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Abstract

2D finite codes are defined as families of compact support sequences indexed in Z x Z
and taking values in F™, F a Galois field. Several properties of encoders, decoders and
syndrome decoders are discussed under different hypotheses on the code structure, and
related to the injectivity and primeness of the corresponding polynomial matrices in
two variables.

Dual codes are finally introduced as families of parity checks on a given modular code,
and related to the standard theory of 2D behaviours.

1 Introduction

Since the early seventies, the pioneering work of Forney [1, 2] made it quite clear that
the theory of discrete-time multidimensional linear systems over a finite field provides a
very convenient setting for the analysis of convolutional codes. On the other hand, in the
algebraic contex many questions concerning convolutional codes proved to have answers that
seem quite illuminating and useful for systems and control applications.

However, even if both fields exhibit some common research directions and resort to similar
mathematical tools, the coding point of view is somewhat different from that of linear
systems. Actually, in system theory the interest centers around input-output relations,
while in coding theory what is most important is the set of output sequences of the encoder,
i.e. the internal structure of the code.

Quite recently, the behavioural approach, developed by J.C.Willems [3] for the analysis
of dynamical systems, has been applied to the investigation of 1D and 2D convolutional
codes [4 + 6]. This new framework seems to be quite effective in the 2D case, since it
allows to investigate the internal properties of the code without explicitly referring to the
machinery which underlies the codewords generation and, in particular, without making any
assumption on the ordering of two dimensional data. So, in principle, no artificial notion
of causality in Z x Z, and, consequently, no a priori restriction on the supports of the
signals are needed. Indeed, the finite-support constraint we shall introduce in a while on
two-dimensional codewords does not follow from causality considerations, but corresponds
to the fact that most of 2D information sequences encountered in the applications do not
infinitely extend in Z x Z.

In this comunication we aim to analyse the algebraic properties of two-dimensional convo-
lutional codes whose codewords have finite support, and discuss how they are related with
more general classes of 2D codes, that have been modelled in [6] as 2D complete behaviours.



The paper is organized as follows: in the next section, 2D modular codes are defined and
some fundamental requirements on the encoding and the decoding maps, which translate
into specific constraints on the algebraic structure of the code, are introduced.

As any code can be generated by different encoders, in section 3 we discuss different sets of
necessary and sufficient conditions, which guarantee the equivalence of two encoders. The
analysis is carried out both in the general case and for specific classes of 2D codes, such as
free modular, finite convolutional and finite basic codes.

In the last section, we introduce 2D codes with infinite support (unrestricted 2D behaviours)
as suitable algebraic duals of modular codes. In this context, a dual code can be viewed as
the space of all parity checks that can be applied to a received sequence to decide whether
it belongs to the code.

The existence of a finite set of finite support parity checks for a code C, which allow for an
unambiguous identification of its codewords, a (syndrome decoder) is shown to depend on
both the structure of the dual code and the algebraic properties of the encoders of C.

2 Finite convolutional codes

Let F be a finite field and denote by F7 the set of the sequences indexed on the discrete
plane Z x Z and taking values in F™. In the sequel, it will be convenient to represent the
elements of F7 via formal power series, by associating any sequence w := {w(h, k)} with

the series
> w(h, k)zfah. (2.1)
hk € Z

To avoid cumbersome notations, we will adopt the same symbol both for a sequence and for
the associated power series, and denote the coefficient of 22 in any series w as (w, 2 z¥).
The main advantage in using formal power series is that many linear operators can be
represented by appropriate matrices with elements in Fy := F[zy, 20, 2] L Zy 1], the ring of
2D Laurent polynomials (L-polynomials). This way the fundamental operator properties
find an immediate counterpart in terms of the structure of the corresponding matrices and,
in particular, of their factors.

Definition A matrix G(z1,z2) € F&*" is
e Fi-unimodular, if K = n and det G is a unit in Fy;

o left factor prime (LFP), if for every factorization G = TG, with T(z,25) € Fixk T
is FL-unimodular;

o left zero prime ({ZP), if the ideal generated by the maximal order minors of G is the
ring Fy itself.

A 2D code of length n over F is any subset of 772 . In this paper we will mostly deal
with finite codes, i.e. subsets of FJ whose elements have finite support. By the bijective
correspondence between sequences indexed in Z X Z and formal power series, we identify
each compact support sequence with an element of F%} ,the Fi-module of n-dimensional
row vectors with entries in F.. Accordingly, a 2D finite code C of length n is defined as a
subset of F1L.

In order to introduce a convolutional structure on C, the set of its sequences has to
be endowed with some properties, which constitute the mathematical formalization of very



natural requirements. The most common ones are linearity and shift-invariance, i.e. the
closure of C under shift and superposition.

(a) [Linearity] If wy and wo belong to C, then aw; + Bwy belongs to C for every o and 3
in F.

(b) [Shift-Invariance] w € C implies that v = 2f'z5w € C for every h,k € Z, ie. C is
invariant w.r.t. the shifts in Z x Z along the coordinate axes.

Codes with properties (a) and (b) can be characterized as F4-submodules of F%, and
will be called modular codes. Moreover, as FZ is an F-Noetherian module [7], C is finitely
generated, i.e. there exists a finite set of row vectors g1, go, ..., 8 in F7} such that

k
€= {Z uigi ui € Fx} = {uG:ue FE} = Im:G, (2.2)

i=1
where G(21, z2) denotes the L-polynomial matrix G = col{g, ga, ..., g }-

Once a family of generators has been chosen, the matrix G constitutes an encoder, which
generates all the codewords of C as the information sequence u varies over F§. It may
happen, however, that different information sequences in F% produce the same codeword,
thus resulting indistinguishable at the decoding stage. Such a drawback can be avoided if
and only if G induces an injective map or, equivalently, has full row rank over the field of
rational functions F(z1,22). Since there exist submodules of F} which are not free, not
every modular code admits an injective encoder. Finite codes which are free Fi-modules
are called free modular codes.

Example Let F = GF(2) and consider the modular codes generated by the following
encoders

1 =z =z
Gi(z1,22) = PO 11 zi
=1
1 z %2
Ga(z1,22) = & ka1
_Zl + 1 b)) Z9 + 1
. =
[ s+t (1) uz
Gl = g at) (g amt

As G is full row rank, the code generated by G is a free module.

Even though G is not full rank, the code it generates is free, because the sum of the first
two rows of G5 gives the third one.

Finally, Im, G3 is not free. Actually, G3 is not full rank, so if there were a basis, it would
consist of a single row vector p € F3. The rows of G, being elements of the module
generated by p, should be L-polynomial multiples of p, and this requirement determines p
asp=|[zm+1 zlzgl], modulo a unit factor 27'25%, n,m € Z. Such a vector, however, does
not belong to Im1G3.

To further constrain the structure of C, we can require that its codewords are the solutions
of an autoregressive system of equations, i.e. there exists a finite set of matrices H;; € FI*™,
such that w =37, | 7 w(h, k)zP2E belongs to C if and only if

> w(h—ik - j)HE =0, Y (h,k) € Z x Z. (2.3)

1,]



Thus, letting HT (21, 22) : =3, H zlz2 = [T (21, 22) ... hi(z1,22)], w € C if and only if
wHT (z1,2) = 0. (2.4)

Each column of HT provides a parity check, which can be applied to a received sequence for
testing whether it belongs to the code, and the representation

C=kere HT := {w € F} : wHT (21, 20) = 0}

shows that a finite number of parity checks is sufficient for a complete characterization of C.
The matrix H' (21, z2) will be referred to as a syndrome decoder of C, and the corresponding
codes are called finite convolutional codes. Their structure is characterized by the following
proposition.

Proposition 1 A free modular code C admits a syndrome decoder if and only if C has a
€FP encoder G(zy, 22).

ProoF Let C = Im.G, where G € F5*™ is /FP, and consider a full column rank matrix

HT(23,23) € }"nx(n k), such that GHT = 0.
Clearly, if w € C then w = uG, for some u € F§, and wHT = (uG)HT = u(GHT) =0,
so w € kers HT. On the other hand, if w € F% is in ker+ H”, it belongs to the subspace
of F(21, z2)™ orthogonal to the columns of H”, and spanned by the rows of G. Then there
exists a row vector f € F(zq, z3)* such that

= fG(Zl,ZQ)- (25)

We aim to prove that f is an element of F%. Actually, as G is £FP, there exist [8] two L-
polynomials h(z;) € Flz1, 27 "], k(22) € Fl22, 25 '], and two L-polynomial matrices X (zy, z2)
and Y (21, z2), such that

G(ZI,ZQ)X(ZI,ZQ) = h(zl)Ik and G(Zl, Zz)Y(Zl, Zz) = ]ﬁ?(Zg)Ik. (26)

It entails no loss of generality supposing that f has irreducible entries, f;. So, letting d(z1, 22)
the l.c.m. of the denominators of f;, (2.5) can be rewritten as

dw=[ng ... ng] G, n € Fy, i=1,2,.. (2.7)
Postmultiplying both members of (2.7) by X (21, z2) and Y (2, z2), we obtain

d WX(zl,ZQ) = [nl nk] éX(Zl,Zg) = [n1 ﬂ.k] h(zl)
d WY(Zl,ZQ) = [nl ?’Lk] GYY(Zl,Zg) = {nl nk} k(zz),

respectively. As d,ny,...,n; have no common factors, it follows that d(z1,22) | h(z1) and
d(z1,22) | k(22), and therefore d is a unit in Fy. Thus f belongs to F§ and w to Im+G.

Vice versa, let C = kery HT, with H” ¢ F1}*P and rank r, and consider any £FP G(z1, 22) €

‘F:(tn_r)xn, such that GH T = 0. Using the same arguments as in the first part of the proof,
one shows that C = Im.G W

Remark By the above proof, given any encoder G of a finite code C, each set of generators
for the subspace of F(z1, 22)" orthogonal to the rows of G, constitutes a syndrome decoder
of C. In particular, we can always resort to a rFP syndrome decoder HT, which is unique
modulo a right unimodular factor.



Some specific reliability requirements, concerning the reconstruction of the information
sequences at the decoding stage, justify the introduction of our restriction on the structure
of C. Usually, the received sequence w,. is not in C but, when the transmission system is
well-designed, w,. differs from a codeword w of C in a finite number of points, and therefore
the error sequence e := w, —w belongs to F}. Since an injective encoder G € .Fixn induces
a bijection between F% and C, there exists a decoder G=1(z1, 22) € F(21, 22)™** such that
GG™! = Ij. So, when restricted to the set of the codewords C, G~!(z1, z2) represents the
inverse of the encoding map. The error sequence e, however, needs not to be a codeword so
applying G=1(z1, z2) to w,. gives back the sequence

= woG@ ! = (U@ +eG =ut e,

which differs from the original information sequence by the (possibly infinite) reconstruction
error eG—! =u, —u.

To avoid this kind of catastrophic errors, it is imperative to use an L-polynomials decoder,
that exists if and only if C admits a £ZP encoder G. Analogously with the 1D case, modular
codes generated by a £ZP polynomial matrix will be called finite basic codes.

Example Let F = GF(2). It's easy to check that the following L-polynomial matrix

2zt +1 0 &3
zé‘l z2+1 0

Gi(z1,22) = [

is £ZP, while
2
Gg(zl,zg): |:Z1 +1 0 Z]]

22 +1 Z%+21 0

is £FP but not £ZP, since its maximal order minors have a common zero in (1, 1). Therefore,
no L-polynomial right inverse of G2 exists.

As 2D finite basic codes constitute a proper subclass of convolutional ones, it might
be expected that a characterization of their structure should be possible also in terms of
syndrome decoders. This is actually the case, as stated in the following proposition.

Proposition 2 Let C be a modular code. The followings are equivalent:
(1) C =1ImyG, with G € F¥*™ and (ZP;

(ii) C = kerHT, with HT ¢ fzx(n_k) and tZP.

PROOF (i) = (i) By the Quillen-Suslin theorem [11], there exists an L-polynomial matrix
P(z1, z9) such that
. 6(21722)
UG = 37

is unimodular. The rZP matrix A7 (z1,2) € fgx(nfk), constituted by the last n — k
columns of the inverse matrix U~!(z1, z2) = [LT(21,22) HT(21,22)], satisfies GHY = 0,
and therefore is a syndrome decoder of C.

(ii) = (i) Using the same argument as in the first part of the proof, H (21, 22) can be
column-bordered into a unimodular matrix V(z1, z2) := [LT (21,22) H7(21,22)]. The first
k rows of V—1(z,, z3) provide a ¢ZP encoder G(z1,z2) of C B



3 Equivalent encoders

The above discussion made it clear that a modular code can be generated by different
encoders. In a more algebraic theoretic setting, this amounts to say that an F.-module
admits different families of generators.

Two matrices G1 € F5'*™ and Gy € F2*™ are equivalent encoders (G1 ~ Ga) if they
generate the same code, i.e. if the F1- modules generated by the rows of G; and G; coincide.
This implies that GGy is equivalent to G5 if and only if there exist two L-polynomial matrices
Py € Fi2*%1 and Py € Fi*F2 such that

PGi=G, PG=G (3.1)

When confining ourselves to the class of full row rank encoders (namely, the injective
encoders of free modular codes), we can replace (3.1) with the single equation

Gl UG2J (3.2)

where U(z1, z2) denotes an Fy-unimodular matrix. Indeed, (3.1) and the row rank assump-
tion on (1 and Gg imply that both matrices have the same number, say k, of rows, and P,
and P are k x k L-polynomial matrices. From Gy = PoGy = PoP1Gy we get PoPy = I, and
consequently U(zy, za) 1= Pa(z1,22) is Fe-unimodular. So, when a code C admits a (FP
(¢ZP) encoder, all the injective encoders of C are (FP (¢ZP), too.

As the various subclasses of modular codes introduced in section 2 are characterized by
the existence of suitable (injective, £FP or £ZP) encoders, an important issue is to decide
whether a code C, given through the assignment of an arbitrary encoder G, admits an en-
coder enjoying the aforementioned rank and primeness properties. The following proposition
provides a complete answer.

Proposition 3 Let G(z1,22) be in F¥ kxm with rank k over F(z1,z2). Then there exist two

L-polynomial matrices, G(z1,z) € F kx” EFP and T'(z1,22) € J—'i"k with full column rank,
such that
G(z1,22) = T(21,22)G(21, 22). (3-3)

Moreover, the code C = Im_ G

(1) is free modular if and only if T' factorizes into the product
T(Z1, 22) = T(Zl,ZQ)L(Zl, 22) (34}
where T is rZP and L is a non singular square matrix;

(i) is finite convolutional if and only if T is rZP;
(i4) is finite basic if and only if 7' is rZP and G is ¢ZP.
PRrOOF Let G’ be a k x n L-polynomial matrix, obtained by selecting in G k rows linearly
independent over F(z1,23). Then G = RG', R € F(z, z9)**%. Consider any g.£.f. Q of G
and factorize G/ into QG, G € FE*™ (FP. So G = TG, where T = RQ is an L-polynomial

matrix, by the same reasonings as in the proof of Proposition 1.

(i) Assume that in (3.4) T is 1ZP and L is a nonsingular square L-polynomial matrix, and
consider the factorization G = T(LG). As T is right zero prime, the map 7 : F¥ — f}; is



surjective, and we have Im1G = ImyLG. Being the image of a full row rank matrix, the
code C is free modular.

Vice versa, let C = ImyG be a free Fi-module. Then, there exist a full row rank L-
polynomial matrix G such that Im+G = Im4 G, and two L-polynomial matrices P and P
satisfying

G=PG, G=PC (3.5)

From (3.5) one gets ) }

(PP —1)G =0, (3.6)
and the row rank assumption on G implies PP = I. So P is /ZP and P is rZP.
On the other hand, factorize the matrix T appearing in (3.3) as T = TL, where T is rFP.
Using (3.5), we get T(LG) = G = PG = PPG = PPT(LG), and consequently T = P[PT].
As T is 1FP and P is rZP, it follows that PT is unimodular and T is rZP.
(¢4) and (49¢) Ifin (3.3) T is a rZP matrix, the map T : F§ — F% is surjective and therefore
Im:G = Im4+G. This means that C is finite convolutional when G is /FP, and finite basic
when G is ¢ZP.
Conversely, if InyG = Im.G for some (FP (¢ZP) k x n matrix G, there exists an L-
polynomial matrix P such that G = PG, and therefore

G = (PT)G. (3.7)

As both G and G are /FP, PT is unimodular and T is rZP. Moreover, if G is ¢ZP, G is £ZP
too M

In the remaining part of this section, we shall confine ourselves to finite convolutional
codes. Since these codes can be characterized as kernels of syndrome decoders, it seems
quite natural to ask how two syndrome decoders of the same code C are related each other.
The following proposition provides an equivalence condition for two syndrome decoders, and
shows that, when dealing with encoders of convolutional codes, the equivalence condition
(3.1) can be replaced by a single L-polynomial equation.

Proposition 4 Consider a pair of finite convolutional codes C; = Imy.G; = ket H , i =
1,2. Then C; = C; if and only if

a) there exist two full column rank L-polynomial matrices P; and P, such that
P1G1 = P2G2 (38)
or, equivalently,
b) there exist two full row rank L-polynomial matrices (J; and @3 such that
H{Qy = H3 Q2 (3.9)
PrOOF a) Assume first Imn.G; = ImyG>. By Proposition 3, there exist two rZP L-
polynomial matrices T} and 75 such that
G, =TG;, G;(FP, i=1,2.

Since we have - ~
ImiGl = ImiGl = ImiGg = ImiGg,



we can find an Fy-unimodular matrix U(zy, z2), satisfying G1 = UG2, which, in turn, gives
T TGy = UT; H(TRGh), (3.10)

Tfl and T, ! I-polynomial left inverses of Ty and Ty, respectively. Putting Py := i U and
Py :=UT, " in (3.10), one gets equation (3.8).

Viceversa, assume that (3.8) holds and, using Proposition 3, let G; = T;G;, T; rZP, G; (FP,
i =1,2. This gives (P1T1)G1 = (P2T5)Gs, and, consequently,

G\ = (T7 'P; ' PT»)Gs, (3.11)

where T7 " and P! are rational left inverses of T} and P; respectively. As both G; and G,
are (FP, T; ' P ' P,T is an Fi-unimodular matrix. So, the equivalence chain Gy ~ Gy ~
G2 ~ G5 proves that G1 and G4 are equivalent encoders.

b) If (3.9) holds, we have
wHTQ, =0 & wHT =0

and, similarly,
wHIQ; =0 & wHY =0.

Therefore
kery HY =kerp H] Q1 = kery HY Qy = ker HY .

Viceversa, if H] and HJ are equivalent syndrome decoders, the columns of H and HT
generate the same subspace in F"(z1,22). Hence, there exists a rational matrix L that
satisfies the equation H¥ L = HY. We can column-border L into a full row rank matrix
[L M), so as to get

HT L M)=HY[I N], (3.12)

where M and N are suitable rational matrices. Consider now any tMFD RS~! of [L M],
and rewrite (3.12) as H{ R = H] [I N|S. R is clearly full row rank and, denoting by
Q2J ! any rMFD of [I N|S, we get H{ Q = HT RJ = H] Q3, where both @, := RJ
and ()2 are full row rank W

4 Dual codes

An obvious way to extend the finite codes considered in the previous sections, is to relax the
constraints on the supports of the codewords, thus allowing the codes to include sequences
with infinite supports. This point of view has been adopted in [6], where (infinite) convolu-
tional codes have been introduced by imposing increasingly stronger constraints, typical of
the “behavioural approach” [3,9], on two-dimensional sequences in F%.

In this section we aim to show that every complete and, in particular, convolutional
(infinite) code can be seen as the set of all parity checks that can be applied to an arbitrary
sequence of F%, to decide whether it belongs to a given modular code C.

From an algebraic point of view, this amounts to regard an infinite code as a space of linear
functionals on F%, i.e. as the algebraic dual of a modular code.

Introduce in F* x FZ* the non degenerate bilinear form

{1 P KT gq T



defined by : (u, v}y, = (uv?,1) = Yijez w(i, vl (=i, —3).

Two vectors u € F* and v € F2 are called orthogonal if (u,v),, = 0. Given any modular
code C C FT, its orthogonal complement C* is constituted by all vectors of FT* which are
orthogonal to C. Similarly, every submodule D of F7 identifies an orthogonal complement
DL in FI

We can associate with every v € FI* the linear functional on FI* defined by

folt) = (5 ¥)m (4.1)

and, conversely, every linear functional on FT* can be represented as in (4.1), for an ap-
propriate choice of v € F2. This way the space FZ is identified with L(FT), and several
strong results, which do not hold for arbitrary pairs of dual spaces, are made available [10].

Let C be a modular code, described as the image of the map
G:Ff¥ - F2:umuG,
and consider the map
GT : F — FE v vGT.

As (UG, v), = (uGvT,1) = (u(vGT)T,1) = (u,vGT), then G and GT are dual mappings.
This implies

Im; G = (kerGT)?, (4.2)
and
kerGT = (Im1:G)*t, (4.3)
where
kerGT = {v € FZ : vGT =0}, (4.4)

By (4.2), the F.-submodule of F7, D := kerG”, represents the set of all linear functions
fv(-) we are allowed to apply when deciding whether w € F7 belongs to C, and it will be
called the dual code of C.

Relations (4.2) and (4.3) together, induce a bijective map between the family of modular
codes (i.e. the family of submodules of F7) and a family of specific F-submodules of F2,
namely those that can be described as the kernel of polynomial operators. In the sequel
we will analyse some “internal” properties which characterize infinite codes that can be
described as duals of modular codes. Moreover we aim to investigate how the subclasses of
modular codes considered in section 2, mirror into classes of dual codes having very special
structures.

The submodules of % which can be represented as the kernel of a polynomial matrix,
are exactly those which are close in the pointwise convergence topology, i.e. the so called
“complete dual codes” [6]. A complete dual code D can be characterized as follows: given
an infinite sequence &1 C Sz C ... of finite windows invading Z x Z (so that every point
(i,7) € Z x Z eventually belongs to all the windows of the sequence), a sequence v € F2
is an element of D if and only if there exist codewords vi,va,... in D such that v;|S; =
v|S;, i=1,2,..

In general, to test whether w € F7} is in some modular code C, we resort to parity checks
represented by elements of D, which possibly have an infinite support. This kind of checks
seem quite unsuitable for an algorithmic implementation, so it’s interesting to determine

when the submodule of the finite codewords of the dual code,

Dy:={veD:veFi}=DnF} (4.5)



constitutes a set of parity checks sufficient to decide whether w is in C, namely under which
conditions the equivalence

wel = (w,v), =0, VveDy (4.6)

holds. Being an F.-submodule of 7%}, Dy is finitely generated, that is Dy = Im4 H for some
p % n L-polynomial matrix. Thus {4.6) can be restated as

welC &  wHT =0, (4.7)

where HT (z1,22) can be seen as a syndrome decoder. As shown in section 2, a syndrome
decoder of C can be found if and only C is the image of a £FP L-polynomial matrix. Therefore
the submodule Dy of the dual code D = C provides a set of parity checks, rich enough to
identify the elements of C if and only if C is finite convolutional, in this case it’s natural to
expect that the whole dual code D can be uniquely reconstructed from D;. The following
proposition shows that this is true, indeed, and analyses how the main features of finite
convolutional codes translate, via duality, into properties of the corresponding duals, that
will be called dual convolutional codes.

Proposition 5 [Finite and dual convolutional codes] Let C be a modular code of length n
and D = Ct its dual. The following facts are equivalent:

(a
(b

C is finite convolutional, i.e. C = ker+ H” for some L-polynomial matrix HT;

C = Im.G, for some G /FP L-polynomial matrix;

(d) D=kerGT = {ve F* : vGT = 0} for some GT (FP;

)
)
(¢) D=ImH :={veF :v=uH,ue F.} for some L-polynomial matrix H;
)
(e)

D is the closure, in the pointwise convergence topology on F2, of the Fi-module Dy.

PrOOF (a) < (b) has been proved in section 2.
By resorting to the well-known property of dual maps

(ker+ HT)* = ImH, (4.8)
one gets D = C1 = (kery HT)* = ImH, so that (a) = (c), while
(ImHA)* = ker+ HT (4.9)

implies C = D+ = (ImH)* = ker4 H”, and hence (c¢) = (a).
Analogously, from (4.3) it follows that D = C+ = (Im4+G)* = kerGT and therefore (b) =

:T =
(d), whereas, from (4.2) one gets C = D+ = (kerG' )+ = Imy G, and so (d) = (b).
Finally, the equivalence (c) < (e) has been proved in [6,9]. W

Remark If C = Im.@G is not a finite convolutional code, i.e. G = TG, with G(z1,22)
/FP and T'(z1,z2) a full column rank L-polynomial matrix, which is not rZP, by applying
to a finite sequence w the parity checks associated with the elements of Dy, we cannot
guarantee that w is in C. Indeed, the elements of 7} which belong to ker4 H T are exactly
the codewords of Im4G.

Actually, as the rows of G belong to C, then 0 = GHT = TGHT. Since T is a full column
rank matrix, it follows that G(z1, zg) HY (21, 22) = 0, and therefore Im4+G C ker HT.

10



Conversely, as the columns of H7 span in F™ (21, z2) the vector space orthogonal to the rows
of G, each vector w € kery HT can be expressed as a linear combination over F(z1, z3) of
the rows of G. By the left factor primeness of G, the coefficients of the combination are in
Fi, namely w € Im+G.

It’s worthwhile to remark that the code Im.+G is the minimal finite convolutional code
including C. Actually, if G(z1, z3) is a fFP L-polynomial matrix such that ¢ C Im4 G, there
exists an L-polynomial matrix P(zj,2) such that PG = G = T'G. As T is full column
rank, there exists a left rational inverse T7!(z1,22), so that G = (T~'P)G. Moreover,
since G is /FP and G L-polynomial, T~'P is an L-polynomial matrix, which implies that
Im.G C Imi@.

Example Let F = GF(2) and let C = Im4 (7, where

721 41 1 1 =
G(z1,29) = [ 11 20 ] [Zl 212 0] = T(21, 22)G (21, 22).
A basis for the space orthogonal in F3(21, 22) to the rows of G, consists of the following
vector
H(z1,20) =1+ 22(1+ 20+ 2122) 21 +20 1420+ 2120 + 2125].

H” is a syndrome decoder for the code C := Im4G, which properly includes C. Actually C
includes the sequence w = [z; 1 0], which is not an element of C, but produces an all-zero
pattern when applied to the syndrome decoder H”. Therefore w is recognized by HT as a
codeword.

The reason why the syndrome decoder proves to be unreliable for identifying the elements
of C, is that the totality of the parity checks in ImH is a proper subset of the dual code
D = kerG”. For instance, the infinite sequence

Vi [Zz§ 0 Zzg]
i€Z i€Z

is an element of D which is not in ImH.
Note that, by applying v to the sequence w, we recognize it as an illegal sequence, since
fo(-) ={w,¥) #0, for each ¥ = 2720'v, n,m € Z.

Proposition 2, together with the dual relations (4.2) + (4.3) and (4.8) <+ (4.9), allows to
obtain a characterization of finite basic codes and their duals, which is very close to that
provided by Proposition 5 for convolutional codes.

Proposition 6 [Finite and dual basic codes] Let C be a modular code of length n and
D = C* the corresponding dual code. The followings are equivalent

(a) C is a finite basic code, namely C = Im1G, G (ZP;
(b) C=kero A%, HT vZP;
(c) D =kerGT, GT rZP;
(d) D=1ImH, H ¢ZP R
As underlined by Propositions 5 and 6, the bijective correspondence between modular

codes and dual complete codes, maps, in particular, finite convolutional codes into dual con-
volutional codes. Consequently, internal properties of the different classes of modular codes
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mirror into internal properties of the corresponding classes of dual codes. The analysis of
these properties has been carried out in [6] mainly for dual codes, while an internal charac-
terization of the different classes of modular codes is still unavailable. Indeed, what seems
interesting to understand, is what kind of mutual relations among codewords characterize
a modular code, without taking into account the input-output map which underlies their

generation.
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