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INTRODUCTION

This paper deals with some observations arising in the reali-
zation of bilinear input—outoput maps. It concerns essentially with
some internal structural properties which are consequences of the
definition of the state by the most natural way i.e. Nerode equi-
valence classes,

Most questions are yet to be studied in depth but the results
are sufficient to give a picture of the problems.

Let K be a field and Z the ring of integers. A bilinear zero-
state discrete—time input—output map isamap f : UxU — ¥
defined as follows 3
i)U = iu sue K, card (supp u)§ Ko]; is naturally endowed

with the structure of K-medule.
ii) ¥ = {y T ¥ e Kz}
iii) £ : Ux T — Y (input—output map) has the following proper—
ties :
i) min supp f{u ,u2)> max supp(u1,u2) 2 supp u1Usupp Y
ii) f is bilinear :
f(kuj,uz) = kf(ug,ua) g ke K, u1ﬂ126 U

2

f(u1,hu ) = hf(u1 ,uz) yhek,u,u & U

2

b z'- 1
(u1+v1 'u2) Lf(41,u2)+ f("[1 ,u?):l supp f(u1+v1 ,uz)
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f(u1,u2+v2) =Ef(u1,u2) * f(u1,v2)] supp f(ua,u2+v2)

1,v2 el

The zero-state response of a bilinear map to an arbitrary
pair of input sequences (u1,u2) with left compact support,is given
by:

(1) y(r) = £(T o,y T uy)(r) y Te<k

whera:

111 ,u2,V

ui(t) y t<r
(2) Tu (t) = g imi4,2
ri
0 ] t?r
Denoting by o the shift operator on KA, the bilinear input-
output map is stationary if it satisfies the condition :

11 o'uz) N u1,u2GU

In this case t=0 can be assumed as the max supp (u1,u2).

(3) o £(u,4u,) = f(ou

CHARACTERIZATION OF THE BILINHAR MAP

The input-output map defined in the previous section can be
represented via a sequence of infinite matrices,

In particular the representation of the K=bilinear stationary
input-output maps onto the infinite K~valued matrices is then biu-
nique,

Actually it is immediate to observe that

f(uT,u )(r) 4, r > max supp (u1,u2)

2
can be considered as a bilinear functional

f(u1,u2)(r) : Tr[ﬁ] x Tr[UJ — K,

Proposition 1 : Let {jgi-} IR NV the usual basis in
h i 3
Tr[ﬁ],w ere j3i is the sequence

(4) Bi= (S0 O T
and "
(5) £(B; Bj)(r) = w.lj(r) y

then
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6 f = i |
(6) £(uyyu,) (®)= T, vy (x) w,(2) wy(5) 5 wywye T[]

The sequence W, . comes out natvrally depsnding on r since
stationarity has not“been assumed.

Obviously if we assume the hilinear i-o map to be stationary
the wij dependence on r fails and the following Provosition holds.

Proposition 2 Let f be stationary. Then

(7 w, () =w (o, Vigre 2

| i-ry j-r
Proof. Direct application of invariancy definition 1o (6).

The stationarity assumotion allows us to consider input sequen=
ces (u ,ug) having t = O as max supp(u,,u_ ). This has as consequence
the possibility of evaluating the output of the bilinear map from
the infinite matrix W = (w..). : o« In this way the K-bilinear

1574, <0
stationary i-o maps can be biuniquely represented onto the infinite
K—valued matrices.

The input space being constituted by pairs of sequences with
compact support in Z , we shall adopt the usual polynomial repre—
sentation ¢ -

14
1 1 -1 =i 1
(B) nynlB g 8 ppqreress 2) — 247y )=%:i B35 0 3T fp
q .
1 1 -1 -3 1
= b sse b = b = b
(9) u2 (b_qv —g+1? ’ O) ==y p2(z2 ) %; 3 jZE ’ bk g

Analogously the output space, constituted by sequences with
support Z++ can be represented in KL&ﬂ].

It is now possible to give a global representation for the in-—
put—output map in terms of series and polynomials.

Proposition 3 Let (8), (9) and

(10) S(z1, z.2) = Z i Yon _k(o) z
1 7 2]

h Zk
1 2
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>
Z bk A
"m0 Y@ S
Then
1
(1) £(p, (2] D, P, (22)) = diag 8(z,12,)p, (2] BEXCR
1 2 2V p
>0
Proof. - >0
F |
(12) ym) = ) ow(m) al b
= 0 1sd +L J

&
Lo W _(0) a! b. =
=Zo' 1y i-m, J-m( A J

ol\/J

b
h,k Shem,ktm “h k

But
. -1 -1
(13) diag 8(21,22) p1(z1 ) pz(zz ) =
>0
o) 20
' m
& 21 m(zoij Sivmy j+m o1 bj)(z‘! 2,)

INTERNAL PROPERTIES

The most natural way to attack the realization problem is by
introducing the Nerode equivalence [2,3]:

(14) (pysp,) 7 (6,08,) = flpeG4p,0 T) =
= f(31o G"],ﬁzn 6\2) ) VG"] € K[z?] § V(}} €K [z-;]
where
D BN OB PYA O N O Wb A S
-1 -1 -1, —=(c+1) -1
py(25 ) 65(25") = py(a31) o e 6]

oz max (deg oy o)y )
and similar expressions for ﬁ o c"1 and 52 < 6“2
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It is known that [4] :

(16) (p,12,) 4 (§18,) = (1),2),3))

—-C

~a —C
1;PZ) cho

-C -G -~
1) £(p, 2,740, 2, ) = £(p, = » %5

C—

- c-1 ~ —c—1 -
= f G i
2) (o, = y 6,) = £(B, 2, 1 G,), KX K[z2_]c deg T,

1 2

0‘1) —-c—-‘]) 3 VGjl'e K[z;tl c=deg G~

3) 216 4p, 5,7 ) = 208, 7

i

The N-state space (Nerode-state space) is the set of Nerode
equivalence classes @

(17) x=(Ux U)//ﬁ’: {[:u1,ué] :(u1,u2) €U xU}

In the linear case the N-state space X can be endowed with the
linear vector space structure. If we represent the i-o linear map
by a formal power series Zi a.i ztin K [_z] the following facts

- 1
are equivalent [_5,6.] :

i) dim X < Do
ii) ecard ( [0] )>1
. -1
i1i) Z X" —P(E-{—)-
‘E x 1 Q(Z_ )
) (o)

iv) (ai LB is a H—-sequence

v) Xisa K [z_‘i:] torsion module

In the bilinear case the N—state space X cannot be endowed
with a K—module structure and conseguently there is no way to extend
some of the previous statements to the bilinear case,.

Nevertheless it is still interésting to investigate how the
atructure of the bilinear i-o map and the structure of the N-state
space are correlated.

(°) by"H-sequence" we intend a sequence whose Hankel matrix has
finite rank [7] .
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We recall now some properties of H-sequences and introduce
some notations to simplify the formalism,

1 = (s.) is a H-sequence iff there exist (r+1) numbers Bgreser B
not all zero such that :
r

(18) Z%:i By 8 = @ ., S T I S R

we call the ordered set (aO,...ar) an annihilating set of the
H-sequence.

2 — The annihilating sets constitute a principal ideal ((ab,...,ar))

in the ring of finite sequences with Cauchy product. This ideal
is generated by a "minimal annihilating set" (i.e. of minimal

length).

3 — Consider a j—indexed family of H-sequences (s )y j€ N with

the corresponding annihilating ideals I ; the prlnclpal ideal
{ﬁ\I is the "annihilating ideal of the? famlly"

4 — Given a double sequence (si_),a finite matrix A4 = (ars) is a

(pyq)—annihilating matrix for (Sij) i

n,m

§ a s =
5 r's TS p+r,g+s

Lemma 1. Let S as in (10). The annihilating ideal of the j—indexed
family (s, ), j 2,1, i> j is different from (0) iff there exists

p1(z11 e K[z _'[ p,# 0 , such that (p (z ), 0)e [0,0].

n

-1
Proof. Let p1(z1 ) = zgzr a 7z
52(221) y (16) and (11) give

s 5

] and (p1,0)6 [0,(_)]. For every

n c
: -r —c-1 -3 ;
: S i E E
(19) diag i3 SijZ1 Zg e a 2,2, 4 sbsz2 =O,V%S,VO}O



ON THE INTERNAL STRUCTURE OF BILINEAR INPUT-QUTPUT MAPS 269
[+ — . .
< . i=r—c-1 -
Z b diag Z s..a 2 z‘] =0
5 s 8 r 1 2

n
2 .

= :
2 s ¥4 a 0 , Vt»>0, Vez0, Vs, 0€s<c

It is then immediate that
n
= v 4
(20) ZO r Stelrorr,t By 070, Nt 70

-1 -r
C let hold d = 3
onversely, let (20) hold and assume p1(z1 ) Z o2 B

Then recalling (16) and straightforward checking that

(21) f(p1(z;1) 2;0"1 5 6"2(221)) = 0,\\'}6;& K‘:z_:], c = deg 6'2

it follows that the input pair (p1(z"1'1),o)e [0,0].

Lemma 2, Let 5 as in (10)e The annihilating ideal of the i-indexed
family (si_), i>1, j> i is different from (0) iff there exists

p2(2-2-1) e K [z:], p, # 0, such that (0,p2(z;1))€ [0,0].

Proof, As in Lemma 1.

n
. =1 -1
Theorem 1. mLe'b g as in (10) and p1(z1 ) = E L

-1 -5 5 ; =1 =1 ;
pe(z2 ) =Z?Sbsz2 . The input pair (p1(z1 ¥’ p2(2.2 Ne [0,0] iff
i) (a.o,...,an) is an annihilating set for the j—indexed family
(Sij)' izth i>3,
ii) (bo,...,bm) is an annihilating set for the i-indexed family
STy
(Sij)’ iz, 21
iii) the matrix A = (aibj) is pp—annihilating for (Sij)’ Vo 21

Proof. By definition (p,sp,)€ [0,0] iff
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-1 -1
(22) f(P1°G:|:P2 o 6—2) = £ G-'l’ 0"2))V(G1, 6'2)6 KI:Z1 _]x K[ZZ ]

Recalling (16), (22) implies :

- ] -

(23)  £(p,(e7) 5], O, =0, o=aes G,
-1 -1, —c~1

(24) f( 6-1(2'1 )7P2(22 )220— ) = y © = deg 0-'1
=4 = e =

(25)  #(p,(2)) 2" 4 p(z, ) 2, 0) =0, Yejyo .

(23) and (24) imply i) and ii) by Lemma 1 and Lemma 2.

(25) implies
oo

. ¢
. 1] » -1 -8 —=C —=C ;
(26) i:gg 21 ijsijz1z2 ; rarz1 % SbS22 2, Z, = o, Ye 2 0

m

> n . v
;t< Zo.vr Z(T s arbsst+c+r,t+o+s)(z1z2) ok .l

and
n m

(27) Zr Zojsarbsst+r,t+s = V L 4o

- -1
The converse is proved assuming p1(z11) and. p2(22 ) having

as coefficient sets the annihilating sets.

Remark, The assumption that the zero state [0,0] contains at least
one element of the form (p1,p2) with p1,p2:‘£ 0 is a necessary con-

dition for controllability to zero state. This condition has a
direct implication on the operator S as proved in Theorem 1.

Lemma 3. Let S satisfy i) and ii} in Theorem 1.
Th -1 1 =1
en ) (Z 22) o9

N(z, 42
1 172 + :E: 1 h k
(28) 8(z,,2,)= h,k "n,k “1 %2

= = = =1
p,(z, Jo (2, ) »,(z ) (2, )77
V91 a2 1" 22 L een
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Conversely if S has the structure (28) then i) and ii) hold.

-1 -1 1
EN )+ 8 (21,22).

It is immediate to check that S1(z1,z

-1 -1
Proof. 5(z,,2,)p,(z, Jp,(2, ) = N(z
2) is a double series

. 1 - -1 -1 =1
with s h,k=o’ -m7 h-k?n and that N(z11, Z, ) e K[z.i 12, :l,

with deg N(z;I )(221)< deg p, 4 deg N(z?‘ )(221).: deg P,

1

The converse is a consequence of the fact that for every po—
lynomial p(z=1), the sequence corresponding to the series
i g -1
1/ , =1y = E _ s.z° has the coefficients of p(z ) as minimal
p(z ) id
annihilating set.

Theorem 2. (p1,p2)é[0,0], p1,p2¢' 0 iff S can be represented as

in (28) and S;l = 0,Yhy1.

Proof. S represented by (28) implies i) and ii) of Theorem 1;
using (25) and (26); Sh 5 =0,Yh>1 gets iii).

Conversely if (p,,p )efo,ol , p1,p2.,-20 by Theorem 1, i) and

ii) are satisfied and by Lemma 3 the structure (28) holds,
=0VYnh »>1 follows from diag S p,p, = 0.
152
>0
Corollary. Consider now the two minimal annihilating sets (pos-
sibly zero)

Sn,h

1 1 . . .
(29) (a-oru-laN)r for (Sij)' Jjz1 ., i>3

1 . S d

(30) (bo,---, by for (s; )y izt 3>

with the associated polynomial p1m(z;1) and pem(z?).

The state f0,0] belongs to the ideal (p1m) @ (pzm) and contains
the ideals (p1m)® (0) and (0) ® (pzm). If p, s Py # 0, S can
be represented as in (28), with —of course- pﬂI = p1m and p2= p2m.

As recalled before, in the linear case the rational structure
of the i-o map is equivalent to other fundamental properties of the
system that can be evidentiated from the i-o map. In the bilinear
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case the rationality condition does not come out so directly from
i—o characteristics. It is still possible to give an interpretation
in this direction referring to a finite space repetition of the

system [1] .

Theorem 3. Let S as in (28) and p, =p, , p.= p_ . Assume S be
e 1 1m” ~2 2m A = o
the series expansion of a rational function L(z1 12, )/b(z1,zz),
1y, -1 ~1y, =1 1y, =1 <A =l
deg L(z, )(z, ) < deg D(z, )Wz, ), deg L(z, )(z, )< deg Dz, )(z,).
Then
2 4 -1
N(z, 42, ) (z,2,) P ((z,2)) )
172 12 0 12
(31) S(z,2,) —— = i .
0@ e, (550 p, (e (23D q ((2,3)7)
-1 -1
. 1 P ((z,2,) )+ . 1 P(z2,)) .
. T Feeees . =
2 (2™ 2 Q(z,z))
. 1 P1((z122) ) . . 1 PN((z1z2) )
-1 " -1 esses N = -1 ]
2,  Q((z,2,)) 2, Q(z,2,) )

deg P, < deg Q,, deg ﬁi ¢ deg @i. (by semplicity of notations M=N)

Proof. (Hint) Aninfinite matrix (Sij) is associated to a series

expansion of a proper rational function

1 = s (S, 9B
Z ) 1 A

iff there exists a pgq-annihilating matrix for any (p,q), p or g 1.

Consider the series 22 e S;k z? z,, which is now a rational
1 .

{h-klisn
function.
By assigning appropriate values to p and g one proves that the

side located diagonals in the matrix (s; k) are H-sequences and then

! -1
can be represented by rational functions in {ijz) "

The procedure is repeated for the infinite matrix obtained de-
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leting the above mentioned diagonalse.

An i-o map having the structure (31) can be of course realized
by connecting a finite number of linear maps and multipliers.

Theorem 4. Let S as in (31). Then there exist (p1,p2)e[b,O] :
p1,92¢- 0.
Proof. See [1] .

Theorem 4 shows that the rationality condition with i) and ii)

of Theorem 1 are sufficient to guarantee that there exist pi,pzﬁ o
such that (p,i,pz)eEO, O:l .

Before concluding we give a rough sketch of some consequences
implied by the introduction of a state basing on the structure (31).

Assume S as in (31) and introduce the following equivalence
relation on K[z;1jx K[?;1]: two input polymomial pairs are

L-equivalent, (p1,p2) /}5(51,§2), iff every linear subsystem, appear-—
ing in the structure (31), reaches in t = 0 the same state, start-—
ing from zero state.

Theorem 5. (91'p2)/f(p1'p2) = (pj,pz)/ﬁf(p“pz)

Proof. See [j] .

The set of L—classes can be obviously embedded in the direct
sum of the state spaces of the linear subsystems, The L-classes
constitute a finer partition of the input space than Nerode equi-
valence classes.
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