
of Willems classical approach to 1D systems mod-
elling. A general introduction to the subject was first
provided by P.Rocha [6], while a detailed analysis of
specific topics like controllability and autonomy was
carried on in [1, 7].
A different point of view has been adopted in [2],
where 2D behaviors have been interpreted as convolu-
tional codes, and generation, detection and realization
problems revisited in a coding theoretic setting.

The large number of applications involving signals
with dimension n greater than 2, has called for a
generalization of 2D behavior theory to higher di-
mensions. Somehow unexpectedly, this extension has
to face with severe difficulties, connected with the
algebra of nD polynomial matrices and, in particu-
lar, with some factorizations and primeness definitions
that make their first appearance in this context [10].

A different topic of research is constituted by nD
behaviors with finite supports sequences. Unlike 1D
signals, which are usually parametrized on an infinite
time set, nD signals are often functions of spatial co-
ordinates, and consequently their supports are gener-
ally compact, at least along some directions. 2D finite
support behaviors have been introduced in [9], by re-

sorting to the algebraic duality between polynomials
and formal power series. This kind of approach, how-
ever, tends to disguise the meaning of certain prop-
erties in terms of trajectories structure. A first at-
tempt to perform a direct analysis of finite multidi-
mensional behaviors has been presented in [3], where
concepts like (external) controllability, observability
and extendability have been defined in terms of ele-
mentary operations on the trajectories, and related to
the algebraic properties of the (Laurent) polynomial
matrices involved in their representation.

The purpose of this article is to focus on some fea-
tures of finite support nD behaviors which seem par-
ticularly relevant for trajectories recognition. Two dif-
ferent situations will be considered, namely the ideal
case when all the sequence samples are given, and the
more realistic one when only a partial set of data is
available. As we shall see, observability corresponds
to the possibility of checking whether a sequence is a
behavior trajectory, by resorting to a finite number of
linear parity checks. On the other hand, if one deals
with an observable behavior and the parity checks are
fulfilled by a partial set of data, stronger requirements
are necessary in order to conclude that the data can
be completed into a legal trajectory.

Finally, we will introduce the class of unconstrained
behaviors, that are endowed with properties somehow
opposite with respect to observability, and show that
every behavior can be represented as the intersection
of an observable and an unconstrained behavior.

Before proceeding we briefly summarize some facts
about nD signals representation. More details on this
topic can be found in [3, 9]. An nD finite support
behavior with p components B over the field IF is a set
of finite support sequences (trajectories), with values
in F®, which is closed w.r.t. linear combinations and
shifts along the coordinate axes of Z".

Let F[z,z7!] denote the ring of Laurent polyno-
mials (L-polynomials) in the indeterminates z), ..., z,,,
(z, for short). By representing nD signals via formal
power series in z, we set a bijective correspondence
between finite support sequences of length p and ele-
ments of F[z,z71|P, so that every nD behavior B can
be viewed as a [z, z7!]-submodule of F(z,z=1]P. As



B is finitely generated, there is a finite set of column
vectors g1, 82, - &m in [z, 2717 s.t.

B = {Z gill; :Uu; € F[z,z‘l}} (1)
i=1
= {w=Gu:ucFz,z "} = ImG.

We call G := row{g:,g2,....8m} € Flz,271]P*™ a
generator matriz of B.

Two L-polynomial matrices G and G3, generate the
same behavior if and only if G1 P, = G and G P, =
G, for suitable L-polynomial matrices P; and Ps.
Consequently, all generator matrices of B have the
same rank 7, (called the rank of B), over the field
of rational functions F(z). A behavior B of rank r is
free if it admits a full column rank generator matrix,
i.e. a generator matrix G with r columns.

2. Controllability and observability

In the 1D case (external) controllability expresses
the possibility to steer any past evolution in (—o0,t]
into any other trajectory on [t+§, +00), provided that
§ > 0 is sufficiently large. In a nD context the notions
of “past” and “future” are elusive and unsuitable for
classifying and processing the available data. What
seems more reasonable, instead, is to investigate the
independence of the values a trajectory w assumes on
a pair of disjoint subsets &7 and Sy of 7 provided
that their distance

d(S1,82) := min{3 1, [h? =P, h® € 8,0 =1,2},
is large enough.

(C) [Controllability] A finite behavior B is con-
trollable if there exists an integer § > 0 such that,
for any pair of nonempty subsets Si,Sy of Z", with
d(81,82) > 6, and any pair of trajectories wy and
wqo € B, there exists v € B such that the restrictions
of v to the subsets 8; and &;, v|S; and v|Ss, satisfy
v|& = w18y and v|Sy = walSa. (2)
While for infinite support behaviors controllability
constitutes quite a strong requirement, which entails
nontrivial consequences on the structure of a dynam-
ical system, finite support behaviors are always con-
trollable, as it immediately follows from the image rep-
resentation (1) they always possess. So, in the finite
support case controllability analysis is not an issue.
However, basing on the same kind of elementary op-
erations on the trajectories adopted to define control-
lability, different properties, endowing a behavior with
distinguished features, can be highlighted.

According to some recent works of Forney et al. [5],
observability is naturally introduced without reference
to the concept of state and hence as an “external”
notion, and it formalizes the possibility of pasting into

a legal sequence any pair of trajectories that take the
same values on a sufficiently large subset of Z".

(O) [Observability] A finite behavior B is observ-
able if there is an integer &6 > 0 s.t., for any pair of
nonempty subsets Si,Ss of Z", with d(S1,Sz2) > 6,
and any pair of trajectories wy, Wy € B, satisfying
w1|C(S; U S;) = wo|C(S; USy), the trajectory

Wl(h) he s
v(h) = { wi(h) = wa(h) heC(S,US) (3)
wa(h) hes,

is an element of B.

When a pair of trajectories wy and w; of some be-
havior B satisfies condition w1|C(S,;US;) = wo|C(S,U
&), and we sample the composite signal v, given in (3)
by means of a moving window, whose diameter does
not exceed &, the window content always appears as
the restriction of a behavior trajectory. In general,
however, if no particular assumption is introduced on
B, we cannot conclude that v is a behavior trajectory.

Interestingly enough, the possibility of giving a
bound on the size of the windows one has to look at
when deciding whether a signal belongs to B is equiv-
alent to observability. So, observability expresses a
sort of “localization” of the system laws, which is ex-
tremely useful when one devises a procedure for de-
ciding whether a generic signal is a legal trajectory.

Denoting by B|S := {w|§ : w € B} the set of all
restrictions to & of behavior trajectories, the above
localization property can be formalized as follows:

(LD) [Local-detectability] A finite behavior 8 is
locally-detectable if there is an integer v > 0 such that
every signal w satisfying w|S € B|S for every S ¢ Z"
with diam(S) < v, is in B.

Observability and local detectability properties,
whose equivalence is stated in the following propo-
sition, correspond to the possibility of expressing a
behavior B as the kernel of a polynomial matrix, and
hence to describe the trajectories of 5 as the solutions
of a finite set of recursive equations.

Proposition 1 [3] Let B C F[z,z7!|P be a finite
support behavior. The following facts are equivalent:
(i) B is observable;

(ii) B is locally detectable;

(iii) there exist h € N and an L-polynomial matrix
HT ¢ Flz,z71]"*P s.t.

B=kerHT :={weFlz,z7 )" : HTw=0}. W

Further characterizations of observability can be de-
rived when adopting a different approach, which con-
sists in regarding behaviors with p components as el-
ements in the lattice of submodules of F[z,z71]P. As
we shall see, observable behaviors enjoy very special



ordering properties among the elements of the lattice.

Given B C [F[z,z71]?, the orthogonal behavior of B
is defined as

Bt :={seFlz,z"'|P:s"w=0,yweB}. (4

As a submodule of F'[z,z7 |7, it can be represented as
the image of some matrix H € F[z,z7!]P*9, namely
B = ImH. On the other hand, condition sTw = 0,
¥ s € B+, needs not imply w € B. So, in general

Bt = {welzz ) :sTw=0,Vse B} =kerH”

represents a proper extension of B, of the same rank
7, and it is easy to realize that B~ is the smallest
observable behavior including B.

For an arbitrary behavior B, B1+ represents a proper
extension of the same rank. Keeping in with the same
spirit, one may investigate how a behavior is affected
by other “extension operations” that merge lattice
elements into larger ones of the same rank. There
are essentially two natural ways to perform these ex-
tensions: one consists in embedding F[z,z71|?, and
therefore each of its submodules, in the rational vec-
tor space [F'(z)?, the other in considering F[z, 271]? as
a submodule of FZ , the set of nD trajectories with
p components, whose supports possibly extend to the
whole space Z". Once a behavior B with p compo-
nents is given, in the first case we have to consider the
smallest vector subspace of F'(z)? including B

Brag = { wia; Wi € B, a; € ]F(Z), LS N}w (5)
1

i=

and confine our attention to the submodule B..; N
F'[z,z7'|? of finite support sequences. This in general
properly includes B, and hence is a larger element of
the lattice. In the second case, we merge B in

By, w== {iwiai cw; €EB, a; € Fo, TE N}, (6)
i=1

the smallest [[z,z7!]-submodule of FZ which in-
cludes B. Again, one has to consider only the set
of its finite elements By N F[z,z71]?, which clearly
includes all trajectories of B. The following proposi-
tion provides a fairly complete picture of the lattice
conditions observability relies on.

Proposition 2 Let B C F[z,271]? be a behavior of
rank r. The following statements are equivalent:

(i) B is observable;

(ii) B = By NF(z,271)7;

(iii) B = Bay Nz, 271)P;

(iv} B is maximal in the set of all submodules of
F(z,z7 P of rank r;

(v)sweB = webB foreveryw € Flz,z7!]P
and every nonzero s € F[z,z71];

(vi) B = B,

PrROOF (i) = (ii) As B is observable, there exists
H € Fz,z'|P*9 such that B = kerHT. If w € B, N
Flz,z7']?, then w = >, w;a;, a; € Foo, W; € B, and

therefore HTw = HT(Zi wiai) = Zi(HTwi)ai =
0. Thus w € ker HT = B, which implies B D B, N
[F[z,z71]P. The reverse inclusion is obvious.

(ii) = (iii) Follows immediately from B C B, N
Flz,z]? C Bo, N Flz,z71]7.

(iii) = (iv) If B’ 2 B and rankB’ = rankB, it is
clear that B and B’ generate the same F(z)-subspace
of F(z)P and, consequently, Brar N Flz,z7 1P = B/, N
F(z,z71]7. So, the inclusions chain BeNF[z, 2717 2
B’ O B and assumption (3) together imply B’ = B,
which means that B is maximal.

(iv) = (v) Suppose sw € B, s € F[z,z7!]. The be-
havior B’ generated by B and w has the same rank
of B, and hence, by the maximality assumption, coin-
cides with B.

(v) = (vi) As B and B+ have the same rank r and
B++ D B, both behaviors generate the same F(z)-
subspace of F(z)?. In particular, w € B+ implies
w € (BY1)at = Brat. So, there exist p;, s; € Fz,27!]
and w; € B, s.t. w =Y.\, W; p;/si, which implies
swe B, s ={fcm.{s;}. By (5), w € B, too.

(vi) = (i) Since B+ is a submodule of F'[z,z7'], there
exists a suitable L-polynomial matrix H such that
B+ =ImH. So B+ = (BH)t = {w € Flz,z7 | :
vIw = 0,%v € ImH} = kerHT. By (vi), B coincides
with kerHT, and hence is observable. |

3. Trajectories recognition and extendability

The problem of recognizing whether a given se-
quence v € [z, z71]? is an element of B arises both
in fault detection and coding contexts. It can be man-
aged by resorting to a linear filter (residual generator
or syndrome former) that produces an identically zero
output provided that the input is an admissible tra-
jectory of B. From an abstract point of view, the
filter design reduces to find a “complete” set P of fi-
nite support sequences (parity checks) endowed with
the property that their convolution with the elements
of B is zero. More precisely, we require that v belongs
to B if and only if pT'v = 0 for every p € P, or equiv-
alently the coefficient of z' in p”', (p?'v,z!), is zero for
every pe Pandiec Z".

As clarified by Proposition 1, the case when all the
trajectories of a behavior B can be recognized by re-
sorting to a suitable family of parity checks occurs if
and only if B is observable. When no a priori informa-
tion on the support of a trajectory is given, however,
a positive outcome of the parity checks, performed
on some window S, does not guarantee that a be-



havior sequence can be found, interpolating the data
available on S. So, in general, the checking procedure
should be extended to the whole space Z". A note-
worthy exception is represented by the case when S
is surrounded by a sufficiently large boundary region
where the signal is zero. If so, extending the data out
of § via the identically zero sequence leads to a signal
which satisfies the parity checks all over Z". Clearly,
it would be highly desirable if the extension into a legal
trajectory could be accomplished without any partic-
ular assumption on the data values in the boundary
region. A thorough discussion of this problem is based
on the definition of what we precisely mean by “ sat-
isfying the parity checks” on a set S C Z".

Definition 1 Let B = kerH” be an observable be-
havior. A sequence v € [z, z71|P satisfies the parity
checks of Binh e Z" if

(HTV,Zi) =0, Vieh+supp(HT), (7)

where h + supp(H7T) := {h+j:j € supp(HT)}. In
general, if S is any subset of Zi", v satisfies the parity
checks of B on & if satisfies them in every point of S.

Letting HT := .. HTz, the above condition re-
duces to the following system of linear equations

> Hiv(i-j)=0, Vi€ S+supp(HT), (8)

j € supp(HT)

and hence to the system of all difference equations
which involve the sample v(h).

Once the parity checks have been successfully per-
formed on a sequence v in a subset &, the natural
question arises whether the data on S can be extended
into a legal trajectory, namely, if there exists a behav-
ior signal that fits on § the available data. In general,
observability is not enough to guarantee this possi-
bility, which depends on stronger assumptions on the
behavior structure. Even then, however, it may be
necessary to discard some samples in the border of S.

(E) [Extendability] An observable behavior B =
kerHT is extendable if there is an integer ¢ > 0
such that, for every subset S ¢ Z" and every v &
F(z,z~ )P, which satisfies on

&%= {(h'l'l h?) sy h‘n) = Zn : d((hl:h’Zr sk hﬂ)!‘s) S }a
the parity checks of B, a trajectory w € B can be
found s.t. w|S = v|S.

m

As clarified in Proposition 3, extendable behaviors
are described by left zero-prime ({ZP) parity check
matrices, i.e. matrices with an L-polynomial left in-
verse.

Proposition 3 [3] A finite behavior B is extendable
if and only if B = kerHT, for some ¢ZP matrix HT .

In the definition of extendability no constraints are
assumed on the shape and cardinality of the set &
where the parity checks are performed. As a counter-
part of adopting this general setting, only generator
matrices with strong structural requirements possess
this feature. If we agree to extend into behavior se-
quences only data sets which fulfill the parity checks
on particular subsets of Z", we can partly relax the re-
quirements on the generator matrices. The subsets of
Z" we will refer to are (infinite) cylinders with either
one-dimensional or n — 1-dimensional bases, envelop-
ing a given finite set S. More precisely, 1-cylinders
enveloping & are defined as

E@)=TheZ” s hy=ky Tk l) d=18....m
while n — 1-cilinders are
CelS) = he Z" ihy = kiey Tk € 81 = 1,201,

where h¢ denotes the subset of {h1,hs,...,h,} com-
plementary to {h;}.

(Ei-E,,_1) [1- and n-1-Extendability] An observ-
able behavior B = kerHT is l-extendable (n — 1-
extendable) if there is an integer ¢ > 0 s.t., for ev-
ery finite subset S C Z" and every v € F[z,271]?, if
v satisfies the parity checks of B on the I-cylinder
Ci(S5%), (on the n — l-cylinder Ci-(S%)), for some
i € {1,2,...,n}, some w € B can be found s.t.
w|S =v|S.

The following notions of minor and variety prime
matrices, based on the solvability of certain Bézout
equations in polynomial rings that properly include
F(z,21], are equivalent to more familiar definitions
[8], based on the coprimeness of the maximal order
minors of G and on the cardinality of the correspond-
ing algebraic varieties, respectively.

Definition 2 Let G be a full column rank matrix,
and consider the Bézout equation XG = [,,.

1) G is right minor prime (rMP), if the equation is
solvable in the rings [F'(z¢)[z;, zi“l], t=19...m;

1t) G Is right variety prime (rVP) if the equation is
solvable in F(z;)[z¢, (z§)71],i=1,2,...,n.

Proposition 4 Let B = ImG be a free behavior,
G € Flz,27!|P*" a full column rank matrix.
i) B is l-extendable <> B is observable < G is rMP;
i) B isn — l-extendable & G is rVP.

ProoF i) Il-extendability implies cbservability, by
definition. If B is observable, it is maximal among the
submodules of F[z,z71|? of rank 7. Since maximal
modules of a given rank that are free admit rMP gen-

erator matrices [4], B = ImG, G tMP. So, G = GP



and G = GP, P,P € [F[z,z~!]"*", implies that G is
rMP, too.

If G is tTMP, B is a maximal module of rank r and
hence is observable. As G is rZP in F(z¢)[z, 271,
i=1,2,...,n, by Proposition 3, the behaviors B; :=
Imﬂ.-(zic)[zhz‘q]G, i =1,2,...,n, satisfy definition (E)
for suitable £; > 0 and hence are extendable (and
observable) in a 1D context. Let £ be the maximum
of the ;. If we represent B as the kernel (in F[z, z1]?)
of some L-polynomial matrix H7T | it can be shown [4]
that B; = kerF(z?)[Zi’zrl]HT = {w € F(z8)[z;, z] 1|7 :
HT'w = 0}. Consider, now, a finite set § C Z" and
some v € [z, z7!]? which satisfies the parity checks of
Bin C;(8%), for some i € {1,2,...,n}. As an element
of F(z2§)[z;, 27 Y|P, v satisfies the parity checks of B;
on the one-dimensional projection I of &% into the
i-th coordinate axis, and hence there is w = Gi, 1 €
F(z8)[zi,27™, in B; st. W|I, = v|I. So, as n-
dimensional sequences, v and W coincide on C;(8). If
r is the radius of a ball B(0,r) centered in the origin
which includes supp(G), clearly the values of W in &
only depends on the values of i in &". Thus, the
finite sequence u, which coincides with @ on 8" and is
zero elsewhere, produces a behavior sequence w = Gu
which coincides with v on S.

1) Following an analogous reasoning one shows
that G r'VP implies B n — l-extendable. For sake of
brevity, the proof of the converse is omitted. Inter-
ested readers are referred to [4]. il

4. Behavior decomposition

The scope of this section is to take a first step to-
wards a structural analysis of finite support behaviors.
Behavior structure theory aims to describe general be-
haviors in terms of some simpler ones, simpler in some
perceptible way, perhaps in terms of concreteness, per-
haps in terms of tractability. Of essential importance,
after one has decided upon these simpler objects, is to
find a method of passing down to them and to discover
how they weave together to yield the general behavior
with which we began. Observable behaviors consti-
tute good candidates for these simpler objects, as each
behavior can be embedded into an observable one. In
order to represent a general behavior B, then, we have
to slice out of its enveloping observable behavior B++
a certain part. This can be done by intersecting B++
with a suitable, nonnecessarily unique, element of a
behavior class that exhibits properties which are as
far as possible from local detectability.

Definition 3 Let B C [F[z,z7'|? be a finite sup-
port behavior and {iy,is,...,i,}, 7 < p, a subset
of {1,2,...,p}. We call w;,,w;,,...,w; constrained
variables of B if for every pair of trajectories v,v’ &
B, v; = v} for every j & {i1,42,...,4,} impliesv = v'.

As shown in the following lemma, the maximum
number of constrained variables of a behavior B in
[F(z,z7!]? can be expressed in terms of the rank and
the number of components of 5.

Lemma 5 Let B C F[z,z7!|” be a behavior of rank
r. The maximum number of constrained variables of
B coincides with p —r.

ProOF Let G € F[z,271|P*™ be a generator matrix
of B and suppose, for sake of simplicity, that the first
r rows of G are linearly independent, so that in

G1 }'T'
G= ;
[Gz ] lp—r "’
G has full row rank. The components w;, 1 = r +
1,7+ 2,...,n, are constrained variables. If not, there

would be a trajectory w = [\3 :l in B, with wy 3 0,
2

and hence an L-polynomial vector u € F[z,z71|™ s.t.
G1
4
since rankG; = rankG implies (ImG7)* = (ImG7T)+.
It remains to prove that the number of constrained
variables cannot exceed p — r. Suppose, instead, that
k > p—r variables of B, say the last k, are constrained,
and partition the generator matrix G into

- [a]

As r = rank G > rankGy, kerGy properly includes
kerG. Consequently, there exists u s.t. Gou # 0
and both [gJ and {égu] : Gou # 0, are in
B, which contradicts the assumption that the last k&
components are constrained. |

} u= [“? ] . This is a contradiction, however,
2

A behavior B devoid of constrained variables ex-
hibits the very peculiar feature that for every finite
set S C Z", B|S coincides with F[z,271]? | S. This
property, which appears somehow opposite to local
detectability, makes it is impossible to recognize the
trajectories of B by resorting to a local checking pro-
cedure.

(LU) [Local-undetectability] A behavior B C
F(z,z=1]P is locally undetectable if there exists § > 0
s.t. for every sequence v € [F[z,27!|P and every set
S CZ", a trajectory w € B can be found, satisfying
w|S=v|S and supp(w)C &% (9)

Proposition 6 Let B C F[z,z71]? be a finite support
behavior. The following facts are equivalent:

i) B is devoid of constrained variables;

ii) B is the image of some L-polynomial matrix G €
F(z,z=1]P*™ with rank p;

iii) B is locally undetectable.



PRrOOF i) < ii) Immediate from Lemma 5.

ii) & iii) Assume B = ImG, for some G ¢
F[z,z~!]?*™ whose rank is less than p, and let v €
F(z,z71)?, supp(v) < B(0,p), be an L-polynomial
vector satisfying vIG = 0. Consider, then, a set T
and a sequence u € [F[z,z71]? s.t. supp(u) C 7 and
supp(vIu) N T # @, and let S := T*. If property
(LU) holds for some § > 0, there exists w = u+r
in B with supp(r) € S*\ S. As w = Ga, for some
a€ Flz,z71|™, it follows that 0 = vIw = vTu+vTr.
This is not possible, however, since 7 intersects the
support of vI'u without intersecting supp(v7Tr).

On the other hand, if B = ImG, for some G €
Flz,z7!]P*™ of rank p, every v € F[z,27 1|7 can be
obtained as the image of some vector u € F(z)?,
ie. v = Gu. Consider an arbitrary finite set S
and a power series expansion of u with support in
a suitable cone of Z", and let @ := u|S%, where
¢ := diam(suppG). Then v := Gu is a behavior se-
quence which coincides with v on § and whose support
is included in §%. So, (9) holds with § = 2e. B

Proposition 7 For every behavior B C F[z,z71]P
there exist an observable behavior By and a locally
undetectable behavior By, in Fz,z71]? s.t.

B = By N By, (10)

Moreover, By is uniquely determined as B+, the
smallest observable behavior including B.

PROOF Let B = ImG and By := B+t = kerHT.
Clearly, By is an observable behavior including B. If
G has rank r, we can assume, for sake of simplicity,
that its first r rows are linearly independent. So, G
can be partitioned as

_ |Gt
G- [ o
where &7 is a full rank matrix. Let Gy, :=

block — diag{G1,I,—}, and By, := ImG),. Clearly,
Byy is a locally undetectable behavior, and it includes

o= 2]-1% 2]d)

So, one obviously gets B C By N By,.
To prove the reverse inclusion, consider w € By M By,.

Clearly, w satisfies H'w = 0 and can be expressed

G - .
as w = [ éul] . Factorizing G into the product of a
2

}r

Jo—r

?

(full column rank) right factor prime matrix G and a
full row rank rational matrix @ [8], one gets

G - G
&]-c-ca-[Z]e

As the columns of G generates the [F(z)-vector space
orthogonal to the rows of H7, there exists v € F(z)”

s.t. w = Gv. But then Gly =Giu = G1Qu; implies
v = Quq, and thus u; = Gyv = GoQu; and
Ga

uz
This implies that w is in B.

It remains to prove the uniqueness of By in the
above representation. Suppose, by contradiction, that
B = ByN By, for some observable behavior By o Bl
and some locally undetectable behavior By,. As B++
is the smallest observable behavior including B and is
maximal in the class of modules of rank r, By must
have rank greater than r. Consequently, (Bo)ras O
(B+L).... On the other hand (Biu)mt = (Biu)rat =
F(z)?, and therefore (B)rat N (Biu)rat = (B4 )ras C
(Bo)rat = (Bo)rat N (Biy)rat- But this is not possi-
ble, as B N By, = B = By N néiu should imply [4]
(BLL)rab N (Blu)rat — (Bo}rat N (Blu)rab- &
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