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Abstract In this paper, polynomial matrix fraction descriptions (MFD’s) are used as a tool

for investigating the structure of a (linear) convolutional code and the family of its encoders

and syndrome formers. As static feedback and precompensation allow to obtain all minimal

encoders (in particular, polynomial encoders and decoupled encoders) of a given code, a sim-

ple parametrization of their MFD’s is provided. All minimal syndrome formers, by a duality

argument, are obtained by resorting to output injection and postcompensation. Decoupled

encoders are finally discussed as well as the possibility of representing a convolutional code

as a direct sum of smaller ones.

Index Terms Matrix fraction descriptions, convolutional codes, minimal encoders, syn-

drome formers, feedback group.

1 Introduction

Polynomial matrices provide a powerful format for analyzing and compensating the dy-
namical behavior of a linear system, and constitute an indispensable tool for the analysis
of convolutional codes. Underlying the widespread application of polynomial matrices
is often a motivation to achieve a complete parametrization of the solutions to a given
problem, and to obtain an information on their properties basing only on some elemen-
tary matrix manipulations. In particular, as the codewords of a convolutional code are
the solutions of a system of difference equations, a convolutional code can be seen as the
image of a polynomial matrix, and polynomial matrix transformations allow to enlighten
its structure.

Matrix fraction descriptions (MFD’s) of rational matrices provide a very convenient
way of representing rational matrices - and hence multi-input/multi-output linear trans-
formations - as the “ratio” of two polynomial matrices. By far the most useful concept is

∗supported by Fundacão para a Ciência e a Tecnologia

1



that of an irreducible MFD, which allows to achieve a close analogy with an irreducible
(scalar) ratio of two polynomials. In fact, the dynamical complexity of a multivariable
system cannot be easily evaluated from a rational matrix, even when its entries are irre-
ducible, while it is when numerator and denominator matrices of an irreducible MFD are
considered. However, the set of “trivial” common factors that do not affect irreducibility
of a MFD is rather large, as it includes all unimodular matrices. The elimination of an
unimodular common factor possibly induces conspicuous structural modifications on the
numerator and denominator matrices, and in particular on the degrees of their entries, a
phaenomenon that obviously cannot take place in the scalar case. In this respect, it is
often useful to arrive at irreducible MFD’s with denominator and /or numerator matrices
having minimal row (or column) degrees.

The relevance of polynomial matrices and MFD’s in convolutional coding is twofold.
First, they allow to analyze the set of all codewords (the “code”) per se, without explicit
reference to an encoding map. This point of view is somehow typical of coding theorists
[1,2,3,4,5,6,7], but is currently undertaken also in Willems’s behavioral approach to dy-
namical systems [8,9]. On the other hand, a convolutional code can be viewed as the
output space of a linear sequential circuit (the “encoder”) over some finite field F, and
the whole family of its encoders can be investigated by resorting to the MFD’s of their
input/output maps, and to their state space realizations.

In this paper we shall mostly concentrate on the second aspect. Accordingly, an impor-
tant concern will consist in showing that various concepts in convolutional coding theory
have a neat description when encoders and syndrome formers of a code C are represented
by MFD’s, and some classical results [2,5] can be given new and perhaps simpler proofs.
In this respect the first sections of the paper partly exhibit a tutorial character, and are
devoted to reviewing several concepts from the algebra of polynomial and rational ma-
trices. The results of the second part are based on an efficient characterization of those
MFD’s that represent minimal encoders of C, and include some connections among min-
imal, canonical and basic encoders. A simple parametrization of minimal polynomial
encoders is provided, as well as a feedback realization procedure for all minimal rational
encoders. Moreover, duality methods allow to extend the results, without further effort,
to the structure of syndrome formers of C. Finally, we tackle the problem of analyzing
and realizing decoupled encoders. To that purpose, we give first an algorithm, providing
a maximally decoupled encoder, i.e. an encoder associated with the finest decomposition
of the code. Next, we obtain a canonical decoupled encoder, and parametrize, via MFD’s,
all minimal decoupled encoders realizing the finest decomposition of the code.

2 Matrix fraction descriptions of rational matrices

In the following we shall adopt the usual notations F[d] and F(d) for denoting the ring
of polynomial and the field of rational functions with coefficients in an arbitrary field F.
Sometimes, we shall also consider the ring F[d, d−1] of Laurent polynomials, i.e., polyno-
mials in which both positive and negative powers are allowed. If

p(d, d−1) =
∑

m≤i≤M

pid
i, pmpM 6= 0
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is an element of this ring, m = ord(p) and M = deg(p) are called the order and the degree
of p(d, d−1), respectively, and F[d, d−1] is an euclidean domain w.r.t. the difference M−m.
The order (resp. the degree) of a vector of Laurent polynomials is the minimum order
(resp. the maximum degree) of its entries.
Some definitions and results on polynomial and rational matrices are summarized be-
low, for future reference: more details can be found in many textbooks (see, for instance
[10,11,12,13,14]). As subsequent developments do not require higher generality, the poly-
nomial matrices we consider are full (row or column) rank, unless otherwise specified;
moreover, all statements on “left” factors, “left” matrix fraction descriptions, etc can
be couched in “right” terms upon taking transposes. Furthermore, according to a well-
established use in coding theory, all vectors are row vectors and, consequently, matrices
representing linear transformations are applied on the right side.
Unimodular matrices, i.e., square polynomial matrices with polynomial inverse, when ap-
plied on the left and on the right of a matrix Q(d) ∈ F[d]m×p, induce row and column
operations on it. Two matrices P (d) and Q(d) of F[d]m×p are F[d]-equivalent if there exist
unimodular matrices U(d) and V (d) such that

Q(d) = U(d)P (d)V (d)

Let P (d) be a full row rank polynomial matrix in F[d]m×p

(i) P (d) is F[d]-equivalent to its Smith form

S(d) =











γ1(d) 0
γ2(d)

. . .

0 γm(d)

∣

∣

∣

∣

∣

∣

∣

∣

∣

0















,

where γ1(d), γ2(d), . . . , γm(d) are monic polynomials satisfying γi+1(d)|γi(d), i =
1, . . . ,m − 1. They are uniquely determined by P (d) and are called the invariant
polynomials of P (d).

(ii) There exists an unimodular matrix U(d) ∈ F[d]p×p such that

H(d) = P (d)U(d) =











h11(d) h12(d) h1m(d)
h22(d) h2m(d)

. . .

0 hmm(d)

∣

∣

∣

∣

∣

∣

∣

∣

∣

0















where hii(d), i = 1, . . . ,m are monic polynomials satisfying deg hii > deg hji, j < i.
H(d) is called (column) Hermite form of P (d).

P (d) ∈ F[d]m×p is left prime if in all factorizations

P (d) = ∆(d)P̄ (d), ∆(d) ∈ F[d]m×m, (1)

the left factor ∆(d) is unimodular. Left primeness is equivalent to any one of the following
statements:
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(i) (Smith form) the Smith form of P (d) is [Im | 0];

(ii) (Hermite form) the (column) Hermite form of P (d) is [Im | 0];

(iii) (row completion) there exists C(d) ∈ F[d](p−m)×p such that

[

P (d)
C(d)

]

is unimodu-

lar;

(iv) (right inverse) there exists a polynomial matrix M(d) ∈ F[d]p×m such that
P (d)M(d) = Im

(v) (maximum order minors) the greatest common divisor (GCD) of the m-th order
minors of P (d) is 1;

(vi) (polynomial output/ polynomial input) ∀r̂(d) ∈ F(d)1×m, r̂(d)P (d) ∈ F[d]1×p

implies r̂(d) ∈ F[d]1×m;

(vii) (rank condition) P (α) has rank m, for all α ∈ F̄, F̄ the algebraic closure of F.

∆(d) ∈ F[d]m×m is a left maximal divisor (lMD) of P (d) if (1) holds and P (d) = ∆̃(d)P̃ (d),
∆̃(d) ∈ F[d]m×m, implies ∆(d) = ∆̃(d)F (d). The submatrix H(d) ∈ F[d]m×m in the
Hermite form P (d) = [H(d) | 0]U(d) provides an lMD of P (d); any other lMD of P (d) is
given by H(d)V (d), where V (d) sweeps over all m×m unimodular matrices.

Two polynomial matrices M1(d) ∈ F[d]m×p1 and M2(d) ∈ F[d]m×p2 are left coprime if
all left common factors of M1(d) and M2(d) are unimodular, which amounts to say that
[M1(d) | M2(d)] is left prime. Obviously, the left greatest common divisors (lGCD’s) of
M1(d) and M2(d) are the lMD’s of [M1(d) |M2(d)].

Suppose that P (d) has full row rank, with row degrees k1, k2, . . . , km, so that we can write

P (d) =











dk1

dk2
. . .

dkm











Phr + Prem(d) (2)

The leading (or high order) row coefficient matrix Phr ∈ F
m×p is a matrix whose i-th row

comprises the coefficients of dki in the i-th row of P (d), and the ”reminder” Prem(d) is a
polynomial matrix with row degrees strictly less than those of P (d).
P (d) is row reduced if its external degree

∑m
i=1 ki coincides with the internal degree, i.e.

with the maximum degree of its m-th order minors. This happens if and only if Phr has
rank m, or, equivalently, if and only if P (d) exhibits the predictable degree property [2]

deg(v̂P ) = max
i:v̂i(d)6=0

{ki + deg v̂i}, (3)

for all nonzero polynomial vectors v̂(d) ∈ F[d]m (and, obviously, for all nonzero Laurent
polynomial vectors v̂(d, d−1) ∈ F[d, d−1]m). Elementary row operations allow to transform
a full row rank polynomial matrix P (d) into a row reduced one. If P1(d) and P2(d) are
row reduced, and P1(d) = U(d)P2(d), U(d) unimodular, then - modulo a permutation -
the row degrees of P1(d) and P2(d) are the same. As a consequence, when transforming
P (d) into a row reduced matrix, the final row degrees are uniquely determined, up to a
permutation.
If P (d) ∈ F[d]m×m is row reduced, with row degrees k1 ≥ . . . ≥ km and invariant polyno-
mials ψ1(d), . . . , ψm(d), ψi+1|ψi, then we have

deg(ψ1 . . . ψt) ≥ k1 + . . .+ kt, t = 1, . . . ,m− 1
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deg(ψ1 . . . ψm) = k1 + . . .+ km. (4)

Vice-versa, a Smith form diag{ψ1(d), . . . , ψm(d)}m×m whose row degrees satisfy (4) is
equivalent to a row reduced matrix with row degrees k1, . . . , km. This is part of the
content of a remarkable theorem due to Rosenbrock [11].

Any rational matrix G(d) ∈ F(d)m×p admits a left

G(d) = DL(d)−1NL(d) (5)

and a right matrix fraction description (MFD)

G(d) = NR(d)DR(d)−1, (6)

where NL, NR,DL,DR are polynomial matrices of suitable dimensions.

The MFD’s (5) and (6) are irreducible if DL(d) and NL(d) are left coprime and DR(d)
and NR(d) are right coprime, respectively. Any rational matrix G(d) ∈ F(d)m×p has an
irreducible lMFD D̄L(d)−1N̄L(d) [7] and any other lMFD of G(d), D̂L(d)−1N̂L(d) satisfies

[D̂L(d) | N̂L(d)] = ∆(d)[D̄L(d) | N̄L(d)]

for a suitable matrix ∆(d). In case ∆(d) is unimodular, D̂L(d)−1N̂L(d) is irreducible too.
Some irreducible lMFD’s of G(d) have the additional property that

[DL(d) | NL(d)] (7)

is row reduced; in this case, the row degrees of (7) are uniquely determined, up to a
permutation. If (5) and (6) are irreducible lMFD’s and rMFD’s of G(d) ∈ F(d)m×p,
respectively, then there exist suitable polynomial matrices X(d), Y (d), W (d) and Z(d)
such that the generalized Bézout identity [7]

[

X(d) Y (d)
−NL(d) DL(d)

] [

DR(d) W (d)
NR(d) Z(d)

]

=

[

Ip 0
0 Im

]

, (8)

holds.
After commuting in (8) the right-hand matrices, it follows that

[

Ip 0
NL(d) Im

] [

Ip W (d)
0 Im

] [

DR(d) 0
0 Im

] [

X(d) Y (d)
−NL(d) DL(d)

]

=

[

Ip 0
0 DL(d)

]

,

which implies that DR(d) and DL(d) have the same nonunit invariant polynomials and, up
to a nonzero constant factor, the same determinant. Moreover, any two complementary

maximal order minors in [NL(d) | DL(d)] and in

[

DR(d)
NR(d)

]

are associate, so that the two

matrices have the same internal degree [3].

A rational function p(d)/q(d) ∈ F(d) is causal if there exists a formal power series
∑∞
t=0 atd

t

such that

q(d)
∞
∑

t=0

atd
t = p(d).

In case a0 = 0, the rational function is strictly causal. A rational matrix G(d) is causal
(strictly causal) if all its elements are causal (strictly causal).
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Given any Laurent formal power series Â(d) =
∑

tAtd
t ∈ F

m×p((d)) and an integer T ∈ Z,
the truncation operator PT is defined via:

PT : F
m×p((d)) → F

m×p((d)) :
∑

t

Atd
t 7→

∑

t<T

Atd
t (9)

The following are equivalent:
(i) G(d) is causal;
(ii) in any irreducible lMFD G(d) = D(d)−1N(d) the matrix D(0) is nonsingular;
(iii) for all û(d) ∈ F

1×m((d)),

P0(ûG) = P0

(

(P0û)G
)

3 Basic properties of convolutional codes

Convolutional codes are families of sequences (codewords) endowed with particular struc-
tural constraints that can be specified in algebraic terms through equivalent sets of con-
ditions. What set to choose is somehow a matter of taste: in this paper we refer to some
natural operations on codewords that underlie the properties of controllability, observ-
ability [8,11,15,16], shift-invariance and superposition. Afterwards, it will be proved that
these properties confer a convolutional code with a particular structure of vector space.
Let F be a finite field, and denote by

w : Z → F
p : t 7→ wt (10)

any discrete time trajectory with values in F
p. Clearly, w can be represented either as a

bilateral sequence indexed in Z or as a bilateral formal power series with vector coefficients,
ŵ(d) :=

∑

t∈Z
wtd

t. In the sequel we shall use the sequence and the corresponding series
interchangeably, depending on the problem we are dealing with. The support and the span
of a trajectory w (and of the corresponding series ŵ(d)) are the sets

supp(w) = {t ∈ Z : wt 6= 0}
span(w) = [inf supp(w), sup supp(w)],

respectively. The restriction w|I of a sequence w to a certain time interval I ⊂ Z is the
function

w|I : I → F
p : t 7→ wt (11)

The “universe” of all trajectories (Fp)Z is endowed with an F-linear structure, which allows
for superposition of two trajectories and scalar multiplication of a trajectory by elements
of F.
The one-step forward (resp backward) shift of a codeword w, σw (σ−1w):

σw : Z → F
p : t 7→ wt−1

σ−1w : Z → F
p : t 7→ wt+1

is obtained through the multiplication by d (resp d−1) of the corresponding series ŵ(d):

ŵ(d) 7→ d ŵ(d) =
∑

wt−1 d
t

ŵ(d) 7→ d−1 ŵ(d) =
∑

wt+1 d
t.
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The concatenation w(1) ∧

θ

w(2) of two trajectories w(1) and w(2) at time θ is defined as

follows

(w(1) ∧

θ

w(2))t :=

{

w
(1)
t if t < θ

w
(2)
t if t ≥ θ

Definition 3.1 Let B be a subset of (Fp)Z.

(i) B is N -controllable (for some N ∈ N) if, given any two trajectories w(1) and w(2) in
B and an arbitrary time instant θ, there exists a suitable r ∈ B such that

w(1) ∧

θ

r
∧

θ+N
w(2) ∈ B.

If there is an N ∈ N such that B is N -controllable then B is said to be strongly
controllable.

(ii) B is L-observable (for some L ∈ N) if given any two trajectories w(1) and w(2) of B,
such that w(1)|[j,j+L) = w(2)|[j,j+L) for some j ∈ Z, the concatenation w(1) ∧

j

w(2)

is in B.

B is strongly observable if there is an L ∈ N such that B is L-observable.

A trajectory w is left compact if there exists h ∈ Z such that wt = 0, ∀t < h. A
left compact trajectory corresponds to a Laurent power series (with vector coefficients)
ŵ(d) =

∑

t≥h

wtd
t, and we are allowed to multiply any left compact support trajectory ŵ(d)

by an arbitrary scalar Laurent power series s(d) =
∑

τ sτd
τ :

ŵ(d) =
∑

wt d
t 7→ s(d)ŵ(d) =

∑

t

(
∑

i

st−iwi)d
t

Given a nonzero Laurent power series ŵ(d) =
+∞
∑

t=h

wtd
t, wh 6= 0, we call h the order of

w̃(d).

The set F((d)) of scalar Laurent power series with coefficients in F is a field and the universe
of all left compact trajectories F((d))p has the structure of a p-dimensional vector space
over F((d)). When dealing with a family of trajectories B which is an F((d))-subspace of
F((d))p, strong controllability and strong observability are equivalent properties, as shown
in the following proposition.

Proposition 3.2 Let B be an F((d))-subspace of F((d))p. The following are equivalent:

(i) B is strongly observable.

(ii) B is strongly controllable.

(iii) B admits a polynomial basis.
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Proof (i) ⇒ (ii) Suppose that B is N -observable, for some N ∈ N. Denote by B(i) the
F-subspace of B constituted by all trajectories in B with support in [i,+∞). Clearly

. . . ⊇ B(−2) ⊇ B(−1) ⊇ B(0)

and consequently the same inclusions hold for the restriction subspaces

. . . ⊇ B(−2)|[0,N) ⊇ B(−1)|[0,N) ⊇ B(0)|[0,N)

We prove first that B(−r)|[0,N) = B(−r−1)|[0,N), for some r ∈ N implies B(−r)|[0,N) =

B(−k)|[0,N) ∀ k ≥ r. In fact, suppose that B(−r)|[0,N) = B(−r−1)|[0,N) and let s ∈

B(−r−2)|[0,N), i.e., s = w|[0,N) for some w ∈ B(−r−2). As (dw)|[0,N) ∈ B(−r−1)|[0,N) =

B(−r)|[0,N) we have that (dw)|[0,N) = w̃|[0,N) for some w̃ ∈ B(−r). The N -observability of B

implies that w̃
∧

0
dw ∈ B(−r), and consequently s = (d−1(w̃

∧

0
dw))|[0,N) ∈ B(−r−1)|[0,N).

Therefore
B(−r)|[0,N) = B(−r−1)|[0,N) ⇒ B(−r−1)|[0,N) = B(−r−2)|[0,N)

and B(−r)|[0,N) = B(−k)|[0,N) ∀ k ≥ r.

Second, note that there exists a trajectory w ∈ B(0) that doesn’t belong to B(1), and

w|[0,N), (dw)|[0,N), . . . , (d
N−1w)|[0,N)

are linearly independent over F, which implies that dimFB|[0,N) ≥ N . We have therefore
shown that r ≤ N(p − 1) and

B|[0,N) = ∪
N(p−1)
i=0 B(−i)|[0,N). (12)

Finally, consider any two trajectories w(1) and w(2) in B. Given any k ∈ Z, time-invariance
and linearity of B imply

w(1)|[k,k+N) − w(2)|[k,k+N) ∈ B|[0,N)

and, by (12), there exists w(3) ∈ B, with support in [k −N(p− 1),+∞) such that

w(3)|[k,k+N) = w(1)|[k,k+N) − w(2)|[k,k+N)

Since w(2) + w(3) and w(1) coincide on the interval [k, k +N) and B is N -observable, the
signal given by

wt =







(w(2) + w(3))t if t < k

w
(1)
t if t ≥ k

is a trajectory of B. Moreover

(w(2) + w(3))|(−∞,k−N(p−1)) = w(2)|(−∞,k−N(p−1))

gives
w = w(2) ∧

k−N(p−1)
(w(2) + w(3))

∧

k

w(1)
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which proves that B is N(p− 1)-controllable.

(ii) ⇒ (iii) Suppose C is N -controllable, and let G(d) ∈ F((d))m×p be a generator matrix
of C, i.e., a matrix whose rows constitute a basis for C. As premultiplication of G(d) by
a nonsingular M(d) ∈ F((d))m×m still gives a generator matrix, we can assume that each
row of G(d) includes only nonnegative powers of d and has nonzero constant term.
If G(0) is not full rank, let ĝk(d), k > 1, be the first row of G(d) with the property
that ĝk(0) linearly depends on the previous rows of G(0) and consider the space S of
F((d))-linear combinations of the first k − 1 rows of G(d)

ĉ(d) =
∑

j

cjd
j = â(d)





ĝ1(d)
. . .

ĝk−1(d)



 , â(d) ∈ F((d))k−1 (13)

Because of the F-linear independence of the first k−1 rows of G(0), the order of the series
ĉ(d) in (13) coincides with the order of â(d). This implies that two series ĉ(1)(d) and
ĉ(2)(d) in S coincide up to the degree ℓ if and only if the same holds for the corresponding
â(1)(d) and â(2)(d).
Clearly S includes some power series in F[[d]]p that fits at least the constant term of
ĝk(d), and possibly its higher terms up to some finite degree ν. However, the value of ν
is uniformly bounded, as ĉ(d) varies in S. Otherwise, we could find an infinite sequence
of polynomial vectors â(1)(d), â(2)(d), . . ., with deg(â(i)) = i, such that the corresponding
ĉ(i)(d) ∈ S fit ĝk(d) up to the degree i. As â(i)(d) and â(i+1)(d) agree up to the degree i,
i = 1, 2, . . ., we could define the series â(d) := limi→∞ â(i)(d) ∈ F[[d]]k−1, which allows to
express ĝk(d) as a combination of the first k − 1 rows of G(d), a contradiction.
If ν̄ denotes the maximum value of ν, corresponding to some k−1-tuple ˆ̄a(d) = [ˆ̄a1(d) . . . ˆ̄ak−1(d)],
in the generator matrix

G′(d) :=

























1
. . .

1
−[d−ν̄ ˆ̄a1(d)] . . . −[d−ν̄ ˆ̄ak−1(d)] d−ν̄

1
. . .

1

























G(d)

the first k rows of G′(0) are independent over the field F. Upon iterating the above
procedure, if further rows of G′(0) linearly depend on the previous ones, we can ultimately
assume that the generator matrix

G(d) =





ĝ1(d)
. . .

ĝm(d)





does not include negative powers, and G(0) has rank m.
As C is N -controllable, there exist sequences r1, . . . , rm such that

p1 = g1
∧

1
r1

∧

N+1
0

. . . . . . . . . . . . . . .
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pm = gm
∧

1
rm

∧

N+1
0

are finite support elements of C, and the degrees of the corresponding polynomial vectors
p̂1(d), . . . , p̂m(d) in F[d]p do not exceed N . As

P (d) :=





p̂1(d)
. . .

p̂m(d)





satisfies P (0) = G(0), the polynomial matrix P (d) is full row rank and, hence, a generator
matrix of C.

(iii) ⇒ (i) The hypothesis implies that there exists an m×p polynomial generator matrix,
G(d), of B, such that

B = {ŵ(d) ∈ F((d))p : ŵ(d) = û(d)G(d), ∃û(d) ∈ F((d))m}.

Consider two unimodular matrices U(d) and V (d) such that

Γ(d) = U(d)G(d)V (d)

where Γ(d) = [Γ̃(d) | 0] is the Smith form of G(d). Clearly, the polynomial matrix
G̃(d) := U(d)G(d) is a generator matrix of B, too.
From

ŵ(d) = û(d)G̃(d)

it follows that

ŵ(d)V (d) = û(d)G̃(d)V (d)
= û(d)Γ(d)
= û(d)[Γ̃(d) | 0].

Upon partitioning V (d) into [V (1)(d) | V (2)(d)], where V (1)(d) ∈ F[d]p×m and V (2)(d) ∈
F[d]p×(p−m), we have that

ŵ(d) ∈ B ⇔ ŵ(d)V (2)(d) = 0.

The polynomial matrix V (2)(d) can be expressed as

V (2)(d) = V0 + V1d+ · · · + VNd
N ,

Vi ∈ F
p×(p−m) and N ∈ N, and therefore we have

ŵ(d) ∈ B ⇔
N

∑

i=0

wt−iVi = 0 ∀t

If w(1) and w(2) are any two trajectories of B such that

w(1)|[k,k+N ] = w(2)|[k,k+N ]

10



for some k ∈ Z, the trajectory w(1) ∧

k

w(2) ∈ F((d))p satisfies

(w(1) ∧

k

w(2))t :=











w
(1)
t if t < k

w
(1)
t = w

(2)
t if k ≤ t ≤ k +N

w
(2)
t if t > k +N

,

and consequently,
N

∑

i=0

(w(1) ∧

k

w(2))t−iVi = 0 ∀t.

This implies w(1) ∧

k

w(2) ∈ B, i.e. B is (N + 1)-observable.

Remark: The equivalence between strong observability and strong controllability stated
in Proposition 3.2 does not hold anymore in Willems’ behavior theory [8,9], where “bi-
lateral” signals (i.e., signals whose support can be any subset of Z) are considered. If we
restrict to Willems “complete” behaviors, i.e., to families of bilateral trajectories that can
be described as kernels of polynomial matrices, controllable behaviors are kernels of right
prime matrices (or, equivalently, images of polynomial matrices) while all complete be-
haviors are observable. So, for complete bilateral behaviors, controllability always implies
observability, but the converse does not hold.

Corollary 3.3 If C ⊆ F((d))p is an F((d))-subspace, N -controllable but not (N − 1)-
controllable, then C admits a polynomial basis of degree N , but it doesn’t admit any one
of degree N − 1.

Proof From the proof of Proposition 3.2, it follows that the N -controllability of C implies
that C admits a polynomial basis of degree N . To see that it doesn’t admit a polynomial
basis of degree N − 1, suppose that P (d) ∈ F[d]m×p is a polynomial generator matrix for
C, with row degrees not greater than N − 1, and consider two arbitrary elements of C, say
w(1),w(2). Then ŵ(1)(d) = û(1)(d)P (d) and ŵ(2)(d) = û(2)(d)P (d) , for suitable û(1)(d)
and û(2)(d) in F((d))m. Defining u := u(1) ∧

θ

u(2), it follows that ŵ(d) := û(d)P (d) is in C

and, for all θ ∈ Z, w satisfies w = w(1) ∧

θ

r
∧

N−1+θ
w(2) for a suitable r, i.e., C is (N − 1)

-controllable.

Definition 3.4 A [p,m]-convolutional code C is a strongly controllable (or, equivalently,
a strongly observable) m-dimensional F((d))-subspace of F((d))p.

Remark Different definitions of a convolutional code have been considered in the litera-
ture. In most cases they are equivalent each other; sometimes, however, new approaches
provide interesting generalizations. An useful survey can be found in [16]. Convolutional
codes were first introduced as images of polynomial or rational matrices [17]. In the late
1960’s, Massey and Sain [18] described a convolutional code as the output space of a lin-
ear, time-invariant system, thus establishing the first connection between systems theory
and convolutional coding. This approach was largely reinforced by Forney [1,2,3,4], and
it was used thereafter in most of the coding literature. The behavioral approach to linear
systems, introduced in the late 1980’s, seems to represent a very natural setting for investi-
gating a convolutional code, as a code is simply a set of trajectories (codewords). Loeliger
and Mittelholzer [15] were probably the first who adopted this point of view, when they
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defined a convolutional code over a group as a time-invariant, strongly controllable and
strongly observable group code. In Proposition 3.2, we show that when considering convo-
lutional codes constituted by left compact sequences over a finite field, strong observability
and controllability properties are equivalent to the existence of a polynomial basis, i.e.,
to the existence of a polynomial generator matrix, which was the primitive definition of
convolutional code.

Some basic properties a convolutional code is endowed with are an immediate consequence
of the above definition. First of all, being closed under scalar multiplication by elements
of F((d)), C is closed under forward and backward shifts, and is an F[d] and an F[d−1]-
module as well. Moreover, as shown in Proposition 3.2 above, C admits a polynomial
basis, and consequently all codewords can be viewed as outputs of some moving average
(i.e. “feedback free”) linear model.

Definition 3.5 Any m × p rational (in particular, polynomial) matrix G(d) whose rows
provide an F((d))-basis for a [p,m]-convolutional code C is called an encoder of C, and C
is the image of G(d), in the sense that

C = {ŵ(d) : ŵ(d) = û(d)G(d), û(d) ∈ F((d))m}.

4 Encoder structure

Let C denote a [p,m]-convolutional code and G(d) any encoder of C. Then

G̃(d) = T (d)G(d) (14)

parametrizes all the (rational) encoders of C, as T (d) ranges over the linear groupGL(m,F(d))
of nonsingular rational m ×m matrices. Two m × p rational matrices are equivalent en-
coders if the codes they generate are the same. As a consequence of (14), two encoders are
equivalent if and only if they differ each other by a rational nonsingular left factor, which
amounts to say that the sets of their rows provide two rational basis for the same rational
subspace VC of F(d)p.

We first restrict our attention to polynomial encoders of a given code C. Basing on the
results of Section 2 it is easy to prove that C admits

• basic encoders, i.e. encoders with G(d) left prime. They are related to each other
via (14), where T (d) describes the group of m×m polynomial unimodular matrices;

• row reduced encoders;

• canonical encoders [6,19], i.e. encoders with G(d) left prime and row reduced. In
Forney’s terminology, the rows of a canonical encoder constitute a minimal basis for
the rational space VC . Up to a permutation, the row degrees φi do not depend on
the particular canonical encoder. They are called [6] the Forney indices of C, and
∑

i φi is, by definition, the degree of the code.

12



The above polynomial encoders realize some peculiar connections between the spans of
the information sequences and the corresponding codewords.

A polynomial encoder G(d) is basic if and only if for any information signal û(d), the
support of û(d) and û(d)G(d) have the same minimum point, and, moreover, there exists
a positive integer δ, such that, for all û(d) ∈ F((d))m

sup span(û) ≤ sup span(ûG) + δ (15)

In fact, if G(d) is basic, it has a right polynomial inverse Q(d) = [qij(d)], and û(d) =
[û(d)G(d)]Q(d) implies (15), with δ = max

i,j:qij(d)6=0
{deg qij}. Moreover, since G(0) has full

row rank, the minimum points of the support of û(d) and û(d)G(d) coincide.
Vice-versa, if G(d) fails to be basic, we consider its Smith form

G(d) = V (d)







ψ1(d)
. . .

ψm(d)

∣

∣

∣

∣

∣

0






W (d),

where V (d) and W (d) are unimodular matrices and degψ1 > 0. If ψ1(d) = dk, k > 0, the
minimum point of the support of [ 1 . . . 0 ]V (d)−1 is 0, but the corresponding codeword

starts at t = k. If ψ1(0) 6= 0, the information signal û(d) =
[

1
ψ1(d)

0 . . . 0
]

V −1(d)

has infinite support while the corresponding codeword has not.

On the other hand, when G(d) is row reduced, with row degrees k1, k2, . . . , km, a precise
estimate of the maximum point of the support of û(d)G(d) can be obtained via the pre-
dictable degree property. As we have seen in Section 2, when multiplying a polynomial
vector into a row reduced polynomial matrix, (3) allows to “predict” the degree of the
product independently of the particular values of the coefficients of the polynomial vector.
So we have

deg(ûG) = max
i:ui(d)6=0

{ki + deg ui}, (16)

and a finite support information signal û(d, d−1) = [ û1(d, d
−1) . . . ûm(d, d−1) ] ∈ F[d, d−1]m

produces a codeword û(d, d−1)G(d) with support in (−∞, 0] if and only if deg ûi ≤ −ki, i =
1, . . . ,m.

When dealing with rational encoders, it is quite useful to consider their (left) matrix
fraction descriptions

G(d) = D(d)−1N(d), (17)

where D(d) ∈ F[d]m×m and N(d) ∈ F[d]m×p. It is worth noticing that

• the numerator matrix N(d) is a polynomial encoder of C: just put T (d) = D(d) in
(14);

• if D(d)−1N(d) is an irreducible lMFD, G(d) is a causal encoder if and only if D(0)
is nonsingular;

13



• given a basic encoder Gb(d) ∈ F[d]m×p, all equivalent encoders of C have MFD’s

Ḡ(d) = [D̄(d)]−1[∆(d)Gb(d)] (18)

where ∆(d) and D̄(d) are nonsingular m×m polynomial matrices. In particular (18)
is irreducible if and only if D̄(d)−1∆(d) is irreducible too. So, all causal encoders of
C are represented by (18), when D̄(d)−1∆(d) is irreducible and D̄(0) is invertible.

Remark: Matrix fraction descriptions of the encoders are strongly connected to controlla-
bility system matrices considered by Forney in [4]. Every input/output pair [ŵ(d) | û(d)] ∈
F((d))p+m satisfies

[ŵ(d) | û(d)] = û(d)[G(d) | Im] = û(d)D(d)−1[N(d) | D(d)] = v̂(d)[N(d) | D(d)]

and vice-versa, given v̂(d) ∈ F((d))m, v̂(d)[N(d) | D(d)] is an input/output pair. In case
[N(d) | D(d)] is left prime, [ŵ(d) | û(d)] is polynomial if and only if v̂(d) is polynomial, and
the rows [n̂i(d) | d̂i(d)], i = 1, . . . ,m, of [N(d) | D(d)] provide a basis for the F[d]-module
of all polynomial input/output pairs.

An encoder G(d) of a [p,m]-convolutional code C is noncatastrophic if it maps every infinite
support information series û(d) ∈ F((d))m into an infinite support codeword ŵ(d) =
û(d)G(d).

Proposition 4.1 [2] Given a causal encoder G(d) of C, the following are equivalent:

(i) G(d) is noncatastrophic;

(ii) in any irreducible left MFD G(d) = D(d)−1N(d) the numerator matrix N(d) fac-
torizes into N(d) = ∆(d)N̄ (d), where N̄(d) is a basic encoder and det ∆(d) = αdk,
0 6= α ∈ F and k ∈ N.

(iii) G(d) admits a right inverse A(d)B(d)−1 ∈ F(d)p×m, with detB(d) = βdh, 0 6= β ∈ F

and h ∈ N, or, equivalently, there exists a polynomial matrix M(d) ∈ F[d]p×m such
that G(d)M(d) = dsIm, s ∈ N.

Proof The proof of the equivalence (i) ⇔ (ii) is similar to, but somehow easier than that
of Proposition 9.2, and will be omitted for sake of brevity.
For the implication (ii) ⇒ (iii), consider a polynomial right inverse L̄(d) of N̄(d), so that
G(d)L̄(d)∆(d)−1D(d) = Im. If Ā(d)B(d)−1 denotes any right MFD of ∆(d)−1D(d), just
assume A(d) := L̄(d)Ā(d).
On the other hand, suppose that (iii) holds. Taking into account that D(d)−1N(d)
is irreducible, from D(d)−1∆(d)N̄ (d)A(d)B(d)−1 = Im we get an irreducible left MFD
∆(d)−1D(d) of N̄(d)A(d)B(d)−1. Consequently, det ∆ divides detB = βdh. This proves
implication (ii) ⇐ (iii).

As a consequence of the above proposition, a noncatastrophic encoder G(d) has the char-
acteristic property that the span of each information sequence does not exceed “too much”
that of the corresponding codeword. In fact, part (iii) is equivalent to the existence of a
Laurent polynomial inverse L(d, d−1) =

∑

m≤i≤M

Pid
i, Pm 6= 0, PM 6= 0 of G(d) and

span (û) ⊆ [infspan (ûG) +m, supspan (û) +M ].
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Systematic encoders are rational matrices that reduce to the following structure

G(d) = [Im | G2(d)]

up to a column permutation. Clearly they constitute a special class of noncatastrophic
encoders. Every convolutional code C admits systematic causal encoders: just take a basic
encoder Gb(d) of C, select any m × m submatrix D(d) of Gb(d) with nonsingular D(0),
and consider the equivalent encoder G(d) = D(d)−1Gb(d) . In general, however, they fail
to be polynomial. A necessary and sufficient condition for the existence of a polynomial
systematic encoder is that some (and therefore every) basic encoder of C has a nonzero
constant minor of order m.

5 State space realization and minimal encoders

State space models for convolutional encoders have been considered since many years
[18], and provide a neat framework for classifying encoders complexity by resorting to the
dimension of their minimal realizations.
A linear, discrete time, dynamical system Σ = (A,B,C, J) [4,10,11]

xt+1 = xtA+ utB
wt = xtC + ut J

(19)

A ∈ F
n×n, B ∈ F

m×n, C ∈ F
n×p, J ∈ F

m×p is an n-dimensional realization of a [p,m]
causal encoder G(d) of C if, starting from zero initial conditions, Σ encodes every infor-
mation series û(d) =

∑

t utd
t into the corresponding codeword produced by G(d), namely

ŵ(d) :=
∑

t

wtd
t = û(d)G(d)

This happens if and only if

G(d) = J +Bd(I − dA)−1C

Every causal encoderG(d) can be realized by a linear dynamical system (19). The following
procedure is an adaptation of similar algorithms available in the literature [4,20,21].

1. Rewrite G(d) as
Gsp(d) + J (20)

Gsp(d) strictly causal, and consider a left MFD

Gsp(d) = DL(d)−1NL(d)

such that DL(0) is non singular and

[DL(d) | NL(d)] (21)

is row reduced, with row degrees k1, . . . , km. Suppose for the moment that all row
degrees are strictly positive and let n :=

∑m
i=1 ki.
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2. Denote by Mi the ki × ki nilpotent Jordan block

Mi =











0 1
. . .

. . .

0 1
0











,

and introduce the following matrices

M̄ := Mk1 ⊕Mk2 ⊕ . . .⊕Mkm
, B̄ :=









e1

e1+k1

. . .
e1+k1+...+km−1









,

of dimension n× n and m× n, respectively. It is clear that S(d) := dB̄(In − M̄d)−1

has the following structure

S(d) =











d d2 . . . dk1

d d2 . . . dk2

. . .

d d2 . . . dkm











and, consequently, there exists C ∈ F
n×p such that

NL(d) = S(d)C (22)

3. Rewrite DL(d) as (Im − S(d)Ā)DL(0), for a suitable Ā ∈ F
n×m. Upon defining

A := M̄ + ĀB̄, B := DL(0)−1B̄, (23)

it is easy check that S(d)(In−dA) = (Im−S(d)Ā)B̄d, which impliesDL(d)−1NL(d) =
Bd(In − dA)−1C.

Thus (20),(22) and (23) provide an n-dimensional state space realization of the
encoder G(d).

4. In case ki = 0 for some i, the procedure is the same as above; however the i-th row
in B̄ and in S(d) has to be zero, and the i-th diagonal block Mki

is empty.

In case we start from an irreducible MFD DL(d)−1NL(d) of Gsp(d), the above procedure
provides a minimal realization, in the sense that any other state space realization of the
encoder has dimension greater than or equal to n. Suppose, in fact, that Σ̃ = (Ã, B̃, C̃) is
any realization of Gsp(d), with dimension ñ < n. Then Gsp(d) can be represented as

B̃d(Iñ − Ãd)−1C̃ = R(d)Q(d)−1C̃ = D̃(d)−1Ñ(d)C̃ = DL(d)−1NL(d),

where R(d)Q(d)−1 and D̃(d)−1Ñ(d) are irreducible MFD’s of B̃d(Iñ − Ãd)−1 with

[

Q(d)
R(d)

]

and [D̃(d) | Ñ(d)] (24)
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column (resp. row) reduced. As we have shown in section 2, both matrices in (24) have
the same internal degree, and therefore their external degrees coincide, too. Since the

external degree of

[

dB̃
I − Ãd

]

does not exceed ñ, this is also true for the degrees of (24)

and, consequently, for the (external and internal) degrees of [D̃(d) | Ñ(d)C̃ ] and of (21).
This, however, gives a contradiction, as the external degree of (21) is n > ñ.

We summarize the above discussion in the following Proposition.

Proposition 5.1 Suppose that D(d)−1N(d) is an irreducible left MFD of a causal encoder
G(d) such that

[D(d) | N(d)]

is row reduced, with row degrees k1, k2, . . . km. The minimal dimension µ(G) of a state
realization ofG(d) is called the “McMillan degree ofG(d)” [6,19], and is given by n =

∑

i ki.

A convolutional code C admits infinitely many different encoders. So a natural problem is
that of characterizing which encoders of C have minimal McMillan degree, and hence can
be realized by linear sequential circuits with minimum number of delay elements. They
are called minimal encoders (of C).
It is easy to check that the McMillan degree of a canonical encoder Gc(d) coincides with
the degree of its code C. In fact I−1Gc(d) is an irreducible MFD of Gc(d) and [I | Gc(d)]
is row reduced, the row degrees being the Forney indices φ1, . . . , φm of C.
On the other hand, any other causal encoder G(d) admits an irreducible left MFD

G(d) = D(d)−1[∆(d)Gc(d)]

with D(0) invertible and ∆(d) nonsingular. Moreover, in case [D(d) | ∆(d)Gc(d)] is not
row reduced, left multiplication by a suitable unimodular V (d) produces a row reduced
matrix

[V (d)D(d) | V (d)∆(d)Gc(d)]

with row degrees k1, k2, . . . , km and (V (d)D(d))−1[V (d)∆(d)Gc(d)] is still an irreducible
MFD of G(d). Consequently

µ(G) =
∑

i

ki = extdeg[V D | V∆Gc] ≥ extdeg(V∆Gc) ≥ intdeg(V∆Gc)

≥ intdeg(Gc) = extdeg(Gc) =
∑

i

φi

and deg C =
∑

φi provides the minimum McMillan degree of all causal encoders of C. We
have therefore proved the following Proposition

Proposition 5.2 [2] A causal encoder G(d) of C is minimal if and only if its McMillan de-
gree coincides with deg C.

It is clear that canonical encoders are minimal and it is easy to check that minimal
polynomial encoders are basic. In fact, if G(d) is polynomial and nonbasic, there exists a
nonunimodular left factor ∆(d) such that G(d) = ∆(d)Gc(d), Gc(d) a canonical encoder.
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On the other hand, if [Im | G(d)] fails to be row reduced, there exists an unimodular
matrix V (d) such that [V (d) | V (d)G(d)] is row reduced. Then

µ(G) = extdeg[V | V G] = intdeg[V | V G] ≥ intdeg(V G) = intdeg(G)

= intdeg(∆Gc) > intdeg(Gc) =
∑

φi

The following examples show that the converse inclusions do not hold.

Example 5.1 The canonical encoder

Gc(d) =

[

d4 + 1 d4 d
d3 1 d+ 1

]

has McMillan degree 7. The left MFD U(d)−1Gc(d), with

U(d) =

[

d2 + 1 d2

d2 d2 − 1

]

is an irreducible representation of the polynomial encoder

Gb(d) =

[

−d6 + d5 + d4 − d2 + 1 −d6 + d4 + d2 d2 + d
d6 − d5 − d3 + d2 d6 − d2 − 1 −d2 − d− 1

]

. (25)

Clearly Gb(d) is basic, noncanonical, since (25) fails to be row reduced, and minimal, since

[U(d) Gc(d)] is row reduced with external row degree 7.

Example 5.2 The canonical encoder

Gc(d) =

[

d+ 1 d d
−d −d+ 1 1

]

has McMillan degree 2. The equivalent encoder

G(d) = U(d)−1Gc(d) =

[

d2 + 1 d2

−1 −1

]

−1 [

d+ 1 d d
−d −d+ 1 1

]

is basic, as U(d) is unimodular, and nonminimal. In fact

[U(d) Gc(d)] =

[

d2 + 1 d2 d+ 1 d d
−1 −1 −d −d+ 1 1

]

is row reduced and the sum of the row degrees is 3, so that µ(G) = 3 > µ(Gc).

6 Structure of minimal encoders

The purpose of this section is to characterize the structure of all minimal encoders of a code
C, and to provide a complete parametrization based on their MFD’s. The first Proposition
and the subsequent Corollary are based on a result on polynomial invertibility that traces
back to a classical paper [2] by Forney.

Proposition 6.1 Let G(d) ∈ F(d)m×p be a causal encoder of C. The following are
equivalent:

(i) G(d) is minimal
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(ii) G(d) admits a left MFD
G(d) = D(d)−1Gc(d) (26)

where Gc(d) is a canonical encoder and deg rowiD ≤ deg rowiGc, i = 1, . . . ,m

(iii) G(d) has a right polynomial inverse X(d) ∈ F[d]p×m and a right polynomial inverse
Y (d−1) ∈ F[d−1]p×m

Proof (i) ⇒ (ii) Consider an irreducible left MFDD(d)−1N(d) ofG(d) with [D(d) | N(d)]
row reduced, so that

deg C = µ(G) = extdeg[D | N ] ≥ extdeg(N) ≥ µ(G). (27)

All terms in (27) coincide, so N(d) is a canonical encoder of C and the row degrees in N(d)
are the same as in [D(d) | N(d)] . Consequently the row degrees of D(d) cannot exceed
the corresponding ones in N(d).

(ii) ⇒ (iii) If R(d) denotes a right polynomial inverse of Gc(d), we have that

X(d) := R(d)D(d)

is an inverse of G(d) with entries in F[d].
On the other hand, if φ1, . . . , φm are the row degrees of Gc(d),

G(d) = [diag{d−φ1 , . . . , d−φm}D(d)]−1[diag{d−φ1 , . . . , d−φm}Gc(d)]

=: D̃(d−1)−1Ñ(d−1)

is a left MFD of G(d) in F[d−1]. Since Gc(d) is left prime and row reduced, Ñ(d−1) is full
rank for every d−1 ∈ F̄, and Ñ(0) = (Gc)hr is full rank too. This implies that Ñ(d−1) is
left prime and has a right inverse R̃(d−1) in F[d−1]. So,

Y (d−1) := R̃(d−1)D̃(d−1)

provides an F[d−1] polynomial right inverse of G(d).

(iii) ⇒ (i) Suppose thatD(d)−1N(d) is an irreducible left MFD ofG(d), and [D(d) | N(d)]
is row reduced with row degrees k1, . . . , km. Upon defining

[D̃(d−1) | Ñ(d−1)] := diag{d−k1 , . . . , d−km}[D(d) | N(d)],

consider also D̃(d−1)−1Ñ(d−1), an irreducible left MFD of G(d) over the ring F[d−1], with
D̃(d−1) row reduced.
Let M(d) be a polynomial right inverse of [D(d) | N(d)] and note that the equation
D(d)−1N(d)X(d) = Im implies Im = N(d)[X(d) | Ip]M(d), showing that N(d) is left
prime. By a similar argument one sees that Ñ(d−1) is left prime. This guarantees that
Ñ(0), which is equal to the leading row coefficient matrix Nhr of N(d), has rank m. So
N(d) is row reduced and provides a canonical encoder of C.
Finally, by resorting to

[D(d) | N(d)] := diag{dk1 , . . . , dkm}[D̃(d−1) | Ñ(d−1)], (28)
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we have that the row degrees of D(d) do not exceed the corresponding degrees of N(d). So
the McMillan degree of G(d) is the sum of the row degrees of N(d), and G(d) is a minimal
encoder.

Corollary 6.2 A systematic causal encoder is minimal and a minimal encoder is noncatas-
trophic.

Proposition 6.4 below shows that all minimal encoders of C, and in particular all canonical
and systematic encoders, can be represented as MFD’s whose numerator is a fixed canonical
encoder Gc(d). The proof depends on the following technical Lemma.

Lemma 6.3 Suppose that both [N(d) | D(d)] and its block N(d) are row reduced, with
same row degrees k1, . . . , km. Suppose, moreover, that V (d) is unimodular, and let

[Ñ(d) | D̃(d)] = V (d)[N(d) | D(d)].

If Ñ(d) is row reduced, the same holds true for [Ñ(d) | D̃(d)], and both matrices have row
degrees k1, . . . , km, up to a permutation.

Proof As N(d) and Ñ(d) are row reduced and differ each other by a left unimodular
factor V (d), the row degrees ki of N(d) and k̃i of Ñ(d) coincide, up to a permutation.
So, possibly after multiplying V (d) on the left by a permutation matrix, we shall assume
ki = k̃i, i = 1, . . . ,m. The predictable degree property of N(d) and D̃(d) = V (d)D(d)
imply

deg rowiD̃ ≤ max
j:vij(d)6=0

{deg rowjD + deg vij} ≤ max
j:vij(d)6=0

{kj + deg vij} = k̃i.

Thus k̃i, i = 1, . . . ,m, are the row degrees of [Ñ(d) | D̃(d)], which is row reduced.

Proposition 6.4 Let Gc(d) be a canonical encoder of C.

(i) All minimal encoders of C can be represented as

G(d) = D(d)−1Gc(d),

upon varying the denominator in the set of m ×m polynomial matrices D(d) with
D(0) nonsingular and deg rowiD ≤ deg rowiGc, i = 1, . . . ,m

(ii) All polynomial minimal encoders of C are obtained by restricting denominatorsD(d)
to unimodular matrices.

(iii) All systematic causal encoders of C are given by

G(d) = D(d)−1Gc(d)

where D(d) is any m×m matrix of Gc(d) with D(0) nonsingular.

(iv) Suppose that the row degrees of Gc(d) are non decreasing, and Forney indices
assume q ≤ m distinct values φ′1 < φ′2 < · · · < φ′q, with multiplicity dh, h = 1, . . . , q.

Any other canonical encoder of C, with non decreasing row degrees, is given by

G̃c(d) = D(d)−1Gc(d) (29)
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as D(d) varies in the group of block polynomial matrices of the form













D11 0
D21(d) D22

...
...

. . .

Dq1(d) Dq2(d) · · · Dqq













, (30)

where Dhh ∈ F
dh×dh is non singular, h = 1, . . . , q, and the degree of each entry in

Dhk(d), h > k, does not exceed φ′h − φ′k.

Proof (i) By Proposition 6.1, any minimal encoder G(d) can be expressed as G(d) =
D̃(d)−1G̃c(d), where G̃c(d) is a canonical encoder and D̃(d) is a polynomial matrix whose
row degrees do not exceed the corresponding ones in G̃c(d).
Let V (d) be an unimodular matrix such that V (d)G̃c(d) = Gc(d), and let D(d) :=
V (d)D̃(d). Clearly G(d) can be represented as D(d)−1Gc(d); moreover, by Lemma 6.3,
[D(d) | Gc(d)] is row reduced and deg rowiD ≤ deg rowiGc, i = 1, . . . ,m.

(ii) Since Gc(d) is left prime, D(d)−1Gc(d) is polynomial if and only if D(d)−1 is polyno-
mial, which amounts to say that D(d) is unimodular.

(iii) Every systematic encoder G(d) of C satisfies G(d)P = [Im | G̃2(d)], where P is
a suitable column permutation matrix. If G(d) is causal, it has to be minimal, and
consequently it can be expressed by a MFD

[Im | G̃2(d)]P
−1 = D(d)−1Gc(d),

with D(0) nonsingular. So

D(d)[Im | G̃2(d)] = Gc(d)P

shows that, up to a column permutation, D(d) is an invertible m×m submatrix of Gc(d).
Conversely, assume that, up to a column permutation, D(d) is an m×m invertible sub-
matrix of Gc(d) with D(0) nonsingular. Then there exists a permutation matrix P such
that Gc(d)P = [D(d) |M(d)] and consequently

D(d)−1Gc(d) = [Im | D(d)−1M(d)]P−1

is systematic.

(iv) Suppose that the row degrees φ1, . . . , φm of two canonical encoders G̃c(d) and Gc(d)
are non decreasing and consider an unimodular matrix T (d) such that G̃c(d) = T (d)Gc(d).
As both G̃c(d) and Gc(d) are row reduced, the predictable degree property implies that

φi = deg(rowi(TGc)) = max
j:Tij(d)6=0

{φj + deg(Tij)} (31)

and therefore

deg(Tij) ≤ φi − φj or Tij(d) = 0 if φi > φj ,

deg(Tij) = 0 or Tij(d) = 0 if φi = φj

Tij(d) = 0 if φi < φj
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Clearly T (d) is block triangular and its diagonal blocks must be constant and non singu-
lar. Moreover it is easy to show that both T (d) and D(d) := T (d)−1 satisfy the degree
constraints specified in (iv), and therefore G̃c(d) can be represented as in (29).
Conversely any D(d) as given in (30) is unimodular, and clearly

deg rowi(Gc) = deg rowi(D
−1Gc), i = 1, . . . ,m,

which implies that D(d)−1Gc(d) is canonical.

Remark: A particular choice of matrix D(d) in (30) is described in [4], that allows to
obtain a canonical encoder in echelon form.

7 Abstract states

Given a causal (polynomial or rational) encoder G(d), consider the map

s : F[d−1]m → dF[[d]]p : û(d−1) 7→ (id − P1)(ûG),

that associates to an information signal û(d−1) with support in (−∞, 0] the restriction
to [1,+∞) of the corresponding codeword. The elements of the image of s, i.e. the
free evolutions of the encoder output on [1,+∞), are called the abstract states of the
encoder [2,5]; so, an information signal û(d) ∈ F((d))m induces at time t = 1 the abstract

state given by the codeword restriction (id − P1)
(

(P0û)G
)

. Since Im s is canonically

isomorphic to F[d−1]m/ ker s, the abstract state induced by û(d) can be viewed also as the
coset P0û + ker s in F[d−1]m. In general System Theory, two inputs û1(d) and û2(d) in
F[d−1]m are “Nerode equivalent” [22] if and only if the output sequences they induce on
[1,+∞) are the same, and remain the same whenever both û1(d) and û2(d) are followed by
an arbitrary input v̂(d) ∈ dF[[d]]m. Thus, an abstract state of an encoder can be viewed
as a “Nerode equivalent class” on the information sequences ending at time 0 .

In this section, we shall investigate how some properties of an encoder do reflect into
the structure of its abstract state space, the final goal being a classical characterization of
minimal encoders, due to Forney. In our discussion, we provide in advance a fairly complete
account of different inclusions between the span of an information sequence and that of
the corresponding codeword, and show how they are related to a nontrivial intersection
between the code C and the abstract state space of the encoder.
Let D(d)−1N(d) be an irreducible left MFD of a causal encoder G(d), with N(d) row
reduced and deg rowi(N) = ki, i = 1, . . . ,m, and factorize N(d) into N(d) = ∆(d)N̄ (d),
N̄(d) left prime.

Lemma 7.1 Consider the following inclusion relations

(I) inf span(v̂) ≥ inf span(v̂G), ∀ v̂(d) ∈ F((d))m,

(Sfin) sup span(v̂) ≤ sup span(v̂G), ∀ v̂(d) ∈ F[d, d−1]m,

(S∞) sup span(v̂) = ∞ =⇒ sup span(v̂G) = ∞, ∀ v̂(d) ∈ F((d))m,

(Bfin) span(v̂) ⊆ span(v̂G), ∀ v̂(d) ∈ F[d, d−1]m,
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(B) span(v̂) ⊆ span(v̂G), ∀ v̂(d) ∈ F((d))m.

Then we have the equivalences:

(I) & (Sfin) ⇐⇒ (Bfin) (32)

(I) & (Sfin) & (S∞) ⇐⇒ (B) (33)

Moreover

(a) (I) holds if and only if rankN(0) = m,

(b) (Sfin) holds if and only if deg rowi(D) ≤ deg rowi(N), i = 1, . . . ,m,

(c) (S∞) holds if and only if det(∆) = α dk, α ∈ F\{0}, k ≥ 0.

Proof (32) and (33) are obvious.

(a) rankN(0) = m is equivalent to rankG(0) = m, which is clearly equivalent to (I).

(b) Let deg rowi(D) ≤ deg rowi(N) = ki, i = 1, . . . ,m. Given v̂(d) ∈ F[d, d−1]m, suppose
sup span(v̂G) = ℓ ∈ N. Then û(d, d−1) := v̂(d)D(d)−1 is Laurent polynomial, as

û(d, d−1)[D(d) | N(d)] = [v̂(d) | v̂(d)G(d)]

is polynomial and [D(d) | N(d)] is left prime. Furthermore, since N(d) is row reduced,

deg(ûN) = ℓ =⇒ deg ûi ≤ ℓ− ki, i = 1, . . . ,m

and
v̂i(d) = û(d, d−1)coli(D), i = 1, . . . ,m

implies
deg v̂i ≤ max

0≤i≤m
{deg ûi + ki} ≤ ℓ.

We therefore have sup span(v̂) ≤ sup span(v̂G).
Vice-versa, suppose that deg rowi(D) > ki, ∃i ∈ {1, . . . ,m}. The information sequence
v̂(d) := [0 . . . d−ki . . . 0]D(d) = d−ki rowi(D), is polynomial with degree greater than
zero, and the corresponding codeword,

v̂(d)G(d) = v̂(d)D(d)−1N(d) = d−ki rowi(N)

has degree zero, i.e., sup span(v̂) > sup span(v̂G).

(c) has been already proved in Proposition 4.1.

Proposition 7.2 The code C does not include nonzero abstract states of the encoder
G(d), i.e. (Im s)∩C = {0}, if and only if (I), (Sfin) and (S∞) in Lemma 7.1 simultaneously
hold.

Proof If (I) does not hold, there exists v̂(d) ∈ F((d))m such that inf span(v̂) ≤ 0 and
inf span(v̂G) > 0. By the causality of G(d),

0 = P0(v̂G) = P0

(

(P0v̂)G
)

,
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which implies that the nonzero codeword (P0v̂)G = (id − P1)
(

(P0v̂)G
)

is an abstract

state of G(d).

If (Sfin) or (S∞) do not hold, there exists v̂(d) ∈ F((d))m such that sup span(v̂) > 0 and
sup span(v̂G) ≤ 0. Therefore

0 = (id − P1)(v̂G) = (id − P1)
(

(P0v̂)G
)

+ (id − P1)
(

[(id − P1)v̂]G
)

and by causality, (id − P1)
(

(P0v̂)G
)

= −
(

(id −P1)v̂
)

G 6= 0 belongs to (Im s) ∩ C.

Vice-versa, suppose that (I), (Sfin) and (S∞) hold and suppose that the abstract state of
û(d−1) ∈ F[d−1]m is a codeword, i.e.,

s(û(d−1)) = (id − P1)(ûG) = v̂(d)G(d) (34)

for some v̂(d) ∈ F((d))m. As inf span(v̂G) > 0, (I) implies inf span(v̂) > 0 and, by

causality, v̂(d)G(d) = (id −P1)
(

[(id − P1)v̂]G
)

. By (34), the codeword

(û(d−1) − v̂(d))G(d) = P0(ûG) + (id − P1)(ûG) − v̂(d)G(d) = P0(ûG)

has support in (−∞, 0]. Thus by (Sfin) and (S∞), we have span(û(d−1)− v̂(d)) ⊆ (−∞, 0]
and therefore v̂(d) = (id − P1)(û − v̂) = 0, i.e, s(û(d−1)) = 0.

The following proposition is now an immediate consequence of Proposition 7.2 above.

Proposition 7.3 [2,5,19] The following are equivalent

(i) (Im s) ∩ C = {0},

(ii) G(d) is a minimal encoder,

(iii) span(v̂) ⊆ span(v̂G), ∀ v̂(d) ∈ F((d))m.

Proof Both (i) and (iii) are equivalent to assumption (I) & (Sfin) & (S∞) of Lemma
7.1.
On the other hand, represent G(d) as D(d)−1N(d), with N(d) row reduced, and write
N(d) = ∆(d)N̄ (d), with N̄(d) left prime. By (a) and (c) of Lemma 7.1, conditions (I)
and (S∞) are equivalent to assume that ∆(d) is unimodular (i.e., N(d) is left prime), and
so, by Proposition 6.1, we conclude that (I) & (Sfin) & (S∞) altogether imply and are
implied by the minimality of G(d).

We restrict now our analysis to the abstract state structure of two classes of encoders, i.e.,
minimal encoders and polynomial reduced encoders.
Referring to the representation (26), let G(d) = D(d)−1Gc(d) be a minimal encoder, and
ki ≤ φi be the row degrees of D(d). The abstract zero state of the encoder, viewed as a
coset in F[d−1]m/ker s,

ker s = {û(d−1) ∈ F[d−1]m : û(d−1)D(d)−1Gc(d) ∈ F[d−1]p}, (35)

can be computed as follows. If û(d−1) ∈ ker s, then v̂(d, d−1) := û(d−1)D(d)−1 must be
a Laurent polynomial vector, otherwise the upper bound of the support of v̂(d, d−1)Gc(d)
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wouldn’t be finite because of the left primeness ofGc(d). Substituting û(d−1) = v̂(d, d−1)D(d)
into (35), gives deg v̂i ≤ −φi, i = 1, . . . ,m and, consequently,

ker s = {û(d−1) = ŵ(d−1)diag{d−φ1 , . . . , d−φm}D(d), ŵ(d−1) ∈ F[d−1]m}

= {û(d−1) = ŵ(d−1)D̃(d−1), ŵ(d−1) ∈ F[d−1]m},

where D̃(d−1) = diag{d−φ1 , . . . , d−φm}D(d). Taking the Smith form of D̃(d−1)

D̃(d−1) = W̃ (d−1)diag{ψ̃1(d
−1), . . . , ψ̃m(d−1)}Ṽ (d−1),

Ṽ (d−1) and W̃ (d−1) unimodular matrices, we have also

ker s =
{

û(d−1) = m̂(d−1)diag{ψ̃1(d
−1), . . . , ψ̃m(d−1)}Ṽ (d−1), m̂(d−1) ∈ F[d−1]m

}

.

So, the abstract states of G(d) are the cosets, modulo ker s, of the F-linear combinations
of the independent vectors d−iej Ṽ (d−1), j = 1, . . . ,m, 0 ≤ i < deg ψ̃j(d

−1).
Moreover, letting Ñ(d−1) := diag{d−φ1 , . . . , d−φm}Gc(d), the codeword induced by any
information signal û(d−1) ∈ F[d−1]m satisfies

ψ̃1(d
−1)û(d−1)G(d) = û(d−1)Ṽ (d−1)−1









1
. . .

ψ̃1(d
−1)

ψ̃m(d−1)









W̃ (d−1)−1Ñ(d−1) ∈ F[d−1]p

which implies that ψ̃1(d
−1)û(d−1) ∈ ker s.

If G(d) is a row reduced polynomial encoder with row degrees k1, . . . , km, the zero state
ker s consists of all input signals û(d−1) satisfying deg ûi ≤ −ki, i = 1, . . . ,m, and, vice-
versa, this condition implies that G(d) is row reduced. So, the restriction to [1,+∞) of the
codeword induced by û(d−1) ∈ F[d−1]m provides a complete information on the restriction
of ûi(d) to (−ki, 0], i = 1, 2, . . . ,m, and no information on the remaining coefficients of
ûi(d).

8 State feedback and parametrization of minimal encoders

In this section it will be shown that all minimal encoders of C can be obtained from
a minimal one, by applying static feedback and static precompensation to a minimal
state space realization of a canonical encoder Gc(d). In the coding literature, rational
minimal encoders are often synthesized via linear sequential circuits involving feedback
elements [5]. Consequently, modifying feedback elements (and introducing a combinatorial
precompensation circuit) allows to sweep the whole class of circuits that synthesize the
minimal encoders of C.

Suppose that Σ = (A,B,C, J) is the minimal realization of Gc(d) = I−1
m Gc(d), given by

(20), (22) and (23) in section 5. As we have seen, the dimension n of the realization
coincides with the degree

∑

i φi of C. If the state x is feed-back into the system via
a matrix K ∈ F

n×m, the input sequence becomes the sum of the information sequence
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{ut} and the feedback sequence {xtK}, and the state model Σ modifies into Σ(K) =
(A+KB,B,C +KJ, J), as we have

xt+1 = xtA+ [ut + xtK]B = xt[A+KB] + utB
wt = xtC + [ut + xtK]J = xt[C +KJ ] + utJ

- J

?
A,B,C -�


��
-�


��
- -

K �

6
x

wūu
+ +

Fig. 1

Σ

The series x̂(d) :=
∑

t xtd
t, corresponding to the forced state evolution of Σ(K), and the

information series û(d) :=
∑

t utd
t are connected by

x̂(d) = (û(d) + x̂(d)K)Bd(In −Ad)−1,

which implies

x̂(d) = û(d)[Im −Bd(In − dA)−1K]−1Bd(In − dA)−1.

As the output ŵ(d) :=
∑

twtd
t is given by x̂(d)(C +KJ) + û(d)J , the transfer matrix of

Σ(K) is represented by the left MFD

G(K)(d) = [Im −Bd(In − dA)−1K]−1[J +Bd(In − dA)−1C]
= [Im − S(d)K]−1Gc(d).

As K varies in F
n×m, the matrix (Im−S(d)K) describes all polynomial matrices in F

m×m

having Im as constant term and i-th row degree not greater than φi, i = 1, 2, . . . ,m.

If the input of Σ(K) is filtered through an invertible static precompensator M ∈ F
m×m,

the equations of the resulting state model become

xt+1 = xt[A+KB] + utMB
wt = xt[C +KJ ] + utMJ
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and the transfer matrix of the resulting system Σ(K,M) = (A + KB,MB,C + KJ,MJ)
has the following left MFD

G(K,M)(d) = [M−1 −Bd(In − dA)−1KM−1]−1[J +Bd(In − dA)−1C]

= [M−1 − S(d)KM−1]−1Gc(d).

As each minimal encoder of C can be represented as G(d) = D(d)−1Gc(d) , with D(0)
invertible and deg rowiD ≤ deg rowiGc, i = 1, . . . ,m, it is possible to determine a unique
precompensator M = D(0)−1 and a unique state feedback matrix K such that D(d) =
M−1 − S(d)KM−1. We summarize the above discussion in the following proposition,

Proposition 8.1 Let Gc(d) be a canonical encoder of a [p,m] convolutional code C of
degree n. The set M of all minimal encoders of C is constituted by the transfer matrices
of all systems Σ(K,M) = (A + KB,MB,C +KJ,MJ), obtained by application of static
feedback and (nonsingular) precompensation to a minimal realization Σ = (A,B,C, J) of
Gc(d). Therefore, the set of the pairs (K,M) ∈ F

n×m×Gl(m,F) biuniquely parametrizes
M.

If the encoders are represented as MFD’s in the indeterminate d−1, minimal encoders of
C are MFD’s with the following structure

G(d) = D̃(d−1)−1Ñ(d−1) :=
[

diag{d−φ1 , . . . , d−φm}D(d)
]−1[

diag{d−φ1 , . . . , d−φm}Gc(d)
]

,

where D̃(d−1) describes the set of all m ×m row reduced polynomial matrices with row
degrees φ1, . . . , φm, and Ñ(d−1) is a fixed left prime row reduced polynomial matrix in
d−1. Rosenbrock’s theorem [11], quoted in section 2, shows that the Smith forms of
the denominator matrices D̃(d−1) of minimal encoders comprise all strings of m monic
polynomials ψ1(d

−1), . . . , ψm(d−1) satisfying

ψi+1|ψi
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deg(ψ1 · · ·ψt) ≥ φ1 + . . .+ φt
deg(ψ1 · · ·ψm) = φ1 + . . .+ φm = deg C.

Note that the Smith form of D̃(d−1) provides also the invariant polynomials - and in
particular the minimal polynomial - of the matrix A in any minimal state space realization
of D̃(d−1)−1Ñ(d−1).

9 Syndrome formers

Every [p,m]-convolutional code C can be associated with the orthogonal (or dual) code [3]
of dimension p−m,

C
⊥

:= {v̂
⊥
(d) ∈ F((d))p : v̂

⊥
(d)ŵ(d)T = 0, ∀ŵ(d) ∈ C}.

C
⊥

admits a polynomial basis ĝ1⊥
(d), . . . , ĝ(p−m)⊥(d) ∈ F[d]p and, by Proposition 3.2, it

is N̄ -controllable for some N̄ ∈ N.
It is easy to see that C

⊥
uniquely determines C. Actually, if G

⊥
(d) ∈ F(d)(p−m)×p is any

encoder of C
⊥
, then

ŵ(d)G
⊥
(d)T = 0 ⇔ ŵ(d) ∈ C

The rational matrix S(d) := G
⊥
(d)T ∈ F(d)p×(p−m) is called a syndrome former of C, and

S(d)T (d)

provides all syndrome formers of C as T (d) varies on the group of nonsingular (p −m) ×
(p−m) rational matrices. Once a syndrome former S(d) has been selected, the syndrome
of any ŵ(d) ∈ F((d))p is given by ŝ(d) := ŵ(d)S(d), and ŵ(d) is in C if and only if its
syndrome is zero.

As syndrome formers of C are exactly the transpose of the encoders of C
⊥
, we may expect

that a discussion on syndrome formers structure could mirror that on the encoders of C. A
preliminary, fundamental connection between syndrome formers and basic encoders of C is
provided by the following lemma. It depends on the argument that follows the generalized
Bézout identity (8).

Lemma 9.1 [3] Suppose that Gb(d) ∈ F[d]m×p is a basic encoder of C. Select C(d) in

F
(p−m)×p[d] so that

[

Gb(d)
C(d)

]

is unimodular, and D(d) ∈ F[d]p×m and S(d) ∈ F[d]p×(p−m)

so that
[

Gb(d)
C(d)

]

[D(d) | S(d) ] = Ip.

Then S(d) is a basic (i.e. right prime) syndrome former of C, and its maximal order minors
are equal, up to units, to the complementary maximal order minors of Gb(d)

The above lemma has several interesting consequences. First of all, the degree of C
⊥

is
equal to the degree of C, and row degrees ψ1, . . . , ψp−m of any canonical encoder of C

⊥

satisfy
p−m
∑

i=1

ψi =
m

∑

i=1

φi = degC.
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The transpose of any canonical encoder Gc⊥(d) of C
⊥
,

Sc(d) := Gc⊥(d)T

is a polynomial syndrome former of C, right prime and column reduced with column
degrees ψ1, . . . , ψp−m, that will be called canonical. Consequently, all minimal syndrome
formers of C have McMillan degree

∑p−m
i=1 ψi, and are biuniquely parametrized by the

MFD’s Sc(d)Q(d)−1, as Q(d) sweeps all (p − m) × (p − m) polynomial matrices with
deg coli(Q) ≤ deg coli(Sc), i = 1, . . . , p−m and Q(0) invertible.

When considering the way of operating of a syndrome former S(d), we may ask wheter
its finite support syndromes are all induced by sequences v that differ in a finite number
of positions from some codeword w of C. In other terms, is there any condition on S(d)
guaranteeing that finite support syndromes imply finite support errors?
This problem is quite similar to (non)catastrophic error generation, and the structural
condition on the syndrome former is dual w.r.t the condition on (non) catastrophic en-
coders.

Proposition 9.2 Let P (d)Q(d)−1 be an irreducible right MFD of a causal syndrome
former S(d) of C. The following are equivalent:

(i) for all v̂(d) in F((d))p, if the syndrome v̂(d)S(d) has finite support, then v̂(d)−ŵ(d)
has finite support, for some codeword ŵ(d) ∈ C;

(ii) P (d) factorizes into P (d) = P̄ (d)∆(d), where P̄ (d) is right prime and det∆(d) =
αdk, 0 6= α ∈ F, k ∈ N.

Proof (ii) ⇒ (i) Note that P̄ (d) has a polynomial left inverse L(d) and ∆(d) has a Lau-
rent polynomial inverse. So, if ŝ(d) := v̂(d)S(d) has finite support, ŝ(d)Q(d)∆(d)−1L(d)
has finite support too, and

[v̂(d) − ŝ(d)Q(d)∆(d)−1L(d)]S(d) = 0

This implies that
ŵ(d) := v̂(d) − ŝ(d)Q(d)∆(d)−1L(d) (36)

is a codeword, and v̂(d) − ŵ(d) has finite support.

(i) ⇒ (ii) Suppose that P (d) factorizes into P (d) = P̄ (d)M(d), with P̄ (d) right prime
and M(d) nonsingular, with detM 6= αdk.
The right MFD M(d)Q(d)−1 is irreducible, as any right common factor of M(d) and Q(d)
is also a right common factor of P (d) and Q(d). So, if X(d)−1Y (d) is an irreducible left
MFD of M(d)Q(d)−1, detY = detM implies that detY 6= αdk.
The expansion of Y (d)−1 includes some series with infinite support. So, there exists c ∈ F

m

such that q̂(d) := cY (d)−1 has infinite support and q̂(d)Y (d) is polynomial. On the other
hand,

b̂(d) := q̂(d)X(d)

has infinite support, otherwise q̂(d)[X(d) | Y (d)] would have finite support, which is
unconsistent with the left primeness of [X(d) | Y (d)].
Consider now a polynomial left inverse L(d) of P̄ (d), and the infinite support signal

v̂(d) := b̂(d)L(d) ∈ F((d))p.
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The corresponding syndrome is given by

ŝ(d) = v̂(d)S(d) = b̂(d)L(d)P̄ (d)X(d)−1Y (d) = b̂X(d)−1Y (d) = q̂(d)Y (d)

and therefore has finite support.
Finally, suppose that ŵ(d) is any codeword of C, and consider a basic encoder G(d) of C,
with polynomial right inverse C(d). Then

[

L(d)
G(d)

]

[P̄ (d) | C(d)] =

[

Ip−m ∗
0 Im

]

implies that

[

L(d)
G(d)

]

is unimodular, and the difference

v̂(d) − ŵ(d) = b̂(d)L(d) − û(d)G(d) = [b̂(d) | − û(d)]

[

L(d)
G(d)

]

cannot be finite support, as [b̂(d) | − û(d)] is not.

Remark: In case S(d) satisfies the conditions of Proposition 9.2, let [smin, smax] be an
interval that includes the support of Q(d)∆(d)−1L(d) and suppose that C is ℓ-observable.
If the syndrome v̂(d)S(d) remains zero on an interval [a, b] larger than ℓ+ smax − smin,

• the restriction of v̂(d) to [a+ smax, b+ smin] is the restriction of a legal codeword;
• the restriction of v̂(d)− [(id−Pa)ŝ(d)]Q(d)∆(d)−1L(d) to [a+smax,+∞] is the “tail”

of a legal codeword.
Consequently, if the syndrome remains zero on a suitably large time interval [a, b], a
correction procedure (36) on the received message v̂(d) can be implemented, that uses
only syndrome symbols from time a onwards. The resulting sequence is compatible with
any correction that could have been introduced before time a.

Upon applying arbitrary output injection and static output compensation to a minimal
state space realization of a canonical syndrome former Sc(d) of C, we obtain all minimal
syndrome formers of C.
Actually, suppose that Σ

⊥
= (A

⊥
, B

⊥
, C

⊥
, J

⊥
) is a minimal realization of the canonical

encoder Sc(d)
T of C

⊥
. Then the dual system Σ = (AT

⊥
, CT

⊥
, BT

⊥
, JT

⊥
)

x̄t+1 = x̄tA
T
⊥

+ wtC
T
⊥

st = x̄tB
T
⊥

+ wt J
T
⊥

provides a minimal realization of Sc(d). An output injection stL, L ∈ F
(p−m)×n, modifies

the above equations as follows
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x̄t+1 = x̄tA
T
⊥

+ wtC
T
⊥

+ stL

= x̄t(A
T
⊥

+BT
⊥
L) + wt(C

T
⊥

+ JT
⊥
L)

st = x̄tB
T
⊥

+ wt J
T
⊥

and the transfer matrix of the resulting system Σ(L) = (AT
⊥

+ BT
⊥
L, CT

⊥
+ JT

⊥
L, BT

⊥
, JT

⊥
)

is given by

S(L)(d) = [CT
⊥
d(In − dAT

⊥
)−1BT

⊥
+ JT

⊥
][Ip−m − Ld(In − dAT

⊥
)−1BT

⊥
]−1

= Sc(d)[Ip−m − LX(d)]−1,

where X(d) := (In− dA
T
⊥
)−1BT

⊥
d. If the minimal realization of Gc⊥(d) is obtained via the

procedure of sec. 5 , we have that X(d)T has the following structure

X(d)T =











d d2 . . . dψ1

d d2 . . . dψ2

. . .

d d2 . . . dψm











and, consequently, the matrix Ip−m − LX(d) describes all (p − m) × (p − m) polyno-
mial matrices with constant term Ip−m and ith -column degree not greater than ψi, i =
1, . . . , p−m, as L varies in F

(p−m)×n.
Finally, if the output of Σ(L) is filtered through an invertible nondynamical system N ∈
F

(p−m)×(p−m), we end up with a state space model Σ(L,N) = (AT
⊥
+BT

⊥
L, CT

⊥
+JT

⊥
L, BT

⊥
N,JT

⊥
N)

of a new syndrome former, with equations

x̄t+1 = x̄t(A
T
⊥

+BT
⊥
L) + wt(C

T
⊥

+ JT
⊥
L)

st = x̄tB
T
⊥
N + wt J

T
⊥
N.

and transfer matrix

S(L,N)(d) = [CT
⊥
d(In − dAT

⊥
)−1BT

⊥
+ JT

⊥
][N−1 −N−1Ld(In − dAT

⊥
)−1BT

⊥
]−1
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= Sc(d)[N
−1 −N−1LX(d)]−1. (37)
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Varying N in Gl(p−m,F) and L in F
(p−m)×n, the denominator matrices N−1−N−1LX(d)

in (37) biuniquely represent all (p−m) × (p−m) matrices Q(d) with invertible constant
term Q(0) and column degrees not greater than the corresponding ones in Sc(d). Hence
(37) provides all minimal syndrome formers of C.

10 Decoupled encoders and code decomposition

Consider a [p,m]-convolutional code C, and let p1, . . . , pk be nonzero integers such that
∑k
i=1 pi = p. An encoder G(d) of the code is (p1, . . . , pk)-decoupled if there exist positive

integers m1, . . . ,mk with
∑k
i=1mi = m such that, possibly up to a column permutation,

G(d) = diag{G1(d), . . . , Gk(d)}, Gi(d) ∈ F(d)mi×pi , i = 1, . . . , k.

Upon partitioning an information sequence û(d) ∈ F((d))m into [û1(d) . . . ûk(d)], ûi(d) ∈
F((d))mi , we have

û(d)G(d) = [ŵ1(d) . . . ŵk(d)], ŵi(d) = ûi(d)Gi(d), i = 1, . . . , k,

and therefore
C = C1 ⊕ . . .⊕ Ck (38)

where Ci is the [pi,mi]-convolutional code generated by Gi(d). As a consequence, the
existence of a decoupled encoder for a [p,m]-convolutional code C is equivalent to the pos-
sibility of representing C as an “external” direct sum of k ≥ 2 smaller [pi,mi]-convolutional
codes. This in particular implies that in all codewords of C the values taken by a suitable
set of pi components are completely independent of the values of the remaining set of p−pi
components, and no cross information from either set can be retrieved when implementing
an error correcting procedure.
The purpose of this section is to investigate the existence and the structure of the decou-
pled encoders of C and, in particular, of the minimal ones, and to develop appropriate
algorithms to compute direct summands appearing in (38).
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For sake of simplicity, we shall assume that all columns of the encoders are different from
zero (if not, we just consider codewords with a smaller number of components).

As any encoder of C is full rank, its columns constitute a generator set of F((d))m. The
determination of decoupled encoders of C is straightly connected with the partition of the
columns of its encoders into sets G1, . . . ,Gk such that

F((d))m = spanG1 ⊕ . . .⊕ spanGk.

Definition 10.1 A set of nonzero generators of F((d))m, G = {v̂1(d), v̂2(d), . . . , v̂p(d)}
and a decomposition of F((d))m in direct sum

F((d))m = V1 ⊕ V2 ⊕ . . .⊕ Vk, (39)

are compatible if every vector of G belongs to a summand of (39) (and, obviously, to only
one).

If a generator set G is compatible with (39), it is clear that

(i) Gi := Vi ∩ G, i = 1, . . . , k, provide a partition of G

G = G1 ∪̇ G2 ∪̇ . . . ∪̇ Gk

and Vi = span(Gi), i = 1, . . . , k.

(ii) if B := {v̂i1(d), . . . , v̂im(d)} ⊂ G is a basis of F((d))m, the vectors of Gi are linearly
dependent on Bi := Gi ∩ B.

(iii) there exists a unique finest direct sum decomposition

F((d))m = V̄1 ⊕ V̄2 ⊕ . . . ⊕ V̄h (40)

compatible with G. Each summand of any other compatible decomposition of
F((d))m can be expressed as a suitable sum of some V̄is in (40).

In order to obtain the partition of G = {v̂1(d), . . . , v̂p(d)} associated with the finest de-
composition (40), we select a basis B ⊂ G and introduce on G an equivalence relation as
follows.
For ν = 1, . . . , p, denote by Mν the smallest subset of B such that v̂ν(d) ∈ spanMν

and let v̂i(d) ∼ v̂j(d) if there exists a chain Mi = Mν1 ,Mν2 , . . . ,Mνq = Mj such that
Mνℓ

∩Mνℓ+1
6= ∅, ℓ = 1, . . . , q − 1. It is easy to check that v̂i(d) ∼ v̂j(d) if and only if

v̂i(d) and v̂j(d) belong to the same subspace in the finest direct sum decomposition (40)
compatible with G. From a computational point of view, we arrive at decomposition (40)
through the following steps:

Step 1: Select an m×m nonsingular submatrix B(d) of [v̂1(d) . . . v̂p(d)] and put

V (d) = B(d)−1[v̂1(d) . . . v̂p(d)].

Step 2: Construct the m× p boolean matrix A defined by

Aij =

{

1 if Vij 6= 0
0 if Vij = 0

.
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Step 3: Compute (ATA)p−1 and determine a permutation matrix P ∈ F
p×p such that

P T (ATA)p−1P = diag{N1, . . . ,Nh},

where Ni =







1
...
1






[ 1 . . . 1 ] ∈ F

pi×pi , i = 1, . . . , h.

Step 4: Partitionate [v̂1(d) . . . v̂p(d)]P into

[L1(d)| . . . |Lh(d)], Li(d) ∈ F((d))m×pi , i = 1, . . . , h,

and denote by Gi the subset of G whose vectors are the columns of Li(d), i = 1, . . . , h.

Proposition 10.2 Let G = {v̂1(d), . . . , v̂p(d)} be a set of nonzero generators of F((d))m.
The above algorithm provides the partition of G associated with the finest compatible
decomposition of F((d))m.

Proof We prove first that

v̂i(d) ∼ v̂j(d) ⇐⇒ (ATA)p−1
ij = 1. (41)

Observe that Aij = 1 ⇐⇒ v̂i(d) ∈ Mj .
On the other hand, as (ATA)ij = 1 if and only if there exists s ∈ {1, . . . , p} such that
Asi = Asj = 1, we have

(ATA)ij = 1 ⇐⇒ ∃ v̂s(d) ∈ G : v̂s(d) ∈ Mi ∩Mj

⇐⇒ Mi ∩Mj 6= ∅,

and, more generally, for all n ∈ N

(ATA)nij = 1 ⇐⇒ ∃ν2, . . . , νn : (ATA)iν2 = (ATA)ν2ν3 = . . . = (ATA)νnj = 1
⇐⇒ ∃ν1 = i, ν2, . . . , νn, νn+1 = j : Mνℓ

∩Mνℓ+1
6= ∅, ℓ = 1, . . . , n.

Consequently,
v̂i(d) ∼ v̂j(d) ⇐⇒ (ATA)kij = 1, ∃k. (42)

Since (ATA)ii = 1, i = 1, . . . , p, we have also

(ATA)nij = 1 =⇒ (ATA)n+1
ij = 1, ∀n ∈ N, ∀i, j. (43)

On the other hand

(ATA)nij = 1 =⇒ (ATA)n−1
ij = 1, ∀ i, j ∈ {1, . . . , p}, ∀n ≥ p. (44)

In fact, if (ATA)nij = 1, there exist Mi = Mν1 ,Mν2 , . . . ,Mνn+1
= Mj with Mνℓ

∩
Mνℓ+1

6= ∅, ℓ = 1, . . . , n. As |G| = p, there exist k1 < k2 such that νk1 = νk2 , and
Mi = Mν1,Mν2 , . . . ,Mνk1

= Mνk2
, . . . ,Mνn+1

= Mj satisfies Mνℓ
∩ Mνℓ+1

6= ∅, ℓ =

1, . . . , k1 − 1, ℓ = k2, . . . , n. This, together with (43) imply (ATA)n−1
ij = 1.

(41) follows immediately from (42) and (44).
It is clear now that a permutation matrix P ∈ F

p×p sorts the columns of [v̂1(d) . . . v̂p(d)]
according to the equivalence classes of ∼ if and only if

P T (ATA)p−1P = diag{N1, . . . ,Nh},
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and the equivalence classes of ∼ are constituted by the columns of Li(d) ∈ F(d)m×pi , i =
1, . . . , h, in

[L1(d) | . . . | Lh(d)] = [v̂1(d) . . . v̂p(d)]P.

The partition of the columns of an encoder of C associated with the finest decomposition
(40) of F((d))m, does not depend on the particular encoder and therefore is a code property.
In fact, let G(d) and G̃(d) be two encoders of C, P ∈ F

p×p a permutation matrix, and
consider the column partitions

G(d)P = [G1(d)| . . . |Gh(d)], Gi(d) ∈ F(d)m×pi , i = 1, . . . , h,

G̃(d)P = [G̃1(d)| . . . |G̃h(d)], G̃i(d) ∈ F(d)m×pi , i = 1, . . . , h.

As
G̃(d) = T (d)G(d)

for some nonsingular matrix T (d) ∈ F(d)m×m, it follows that rank Gi(d) = rank G̃i(d), i =
1, . . . , h, and

F((d))m = span G1(d) ⊕ . . .⊕ span Gh(d)

if and only if
F((d))m = span G̃1(d) ⊕ . . .⊕ span G̃h(d).

Therefore, equivalent encoders of C exhibit the same column partitions, compatible with
the finest sum decomposition of F((d))m.

Remark: As step 1 in the above algorithm produces a systematic encoder, in order to
find a column partition associated with (40) we can always assume that the encoder is
systematic, and apply the algorithm, starting on Step 2.

Keeping in the spirit of the previous sections of the paper, we provide now a parametriza-
tion of all minimal decoupled encoders of C. To that purpose we construct first a canoni-
cal decoupled one, starting from a canonical encoder Gc(d), and considering the partition
Gc(d)P = [G1(d)| . . . |Gh(d)], Gi(d) ∈ F[d]m×pi , with rank Gi(d) = mi, i = 1, . . . , h,
compatible with the finest sum decomposition of F((d))m. We select an mi × pi full rank
submatrix of Gi(d), G̃i(d), i = 1, . . . , h and factorize it into

G̃i(d) = Mi(d)Ḡi(d)

where Ḡi(d) ∈ F[d]mi×pi is left prime, and Mi(d) ∈ F[d]mi×mi is a left maximal divisor of
G̃i(d).
If r̂(d) ∈ F[d]1×pi is any row of Gi(d), there exists a rational row vector x̂(d) such that
r̂(d) = x̂(d)Ḡi(d) and therefore r̂(d)Ḡi(d)

−1 = x̂(d). As Ḡi(d)
−1 is polynomial and right

prime, x̂(d) is polynomial too. Consequently,

Gi(d) = Xi(d)Ḡi(d), Xi(d) ∈ F[d]m×mi .

and we have
Gc(d)P = [X1(d)| . . . |Xh(d)]diag{Ḡ1(d), . . . , Ḡh(d)}.
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As Ḡi(d), i = 1, . . . , h, are left prime, so is diag{Ḡ1(d), . . . , Ḡh(d)}, which implies, in
particular, that [X1(d)| . . . |Xh(d)] is unimodular.
For a suitable choice of Xi(d), the submatrices Ḡi(d), i = 1, . . . , h, and therefore also
diag{Ḡ1(d), . . . , Ḡh(d)}, are row reduced. Thus, diag{Ḡ1(d), . . . , Ḡh(d)} = [X1(d)| . . . |Xh(d)]

−1Gc(d)P
is a canonical decoupled encoder of C.

Any other minimal decoupled encoder realizing the finest decomposition of C is given by







D1(d)
. . .

Dh(d)







−1

[X1(d)| . . . |Xh(d)]
−1Gc(d)P =

= [X1(d)D1(d)| . . . |Xh(d)Dh(d)]
−1Gc(d)P,

where Di(d) ∈ F[d]mi×mi is an invertible polynomial matrix, whose row degrees do not
exceed the corresponding row degrees in Ḡi(d) and Di(0) is nonsingular, i = 1, . . . , h.

11 Concluding Remarks

In this paper, several applications of MFD’s techniques to analysis, realization and parametriza-
tion of encoders and syndrome formers of convolutional codes over an arbitrary field have
been discussed.
Related to the basic issue of parametrizing all minimal encoders and syndrome formers
of a code C, some problems naturally arise, that could provide a first natural avenue for
future investigations on the structural side. We mention here the performance evaluation
of different G(d) and S(d), one obtains by varying matrices K,M,L and N , and, in
particular, of encoders and syndrome formers having block diagonal or block triangular
form, and therefore exhibiting some degree of decoupling between inputs and outputs.
A different investigation perspective, that somehow exhibits a stronger coding theoretic
flavor, leads to asking whether the above results can eventually provide good codes and/or
efficient decoding algorithms.

Perhaps more interesting, but definitely more difficult, is the extension of the above point
of view to multidimensional coding theory [23,24], possibly applying the recent framework
of codes defined on graphs [25,26]. As a matter of fact, the results of this paper are
based on effective algorithms for polynomial matrices in one indeterminate, that only par-
tially hold in a more general setting. In particular, a multidimensional counterpart of the
minimality characterization via McMillan degree, considered in sec.5, and the subsequent
parametrization procedure, are unavailable yet. Perhaps a different concept of minimality
should be devised, but it seems there is still a long way to go along, despite several efforts
spent by many researchers in the last few years.
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