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INTRODUCT ION

In a previous paper [1] we presehted a contribution to the rea-
lization theory of bilinear discrete-time stationary input-output maps.
In particular we shown that for biiinear i/o maps characterized by rea-
lizable series the set of Nerode states (or canonical states) can be em-
bedded in a finite dimensional vector space. The dynamics of the state

is then described by recursive ecuations of "bilinear structure".

This paper is a continuation of [1]. We extend the notions of
reachability, controllability and observability in bounded time to ca-
nonical realizations of bilinear i/o maps and we prove that each one of

these conditions is eguivalent to assume that the i/o map is represented

by a realizable series.
1. DEFINITIONS

VLet K be a field and let-U1, 02 and ¥ denote the following spa-

ces:
(a) U, =9, = {ﬁ e kK%~ with compact support}
(b) Y={ye & _{O}}

* This work was supported by CNR-GNAS under NSF-CNR joint research programme.
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U1 X U2 is termed the input svmace and Y the output svace.

DEFINITION. A man f: U1 x U2 -+ Y is a bilinear discrete time,

Stationary i/o map if it satisfies the following conditions:

(i) bilinearitz

f(ku1,u2) = kf(u1,u2); f(u1,ku2) = kf(u1,u2)

f{u1 + V1;u2) = f(u1 'uz) # f(v1 ruz)
f(u1,u2+-v2) = f(u1,u2)*-f(u1;V2)

for any k € K, Uyr vyE U?, Uy, Vo € U,

(ii) stationarity

the man f is invariant under translation with resmect to time in the

following sense: the diagram

£
U.I x U2 —_— Y
(1.1 Ul £ l%e
U,] X U2 —— ¥

commutes with respect to the shift onerators ¢ and aydefined as

ag: ((-i-ru1(_1)l H,I(O)}, (---ruz(—1)r 112(0))) s
((...,'L].1(—1), u1(0)ro)r (-‘-ruz(_1)r UZ{O),O))

Gt (Y1), ¥(2),..0) > (v(2), ¥(3),...)

REMARK. The space K[z;1} X K[z£1] is endowed with a K[o] - modu-

le structure via the operation

-1 -1 A -1 . -
o K[z1 1 x K[zz 1~ K[Z1 1= Kl:z2 ]: (Pyrpy) » (211p1,22792 ;
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in this way U, x U, can be identified to theK[o¢]-module K[z;1]x K[z;1].

It is also obvious in what sense the ring of formal power series
in one indeterminate z K[[z]] ("causal" power series), denoted bchEDﬂ],

is a K[z“1]—module and is identified to the K[oy]-module Y.

Polynomials and nower series are then alternativeways of viewing
the elements of U1, U2 and Y; thus we shall not distinguish between the

two representations.

REMARK. The polynomial notation is particularly useful in re-
presenting i/o relations. In fact, let (2122)K[[21,22]] be the ring
(without identity) of "causal" power series, denoted by Kc[@1,22]} Con-

; _ 1.9 ‘ o
sider s € K_[[z4,2,]], s = Is;, 2323 and assume that thecoefflclentsij
represents the output at time 1 for inputs u1::z;l, u, = zgj. Then for
any input pair u; € K[z;1], u, € K[z£1] the output can be represented by
the formal power series in (2122) given by:

y = f(u1’u2) e )r

p Y(r){zgz,

-8

_ -1 -1 r
= s u1(z1 )u2(z2 ) ® Er(z122)
where ® denotes the Hadamard nroduct:

.zlz] ® I,

J
1342152123 14

J o i
133149142122

i
bijz1z2 =
We have thus introduced a biunigue correspondence between i/o

maps and "causal" power series in two indeterminates.

The Nerode eqguivalence relation ~ [2] is naturally defined in
U1 x Uz: two input pairs (u1,u2) and (VT,VZ) are Nerode . equivalent iff
the outpbut sequences f(u1,u2) and f(v1,v2) are the same and remain the
same whenever both (u1,u2) and (v1,v2) are followed by an arbitrary in-

put pair {w1,wq) € U1 X U2. More precisely:
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(u,,u,) v (v,,v,) iff f(Gk(u u,) + (w,,w,))
17720 1572 142 1772
= £ (o + )
=f(o v1,v2) w1,w2)
vk €N, V(w,w,) € Uy x U, with length (w,,w,) é(max(degw1,degw2))+1gk.
We denote the Nerode equivalence classes by [u1,u2]:

[ﬁ1,u2] = {(v1,v2) € U, x U2:(v1,v2) ; (u1,u2)}.

The map f is then factorized as in the following commutative dia-

gram:

Ta\
X S U, x u,/v
SR B

The set XN defined by

Xy = { [u1;u2]: (ug,uy) € Uy x Uy} = (U x UZ)/;{

is called the Nerode (or canonical) state snace.

2. EMBEDDING OF XN IN A FINITE DIMENSIONAIL VECTOR SPACE

The following three equivalence relations defined on U1, U, and

Uy x U, respectively play an essential role in our study (see [3,4]):

. Lk _ k
(1) u, : vy iff f(o u1,w2) = f(o v1,w2), vk, sz € Uy,
deg W, < k
A " k _ k
(2) u, 5 vy iBfE f(w1,0 u2) = f(w1,a v2), Yk, Vw1 € U1,

deg wy < k
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(3) (u1,u2) 3 (VT,VZ) iff f(u?,u2) = f(v1,v2).
In [4] it has been proved that
(u1,u2) ; (v1,v2) iff u, ? Vi Uy ; vz,(u1,u2) ; (v1,v2}

The gquotient spaces X1 = U1/} and X2 = Uz/g are naturally endo-
wed with the structure of a linear space. In general the set (U1 X U2)/§
does not admit such a structure but a standard algebraic construction
allows the embedding of U, x U, (i.e. K[z;1] % K[z£1]) in the tensor spa-
ce U; ® U, (i.e. K[z;1,zg1]). It follows that there exists a linear map

f& making -the following diagram commutative

U, x U
11 2 &
® £
(2.1) U, ® U2———7 ¥
3 l s
(U ® U,)/ker £

where v, is onto and f® is one-to-one.

The map f® induces an eqguivalence relation in U1 ® U2 and it can
be verified immediately (u1,u2) g (v1,v2) it u1®15 = V1®‘h (mod fg).
Thus the equivalence classes under n are naturally embedded in the 1i-

3

® X, ® X, fur-

near space X, = (U, ® U,)/kerf_and the linear space X
3 1 2 b 1 2 3

nishes ‘a natural embedding for the canonical space XN‘

In [1] we related the finite dimensionality of X, @ X, ® X3 to
some properties of the series characterizing the i/o man f. Since some
results presented there are necessary to a better comnrehension of what

follows, we devote the remainina of this section to recall them.

Denote by K[}z)] the ring of rational power series in the inde-
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terminate z and by K[(z1,zz)] the ring of rational power series in z,

and Z5.

The subring of K[(z1,zz)] generated by K[(z1)], K[(zz)] and
K[(ZTZZ)] is denoted by Kréal[(z1,22)] (the ring of "realizable" power

series). The elements in Kreal[(z

1,22)] are power series expansions of
the rational functions whose denominators can be factored in the form
p1(z;1)pz(z;1)p(z;1z£1). A further characterization of realizable series

is given by the following theorem:

and define the

THEOREM 2.1. Let s € K[[z,,2,]], s = Zi4 sijz?zg

following'three families of formal power series Ty cj and dij in one

indeterminate
r., =L s zk i=1,2 " "row series"
17 ok Ti,isk ! e s ===
c. = ; s. : zk 7 j=1,2,... "column series"
] ok Jtk,.J e
d, .= ; <] ; zk i,j=0,1,2,... "diagonal series”
i] o i+k'j+k I ‘ r r r r = = =
- real ; ;
Then s € K [(21,22)] if and only if Ty cj, dij are power series

expansions of rational functions in one indeterminate having common de-

nominator.

The connections among dimensions of X1, X2 and X3 and the struc-
ture of the formal power series s are clarified by Lemmas 2.1, 2.2 and

Theorem 2.2 below.

LEMMA 2.1. Let s € Kc[[21'22]] represent a bilinear i/o map f:

j!

U1 X U2 + ¥. Then X3 is finite dimensional iff the diagonal series di
1,2,... are power series expansions of rational functions having

i,j =

common denominator.

LEMMA 2.2. Let s € Kc[[z1,22]] represent a bilinear i/o map f:




155

U1 X U2 + Y. Then the space X1(X2) is finite dimensional iff the column

series cj, i =1,2,... (row series Ty i=1,2,...) are power series

expansions of rational functions having common denominator.

"THEOREM 2.2. Let s € Kc[[z1,22]] represent a bilinear i/omap f:

U1 x U2 + Y. Then X1 5] X2 @ X3 is finite dimensional iff s is a reali-

zable power series.

3. REACHABILITY AND CONTROLLABILITY OF X. IN BOUNDED TIME

N

The canonical state space XN is intrinsically reachable by defi-

nition. Thus it is worth while to investigate -if X is also controlla-

N
ble and, further, if there is an upper bound for the lengths of inputs
needed to reach (control) reachable (controllable) states. To be more

precise we introduce the following definitions.

DEFINITION 3.1. Xy is reachable in time m if each Nerode equi-

valence class [u1,u2] € Xy contains at least one input of length less

than m + 1. XN is reachable in bounded time if it is reachable in time

m for some m.

DEFINITION 3.2. XN is controllable (to zero state) in time k if

for each Nerode equivalence class [u1,u21 there exists at least one in-

put (w1,w2) of length less that k+1 such that (Gk(u1,u2)+(w1,w2))e DJJﬂ.

XN is controllable in bounded time if it is controllable in time k for

some k.

Reachability and controllability in bounded time are characteri-
stic properties of the canonical state space of bilinear i/o maps repre-

sented by realizable series. This fact is stated in the following

THEOREM 3.1. (reachability and controllability in b.t.). Let

s € Kc[[z1,22]] represent a bilinear i/o map f. Then the following con-
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ditions are equivalent:

; 1 )
(i) S € nga ([z4,2,]]

(ii) XN is reachable in bounded time

(iii) xN is controllable in bounded time

The equivalence (i) < (ii) is proved in [{]. Before proceeding to

prove (i) ¢ (iii), we shall derive two technical lemmas:

LEMMA 3.1. Let f: UT X U2 + Y be a bilinear i/o map. Then there

exist polynomials wy € K[z}i], j = 1,2, such that

1]
-
~
(]

(i) Xj is a K[zg1]-module isomorphic to Uj/(wj), j

(ii) Xj is finite dimensional over K iff w5 #0, J3=1,2

PROOF. Define the map f£,: U, K[[z]]1><w bv the assignment

£, () ='(f(z;1u1,1), f(z;2u1,1)...).

The linear space K[[z]]1)<m admits the structureof a K[z_1]-mo—
dule with scalar multiplication 2;1(51,52,...) = (52,53,...). Hence the

map f1 is a K[z;1]-morphism. For by definition of module scalar multi-

plication:

_‘I _2 o
£.02) 0y = (£02] Wi 1) yE T B Wi 0 4] =

o -1 -2
211(f(z1 i ¢ Tk bag “uged § ieiad s

We therefore have the following commutative diagram
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k(23] =0, — s k[[]] "

s

U1/kerf1

where U,/ker £, is naturally endowed with K[z_1]—module structure and

ker f1 is an ideal in K[z;qj.

A similar argument is used to prove the case j = 2. Tt is imme-
diately verified that u, ? vy if and only if uyg - vy € ker7f1. Hence
X1 = U1/ker f1 is finite dimensional if and only if ker f1= (m1) # (0).

Moreover dim X1 = deg Wy .

LEMMA 3.2. Let f: U1 x U2 + Y be a bilinear i/o map, let X

il
i =1,2 be finite dimensional and let Wy, i=1,2, be as in Lemma 3.1.
. : -1 _~-1 . . - .
Then the image under f® of the ideal wywy R[z1 125 ] is infinite dimen
sional iff dim X3 = o,
PROOF. Take any monomial z;kz;h and make the following decompo-
sitions:
Pl + d < d
z, Wady Ty o eg r, eg w,
a +r deg r, < deg w
2 292 2! % 2
q; = ZE P; + 9y, deg g; < a i 1.0
with a = max (deg Wy r deg mz}.

-k -h _ -a =a ’ -
f®(z1 z, ) = fg((w1z1 p1+-m1g14-r1)(m222 Pyt wyg,+r,)) =

_ -a_-a
= fg(w1wzz1 Z, p1p2)+-f®(m1g1r2)dff®(m2g2r1)+-f®(r1r2) .

Since the degrees of ry and g; are less than a,
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-k_-h
f®(z1 zy -

tor space.

m1w2z;az;ap1p2), h,k = 0,1,... span a finitedimensional vec-

PROOF of (i) & (iii) (controllability in b.t)

(1) = (iii). To prove this implication, we shall show that there exists
an integer k such that for each input (u1,u2) we can find apair (w1,w2)

of length less than k+ 1 satisfying
(3.1 ®(uguy) + (w,,w,) € [0,0]
i 172 1772 ¥

Since by Lemma 3.1 wy and w, are non zero polynomialé, (3.1) is equiva-
-k -k -k -k _

lent to 2, u,;+w1 € (w1), z, u2"+—w2 € (mz), f(z1 u1+-w1,22 uz#—wz) = 0.

Set max (deg w,, deg w,) = a and denote by p; € K[z£1], 1= 9,32,

a pair of polynomials satisfying u1z;a

t g € (w?), deg Py < ay
u225a+-p2 € (wz), deg Py < a. Observe now that reachability in time m
implies the existence of polynomials v, € (wi), deg vy < m,i=1,2, such

that:

=L

-a
(z.I (u1z1

-m -a
t o) 2y (uyz," 4 p,)) ”I; (Vyrvy)e
. -m -m
Hence setting k = m+ a and (w1'W2) = (p,lz1 4—v1,0222 —-vz), we
see that ok(u1,u2)+—(w1,w2) € [C,d]. Consequently XNis controllable (to

zero state) in time k.

(iii) = (i). Assume that XN is controllable in time k. Obviou-
sly this implies controllability in time k of X1 and X2. Hence by Lemma

3% ; w; are non zero and dim Xi = deg wy = n; <o, i=1,2.

By Lemma 3.2, X3 is finite dimensional if dim f®({w1w2)) < o,
1.8+ if f®(w1wzz;lzgj), i,3 =0,1,... span a finite dimensional vector
space. Since XN is controllable to zero in time k, for each monomial

-i -3

z 22

1 + there exist polynomials W, € (wi), deg W < k, 1 =1,2, such
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that

- =K =l =3
0= fgllz1z,y) "2y 2z, wwy) + wywy)

P

_ if
= g*f®(z1 z, )4—f®(w1w2).

Hence 0§ f&(z;122]m1m2), i,j = 0,1,... span a finite dimensional

vector space an so do fa(z;lzgjw1m2), 1,9 2 0,1,0.0

Thus X1 @ X1 @ X3 is finite dimensional and by Theorem 2.2 s is

a realizable series.

COROLLARY. XN is connected in bounded time.

4. OBSERVABILITY OF X, IN BOUNDED TIME

N

L a, zt > &, and introduce the map £, =mof.

. R

Let w: Kciﬂz]] =+ Ky M2
s i

DEFINITION 4.1. Two states [u,,u,] and [v4.v,] in X are distin-

guishable in time m if there exist an integer k andan input(w1,w?) such

that
lenght (w1,w2) <k gm
f(ok{u u,) + (w w))#f(ok(v Vo)t (W, ,w,))
™ 1572 LA m G [REde) 1772

The space XN is called observable in time m when any two states

are distinguishable in time m. XN is observable in bounded time if it is

observable in time m for some m.

A natural continuation of the programme of describianN in terms
of its system theoretic properties is the description of the relation-

ship between observability in bounded time and the structure of the i/o
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map. To be more precise we shall prove the following Theorem.

THEOREM 4.1. (observability in b.t.). Let s ¢ Kc[[21,22]] re-

present a bilinear i/o map f. A necessary and sufficient condition that

s be realizable is that XN is observable in bounded time.

Necessity. Let s be realizable. Then by Theorem 2.2, X1GDX269X3
is finite dimensional with dim X = n, ., i=1,2,3. Assume [ﬁ1,u2] #

# [V1-Vé]- We therefore have three cases to consider.

If (u1,u2) ? (v1,v2), then f(u1,u2) # f(v1,v2). Since Im f® is a
o.-invariant subspace of K[[z]] having dimension n,, it is easy to ve-

rify that
n3 i
(4.1) f i (2122) © (f(u1:u2)— f(V1,V2)) # 0
This implies that [u1,ué] and [v1,v2] are distinguishable in time ny.
If (u1'u2) g (v1,v2), assume u, ? V- Hence f1(u1) # fT(V1} im-

plying f(uiz;k,11 # f(qu;k,1) for some positive integer k ¢ n,. Thus
£(o™ (ug,u,) + (0,1)) # £(5 (vy,v,) + (0,1))
1' 2 r 1' 2 r

Recalling (4.1) we have

£ (0k+h

’ (uguy) 0 (0,1)) £ £ (FN (v vy 4o 0,1))

for some non negative integer h g n,. Hence [u1,u2] and [VT'VZJ are di-

stinguishable in time ny+ng.

If (u1,u2) g (v1,v2) and u, é V,r We can use analogous arguments

to show that [p1,u2] and [v1,v2] are distinguishable in time n,+ n,. It

3 2
follows that [u,,u,] and [b1,v2] are  distinguishable in time
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m = max(n3+-n1, n34-n2).
As a noticeable conseguence of the proof above, there exists a
finite set of experiments sufficient to distinguish two Nerode states in

bounded time.

Sufficiency. Assume that XN is observable in time m. We shall

prove that X1 ® X, P X3 is finite dimensional.

2
Suppose X, 1s infinite dimensional. Lets define the map
3 mx m _ =-i-3j+1 _=j+1 ;
g:Uy> K , g(w1)_'(kij}i,j= 1,...m’ kij fﬂ"(u1z1 12, ). Since
f1(u1) =0 implies—g(uq) = 0, then ker f1 € ker g and the quotient

(U1/ker f1)/(ker g/ker f1) is canonically isomorphic to U1/ker g.

This, together with the assumption dim X, = dim(U1/ker f1) = o
gives that ker g/ker f1 is infinite dimensional. Conseqguently we can find

uy € U1 such that g{u1) # 0 and f1(u1) # 0.

Then [u1,O] and [0,0] are indistinguishable in time m. For assu-

ming k € m we have

" e k=1 ke 3
fﬂ(o (u1,0)1-( i 185297, % .b z, )) =
i k-1 oy k-1 "
—fﬂ(o (0,0) + ( Ziaiz1 , I ibiz2 )) =

o) e}
k-1
- P R
= i iblf (u1z1 12Zq ) 0

This contradicts the assumption. A similar result can be proved
for X2.
Assume now dim Xi = n; #w, i =1,2 and dim X3 = ®, Hence recal-

ling Lemma 3.2, f®((w1m2)) is infinite dimensional. Let introduce the

following linear maps

B k[z7,2;'] » K [[2] » E(®) = £ (wqu,p)

L Kc[[zj] 0 o u( aizi) = (a1,a2,...a )
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Now consider an (infinite) set I CNxNsuch that{f(z?lz;]h(i,j)e I}
is a Hamel basis for f(K[z;1,z£1]}. Since the series s canbe written in
the form [5]:

s = (N + S‘:")/m?w2

-h_-k

EYa— = i =
where s¥* = (2122) sh,k zZ, 2, , a max (deg Wy, deg mz),

z
-1 -1 (k| 2= =4,
N EK[Z1 2, |, it follows that f®(w1w2z1 z,”) = O when |i-3] > a. Hence

each pair (i,Jj) in I satisfies the condition |i-j| ¢ a.

Choose in I m+ 1 pairs (i1,j2),(i2,j2),...,(i 1) so that

m+1’jm+

iz, j2 > max(i1,j1) + a

13, j3 o2 max(iz,jz) + a

(4.2)
m+1 Imer max(lm’jm) ta
Since the range of p is m-dimensional we have that
m+1 . .
= -iy _-dx .
T O f(kE1 o Zy z, ) # O for some list of scalars Ogr Onreee Op oy not

- m+1 =i "j
all zero. On the other hand f( & ay Z, k z, k) # 0.

We shall now use the sets of indices and of scalars introduced a-
bove to construct an input pair (m1v1,w2v2) which does not belong to

[0,0] and is indistinguishable from (0,0) in time m.

In fact consider the polynomials

m - 1 i
v.I = I z.I k ' v2 = I ahzzjh
k=1 h=1
] -ix -k =
By (4.2}, v1v2 = & akz1 z, is an element of ker £ and hence
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) = E(vyvy) = £lwgv,,0,v,)

k
O=upueo £( I Oy 2 z, ) = u o f(wTv1,w2v2)

We therefore see that (w1v1,m2v2) and (0,0) are not equivalent
under Nerode equivalence. However they are indistinguishable in time m;

for
£ (ak(m Vi, 0,V,) + (w,,w,)) = £_(w,,w,)
T 19107272 1772 mrr1rt2

if 0 £ k ¢ m and length (w1,w2) &

This contradicts the assumption.

REMARK 1. A finite number of experiments is sufficient to cbser-
ve XN in bounded time. In fact, as proved in the necessity part of Theo-
rem 4.1, these experiments correspond to apply a familyof inputs (0,0),
(O,zz),...,(0,221),(21,0),...,(2?2,0) and then to find the outputsin an
interval of length ns.

REMARK 2. A similar finite procedure can be adopted to charac-
terize the i/o maps represented by realizable series. For, by Theorem
2.1 a realizable series in the indeterminates Z, and z, can be computed

from the first 2n., coefficients of the series in one indeterminate

3
-3
f(21 11)li=ol1f"'l 2111, and f(1122 )ri=1r---v 21’12F
The integers Ny, Ny, Ny are the degrees of the lowest recurrence

polynomials for "column", "row" and "diagonal" series respectively.

5. CONCLUSIONS

We have proved in this paper that the following conditions are e-

quivalent:
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the i/0 map f: U1 X U2 > Y is represented by a realizable series

i s the canonical realization XN is reachable in bounded time

(iii) the canonical realization XN is controllable in bounded time

(iv) the canonical realizqtion XN is observable in bounded time.
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