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SOMMARTO

Alcuni argomenti classici della teoria della passivita vengono
introdotti e discussi facendo ricorso a metodi dellaTeoria dei

Sistemil .

In particolare, viene investigata la funzione che i concetti
di controllabilitd e di osservabilitd svolgono nel correlare le

proprieti nel dominio del tempo con quelle nel dominio s.

ABSTRACT

Some classical topics of passivity theory are introduced and di
scussed in a system theoretic context. In particular, time do-
main and Laplace transform domain passivity properties are re-
lated, resorting to the controllability and observability con-

cepts.



INTRODUCTION

The investigation of 'passive' physical structures is a traditional
field of Electrical Engineering. Its origins arose from electrical net -
work analysis, and a lot of results were obtained in connection with the
well known problems of "physical realizability'". Recently the introduc-
tion of systém theoretic methods made possible some more steﬁs in the for
mal éxPlanation of dissipativity and energy concepts as well as the intro
duction of very géneral synthesis techniques. In particular, the papers by
Willems [W 1,2] » Anderson [A.I] and others provided a clean and rigo-
rous set up for the study of input/output dissipativity and state model
pIOpértiés. In this context the détermination of enérgy functions of 1i-
near systems has been connected with the solution of suitable optimum
léast Squaré problems.

Thésé mostly theoretical results have been followed by several ap-
plications: it will be sufficient to mention here the introduction of ge-
neral synthesis techniques for passive m—ports, both reciprocal and nonre
ciprocal, on the basis of the so called positive real lemma .

The aim of this report is to present in an‘organized way several in
teresting results in the theory of linear invariant dissipative systems

The first chapter gives a brief introduction to the most relevant
concepts in dissipativity theory. Its kernel is the analysis of the con-
straints the dissipativity requirement imposes on the system matrices.
Great emphasis is given to clarifying the relations among controllability
observability and dissipativity, and to extending all results to the gene
ralized linear systems which constitute the natural framework for network
theory.

The second chapter relates the dissipativity property of alinear sy
stem to the analytical structure of its transfer matrix.

Finally, the third chapter is devoted to the connections among ener
gy functions and matrices A,B,C,Dy expressed by the positive real lemma.
An extension of the energy concept is also considered in connection with

spectral factorization analysis.
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I. DISSIPATIVE DYNAMICAL SYSTEMS

I.1. General properties of dissipative dynamical systems

The aim of this sectlon is to recall in a very compact way how the
concepts of energy and of pa551v1ty can be 1ntroduced in a system theore
tic context., The deflnltlons and the propert1es we w111 consider do not
refer in any way to "the llneerlty hypothe51s Furthermore the assumptlon
that we deal with continuous time systems (1nstead of dlscrete systems )
could be dropped WhlthOUt serlously changlng in the picture.

‘In the next sectlons we w111 refer 1nstead to llnear systems: the
results we w1ll derlve there are cru0131 in the synthe31s of linear pas-—
sive electrlcal networks. ' _ -y ; 8

' Except for some detalls, we Wlll follow closely the rigorous  and
clean formulatlon of Wlllems [WZ] _
Let I be a regular contlnuous system, and deflne on the cartesian

product of input and output alphabets UxY a real valued scalar function

wi:UxY — R o o .(1.1)
w: (@,B) > w(a,B)

We will call w a supply,(or supply functlon) 1f for any finite ti-
me 1nterval [to,t1] any input u and any initial state Xy = X(to)

'tl Y "
;o fwtae),ye)]de < = ; - (1.2)
tO XO—’

(v denotes the output which corresponds to X3 and u). In other words the
supply‘funétion'is.locally absolutely integrable for any u and Xy

Clearly for any given I there is an infinite set of possible sup-
ply functions. In the sequel we will assume that a well defined :w‘ has
been chosen as SUpply function, end we will denote by (z,w) the system
I with the supply w. It will be clear from the definition of diseipetiyi
ty, that the supply function we choose is‘critiealrin determining the pro
perties of the system (I,w).

In almost every case, w is chosen in such a way that it has a con-
crete physical meaning. For instance, when dealing with electrical net —
works, U and Y denote the vectors of instantaneous currents and voltages

at the ports of the networks, and w(i,v) is just



. .T
w(i,v) = i'v
which denotes the power which flows into the network.

The following definition formalizes the intuitive concept of dis
sipative system, we think of as a physical structure which accepts so-
me work at the device terminals and accumulates this work as "internal
energy', The internal energy can be subsequently (partially or total-

ly) given back.

Def,l. A dynamical system (Z,w) is dissipative (with respect to thesup

ply function w) if there exists a non negative function

St X-R, (1.4)

such that, for any time interval[to,til, for any state x, £Xand

for any input u

ty
S w(u(e),y(£)dt 3 8(x )-8 (x) (1.5)
tO

where y(t) denotes the output at time t which corresponds to the

input u and to the initial state x(to) =¥o. Every function Ssa-

tisfying condition (1.5) is called an "energy function',

When the initial state x, and the terminal state xq, coincide, we write

the left hand side in (1.5) as

§§w dt

so that (1.5) becomes

jEw(t)dt;O (1.6)

Remark. A dissipative system (I,w) admits several energy functions.In
fact if S is an energy function of (I,w), S +k is an energy function
too, for any positive k.In general S is not determined up apositive ad
ditive constant, and the problem of determining the set of all energy

functions of (I,w) is often very hard.
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In checking the dissipativity property of (Z,w) a very useful sta
te function is the "available storage" Sq- This function can be defined
for every system -indipendently on its dissipativity properties: intuiti
vely S4(x) represents a measure of the maximum work the system I can de-

liver to some external device when starting from the state x.

Def.2. Let (Z,w) be a dynamical system with a supply function w. Theavai

lable storage function Sq is the map (°)

e
Sd. X-*R+
(1.7)
A =
Xor+Sd(xO)= sugr - [ w(t)dt
xg tO
tlito

The supremum is evaluated along all trajectories starting fromthe

State xo at time to.

The following Theorem shows how available storage is related to

dissipativity. The proof is given by [W.Z] and can be also foundini?.lj.

Theor.l A system (Z,w) is dissipative if and only if its available stora-

ge is everywhere finite

0<5, < (1.8)

In this case the function Sy is an energy function and

54<5 (L.9)

holds for any other energy functions S.

Theorem 1 gives a test for checking dissipativity and tells us also that
the set of energy functions (when not empty) has a minimum element. As a
matter of fact, in most problems the energy function one deals with 1is
not the available storage, since in general the system is not assumed to
be able to give back all stored energy.

In order to simplify our comsiderations, from now on we will keep

in force the following

") Ri denotes the set on non negative real numbers extended with the

symbol +e,



Assumption 1. There exixsts at least one state x¥ in X such that S,(x*)=0
i d

If (Z,w) is dissipative with respect to the energy function S and
S coincides with Sq, then S has an absolute minimum point in x*:S(x*) =0.
In the sequel we will take into account only those energy functions 5

wich are zero wherever S4 is zero:
Sd(x ) = 0=S(x) =0 (1.10)

Then we have the definition of passive system

Def.3. A dynamical system (f£,w) is passive if

i) there exists at least one state x such that

54(x™ = 0,

ii) (z,w) is dissipative and the energy function S we associate to

I satisfies (1.10).

If x¥ is a state with zero energy, then

ft w(t)dt >0
ty x* -

Let (Z,w) be completely reachable fromsome state x and let the setof
its energy functions be not empty. ThenI has a minimum energy function
(Sq) and also a maximum energy function, as a consequence of the next

Theorem

Theor. 2 BJ.Z] Let X be completely reachable by X iE_X. Then (Z,w) 1s dis—

sipative if and only if there is a real constant K such that

t
1
inf  f  w(t)dt >K (1.1I1)
X+ X t
t1~>—to

for any state x and for any trajectory from x to x.

Def. 4 Let x* in X satisfy Sy(x*) =0. The required supply function (from

the state x*) is a map

S : X+Ri (1.12)



~defined as follows

| 4 if x is not reachable from %

S -
r,X*(?i.): _ £y e e W ! .
inf J/ w(t)dt if x is reachable from x>
x-x ot o
ty “*to
i t].
The number inf J = w(t)dt is evaluated along all trajectory from Z* to x

a
xX*+x to . .
clearly this number exists if and only if x can be reached from!x*; and is

non negative by the assumption Sd(x*) =0.

Theor.3 (DISSIPATION INEQUALITY) Let (Z,w) be a dissipative dynamical  sy-

stem, and let x* satisfy Sg(x”) =0. Then for any energy function S

one has (%)
oisd(gj'ié(x)g S, r G | (1.13)

. . o .
Moreover, if % is completely reachable from x-, Sr,x* is an ener

gy function.

proof. (1.13) is proven by

t

S(x) -S(x") = S(x) <inf / w(t)dt = 5_ _,(x)
i B : -~ ; T,X
Xz Tk
s B BEL

In fact for any trajectory from x* to x one has
£ ; i1f s
Soox(t)dt >S(x) -S(x")

t XX
o

The proof of Theorem 2 also shows that

t
1
kY + - =
Sd(x ) inﬁ S w(t)dt r,X’,!(X)
x*+x ty
o T
is an energy function. One can refer to EF.?] for the details. w )

(°) Recall that the energy functions we consider are zero wherever Sy is

Zero.



The dissipation inequality can be rephrased as follows: "In a dissipative

dynamical system (I,w) the stored energy in any state x is not less than

the available storage in x and is not greater than the work one requires

for reaching x from a zero energy state".

Note that every energy function S satisfies (1.13), but the converse 1is

not true, that is a function of: X+R_ which satisfies

84(x) <£(x) f_Sr’X*(X)

for any x in X is not necessarily an energy function.

It is easily shown that the set of all possible energy functions of a

dissipative dynamical system is a convex set. Hence, if X isreachable from

x and if 0 <B <1

ssd+(1 +B)sr X%

2

is still an energy function.

I.2. Digsipative lossless systems

Def.1l

Let (Z,w) be a dissipative system, and let S be one of its energy

functions.

(Z,w) is "lossless" (with respect to S§) if for any state x, in X

and any input driving I from x, at time t; to x; at time tq1 one has

t
s 1w(t)dt = S(xz) —S(xo) (2.1)

ty

In other words, along any system trajectory the increase of the stored e-

nergy is equal to the supply the system gets by describing the ﬁrajectory.

If the state set X is connected, the lossless property does not depend on

the specific energy function one considers. In fact the energy functionis

unique, as is proved by the following

Iheor.l[W.Z] Let (Z,w) be a passive dynamical system and assume the state

set X to be connected.

If (Z,w) is lossless (with respect to the energy function S), then

i Sd(x) = 8(x) = sr,x*(x) for any xeX

. t1 t2

i1) S(x) = [ w(t)dt = - [ w(t)dt for any xc¢cX, and for any
0 x% »x 0 x »x*

trajectory from x” to x (from x to x*).




proof. Definitions of available storage and required supply and rela-

tion .(2.1) imply

Sd(x) %-inf Sw(t)dt =—inf[§(y)—5(x)1 =S(x)-—S(x*) = S(x%)

X - ¥

(x) = inf [w(t)dt =inf
x*>x

S(Xj’s(ﬁR{I;S(X)‘S(X*)=é(x)

5
r,x*

so that (i) is a trivial consequence. Moreover the energy function is
unique, becouse of the dissipation inequality. Relations (ii) follow

from (2.1), recalling that S(x*) = Sd(X*) = 0. O

Remark. If a dynamicél system satisfies Sd(x) = Sr,x*(x)’ then“the e
nergy function is unique. However in gemeral this is not sufficient to
guarantee the lossless property. In fact the existence of optimal tra
jectory characterized by identical increments of the available stora-
ge and of the required supply does not imply that every trajectory ex

hibits this kind of property.

I.3. Dissipativity conditions for a linear system

Let us consider a linear system I = (A,B,C,Dg)
x = Ax +Bu
y = Cx-+DOu

with m inputs and m outputs, and introduce the following standard sup

ply function:
T
w(t) =u ()y(t) (3.1)

When we deal with linear systems we are in a position to.explicitlyde
termine the structure of an energy function. In fact the following

theorem holds

Theor.1lLlet L = (A,B,C,DO) be dissipative. Then the available storage

is a non-negative gquadratic form

- L Id
Sd(X) =X —Z*—X, Hdio (3:2)



proof (hint). A map f£: R R is a quadratic form if and only 1if
5 .. 1 .. e

1) £Ox) = A26(x),  i1) £x) +£(x) = 5 [FG ) +£0x7x,)] .
When 84 is finite, one checks that it satisfies conditionsi) andii).

Non negativeness is trivially implied by S4(:) >0. O

The structure of matrices A,B,C,D, is strictly related to the dissipa
tivity of the system I. Theorem 1 provides a first fundamental rela
tion between system matrices and energy functions: a more complete set

of relations will be considered in chap. III.

Theor.2 A linear system T = (A;B,C,DO) is dissipative if and only if

the inequality in the unknown matrix K

D, +D§ ¢ -BTK _
>0 ' (3.3)
cT -xp -ra-aTk

- 3 : ' - oy i ; II
admits some solutions I 20. The set of quadratic forms XL 5 X

‘associated with the non negative solutions is the set of qua —

dratic energy functions of .

proof. If I is dissipative, there is at least one quadratic energy func
tion, namely S3. Let S(x) = % g x be any quadratic energy function.

Then for any x(t,) €X and for any input u we have

W gkl T T ERRE N g
f uTydt_ix(to+s)T:

to

x(t +e) ~x(c )" 3 x(t) (3.8

e =]

Taking the limit as E**O+

C2u' (e )Cr(e ) +2u’ (£ )D ule,) 2% (£ )Tk )+x' (£ )Tk(t,) =
=XT(tO)(ATH+HA)X(tO)+XT(tO)HBu(tO)+UT(tO)BTHx(to)

so that we obtain

D +D -B' Il +C||u(t )
[u(e,)x" (e )] -3 " °ls0 (3.5)
C™-TB -TA-A"TI X{tol

Since‘u(to) and x(to) are arbitrary, the matrix Il satisfies the ine —
quality (3.3).

Conversely, if 1 >0 is a solution of (3.3)

uTCx +uTDOu_ixTHAx-+xTHBu
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and
x = Ax+Bu , y =Cx+Du
imply
_ uTyAié%-xT % X (3.6)

The integraticn of (3.6) shows that the quadratic form XT g X is an ener

gy function:

t1 T tz )
;o ouyae s Tal = xTee) e -x (t) 5 x(t) (357
t ' t D

o] ]

It is worth while to point out what constraints controllability and ob —

servability assumptions introduce on the set of non—negative solutions of

(3.3).
The proof of the following Theorem is identical with that of Theor. 1.

Thecr.3Let Z = (A,B,C,DO) be dissipative and controllable. Then the re —

quired supply (from zero state) is a mon-negative quadratic func-

tion:
- T Iy
Sr,o(x) =X 5 %, I_>0 (3.8)

Since non negative solutions of (3.3) biuniquely correspond with quadra-

tic energy functions, the dissipation inequality leads to the following

Corcll.l Let T = (A,B,C,DO) be dissipative and‘controllable. Then T, is

the 1.u.b. of the set of non—negative solutions of (3.3).

An observability assumption implies that the origin is a strong minimum

of any energy function

Theor 4 Let I = (A,B,C,DO) be dissipative and observable. Then for any e-

nergy function S{(-)

S(x ) O=x = o

proof. Suppose that S is zero for some x #0. For every - input u and for

every instant t; >0 we obtain

t t
T
S uydt = S uTCx-+uTD u dt >0 (3.9)
0o x> 0 x> e

By introducing the family of inputs
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&, = sCexp(At)xo e R
(3.9) beépl_nes

t1 ¢ T : T .
0<7J uEC expA Tt X +é eXpA(t—c)BuE(G)dU> +uEDOu€dt =

t1
=g f erxp(ATt)CTC exp(At)xodt + ; G, mea s g 3e10)
0
2,01 ¢ F T
+e S ulc S exp A(t—G)Bul(U)dG +u1Dou1dt
0 0

When t] is fixed, the two integrals in the right hand_side of. (3.10) a-
re two constant terms which we will denote by m and n réspectively. Hen

ce

Of_em+€2n, Ve eR

which implies n >0 and
|
T
m=0 = XT S exp (A t)CTC exp (At)dt x. .
o )
0
This shows that I is not observable, contrary to the assumptions. J

The converse of Theorem 4 holds too. In fact, if X #0 is indistingui —
shable from the zero state, the available storage is zero in x,. Hence
an energy function exists which amihilates in two points (at least), and

consequently we have

Coroll.2 Let I .= {A,B,C,'DO)_._be dissipative. Then it is observable if and - -

~only if non neégative solutions of (3.3) are positive definite.

We ‘shall now establish a dissipativity condition which refers to the sup
ply integral when the system starts from zero initial state.Later (Chap.
II) we shall use extensively this condition in the dissipat'i-\.:rity analy-
sis of transfer functions. . -

We emphasize that controllability is needed in proving the equivalence

between dissipativity and inequality (3.11).

Theor.5 Let ¥ = (A,B,C,DO) be dissipative and assume x(0) =0. Then for a-

ny u e and for any tq >0

J uwy de>0 (3.11)
0

Conversely, let (3.8) hold and I bé contrellable. Then I is dis-
sipative.
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proof. Suppose first that I is dissipative and assume x(0) = O. When one
replaces an input u by the input ku(k ¢R), the corresponding output y be
comes ky. Consequently, if for some u we have

t

1
S u(t)y(t)dt = h <0
0 0~

for an input ku we have
Mo 2 '
J Tku (t)ky(t)dt = k"h <0
0 (O
This would imply that the available storage in the zero state is infini-

te
k1
Sd(O) =~ inf f  w(t)dt = + (3.13)
0+ 0
>
t; 20
contrary to the assumption of dissipativity.
Conversely, if I is controllable and (3.11) holds, theorem 2 of sec . 1

can be applied. In fact the state space X is reachable from the zero sta

te and one has

: % g

inf f u'y dt>0 0]
0+ 0

ty >0

When ¥ is not controllable, in general the second part of the theorem does
not hold. For instance, the electrical network of fig. 1, which includes a

driven generator, does not constitute a dissipative dynamical system. Ob-

>
+ + v VEZti“'CZ ;
) v _j__ Cq Fig. 1
u=e ‘ ClT Cl Rl T RZ
&

serve that (3.11) still holds and that the state space is not completely

controllable.
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I.4 Lossless linear systems

Let I be a dissipative linear system. It is well known that I is lossles

(with respect to an emergy function S) if
M
ST w(n)de = 8(xy) = 8(x) : (4.1)
t
(8]

for every input u which drives the system from the state X, in t, to the

2 N )
state Xl in tl——to

Theor.1If the equation in the unknown matrix K

_ o
D, +D; g ~B°K

| =0 (4.2)

¢l -xB | -ka-aTx |

admits some solution T >0, then I = (A,B,C,D,) is lossless dissi-

pative with respect to the energy funmction S(x) = xL % X.

; i Ve T r . - T
Conversely if I  is lossless dissipative with respect toS(x)=x g}%

then T is a non negative sclution of (4.2).

proof. Suppose that I >0 is a solution of (4.2). Following the patternof

the proof of Thecrem 2, section 3, one gets

tl t]_
! uTy dt= XT X
tO - to

ST =}

Hence I is lossless dissipative. On the other hand, suppose thatl is loss
s ; : 3 ; T
less dissipative with respect to the non negative quadratic form x % % g

That 11 is a solution of 4.2, follows from

t t
1 1
J w(t)dt = XT g X
Lo to
The solution of 4.2 is unique when ¥ is controllable. J

Theor.2I1f L is a lossless dissipative linear system then each closed tra

jectory in X satisfies

g wit)dt = 0

If I is controllable and dissipative, and if

§ w(t)dt =0 (4.3)

holds for each closed trajectory in X, then I is lossless
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proof. The first part is obvious. To prove the second part, we resort to the

connectedness of X. If I is not lossless with respect tosome energy function
S along some trajectory the strong inequality holds
t

18
7 wit)dt >S(x1) —S(XO) (4.4)
t x + X
o "o 1
Taking now a trajectory from x; to X, dissipativity implies

. g

i w(t}dt_zs(xo)-s(xl) (4.5)
t x, *X
o "1 o

Concatenating the two trajectory one gets

dw(t)dt >0

contrary to the assumption. ]

Remark. Condition (4.3) refers to the set of all closed trajectories in X.
It is easy to see that one could restrict (4.3) to the set of trajectories

which have their origin and their end in the zero state. In fact, suppose

-
Y is a cycle which "starts" and "ends" in X,- By the connectedness of X, the

re is a trajectory Ai from O to x, as well a trajectory Ay from x, to 0.

Clearly
7 w(t)dt = 0
> > >
Al+y+A2
(4.6)
g w(t)dt =0
1%,

hold, so that along ?'trajectory
w(t)dt = 0

4
2\(

is verified,
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I.5 Dissipativeness in generalized linear systems

It is well known that the model of linear system we introduced in sec.3 in

general is not suitable for modelling a linear invariant electric network

a.1].

This drawback can be overcome by extending the class of dynamical systems up

to include the so called "generalized linear systems" (GLS)

%x = Ax +Bu

d ity (5.1)
y=Cx+ I D; ~—¢
1=0 dt

Dissipativity definitions and theorems require some adjustments when GLS
are considered,rThe_qhanges_cculd'be justified also from an heuristic point
of view: if we pursue in adopting uTy as supply function we should avoid
the possibility of impulses in the output function y, which imply a not in
finitesimal emergy flux through the system gates during aninfinitesimal ti
me interval.

Conéequently we restrict the set at possible inputs of the system (5.1) to
the d-times differentiable functions which fulfill the "initial" condi-

tions:
w0 =u(0,)5 u' (@) =u'(©);...; w0 ) =u@ Do)

In this way no impulses are included in the output

Moreover, the stored energy at time O is assumed to depend on the state
®(0) as well as on the values u(Q_)...u(d_l)(Q_), all of which determine
the behaviour of I on the closed interval [b,+m).

We therefore give the following

Def.1 A GLS (A,B,C,DO,...Dd) with m inputs and m outputs is dissipative
with respect to the supply

if there exists a fundtion

S: RO xR™x... ™5 R,

\-—qa—__}

d times
5t (x(0),u(0),...u %P (0 ) »sx0),...u4 " (0))
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" such that for any t7 >0 and any d times differentiable function

5 . C o i
ue 2([0,?1] which satisfies the conditions

1(0) =u(0 ),u' (0) =u'(0),...u4 ) = W4 Vo) 5.2)

one has

t1 -
s <L1Ty>dt _>_S(x(t1),u(tl),...u(d 1)(tl)) -
0 (5.3)
~8(x(0),u(0 ),--.,u D0 )

(d)

Starting from its d-th derivative u" ’, a function u can be reconstruc-
ted when u(0),u'(0). ..u(d_l) (0) are known. Assuming that the input u of
the GLS L = (A',B,C,DO,D

stem % = (F,G,H,J)

l,...Dd) satisfies (5.2), the standard linear sy

—3—2 = Fz +Gv
(5.4)
y = Hz +Jv
with
A B O
0 1 ...
F = gl e H=E B aas Dd*ﬂ, J=Dg (5.5)
0 0 0...0 1
and
[%(0) 7]
u(0 )
2(0) = . (5.5")
u(dﬁl)(O_i)
(d)

and v(t) =u (t) gives the same output y(t) as the original system ¥
does when its inmput is u(t).
Therefore the supply of the GLS I,w =uTy, can be viewed in the LS I as a

function of the state z and of the input v

—_— —

0

o a ol

Tio |v (5.<6)

z tz

lo

o

)
o
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The definition of available storage extends to GLS in a natural way:

Def.2 The available storage of a GLS m(A,B,C,Db,...Dd) with supply

w = uTy is the map

iyt R" xR" x ... RI'-=RS :
d times
L)
x(0),u0 ),...u'¥ 0 )y »sup_ -7 ulyay . (5.7
) ued 0

t;> 0

where JZ; denotes the set of d-times differentiable function which

satisfy conditicns (5.2).

Following the pattern of the proofs given for standard dynamical sy-
stems, it is easy to show that S; is everywhere finite if and onlyif
Z is dissipative.

Moreover when I is dissipative, Sy is an energy function expressed by

a non negative definite quadratic form:

sd(x(o>,ucom),...u(d"”<ou)>=E<T(o),uT(o_>..]g %(0)
u(0_)
u(d—l)(Q_)

(5.8)
The interest of the following Theorem is in that is restricts to the
first derivative the dependence of y on the input derivatives, inany

dissipative GLS.

Theor.1 A dissipative GLS I = (A,B,C,DO,Dl,...Dd) satisfies

Dy =D, = ... =D, =0 (5.9)

proof. Since Sq 1s an energy functiom, (5.8) gives

=
sty dtiE{T(t),uT(t),..j - < (0) ) (5.10)
0

u(t)

u(d—l)(t) o

for every input u which satisfies conditions (5.2).
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Let d >1 and Dd #0. Taking in (5.10) the limit as I goes to zero, from (5.6)

we have the inequality.

0 0 ] 0]
21©0)]¢ Pot Pa1) 20)+2" ()] 4| v(0) 22T (@ F 2(0)+3 (0) 52(0) =
......... I :
lo
= 250)1 F 2(0) +2°(0)T G v(0)

By partitioning Il conformably with the block partition of F, G, etc., the

inequality above can be rewritten as

2 0wl My+1,1

220y {|¢ Do Pa-1| —nr bz 0) > 2T (0)|Mar1,27Pd] v(0) (5.11)
.......... i :
0 0...0 1 |Ta+1,d+1

Since (5.12) has to be satisfied for every choice of v{0), the row vector
Hae1.,1

i -D
2loy|. 4*1.2 4 (5.12)

Mg+1,d+1

is the zero wvector, and since there ig no censtraint on z(0) this shows that

Tae1,1 =0 Tar1,2=0a> Tae1,3 ™ Tawn,e = 00 Tga1,ae1 =0 619
The structure of matrix I is the following
o
| DT l
I = % | d (d+1) bBlocks (5.14)
| 0
,,,,,,, W
¥O Dd 0 . 0 O,
which agrees with condition MT>0 if Dy = 0. K] ]

The only alternate possibility is to assume d =1. This implies that Dy =Dy
has diagonal position in (5.14), and the resulting structure of II is com-

patible with the assumption 1 >0.
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When d=1, (5.11) simplifies as follows

i 3
0 O Tl
2L(0) _mr|20) 225 @ | 2t |v©) (5.15)

C DO sz —Dl

By (5.15) and N >0 we get the following conditions on the blocks of 1

lyy = Lip =0
By =By 2.0
M, >0

T
=M, A—ATT ¢ -1n,,B
11 11 11 (5.16)

This shows that relation (3.3), which characterizes a dissipative LS,
is a necessary dissipativity condition for a GLS. We have thereforepro

ved the necessity part of the following

Theor.2A GLS I = (A,B,C,DO,Dl) is dissipative if and only 1f there e-

x¥ists a non negative definite matrix Tl which satisfies the fol-

lowing inequality

(5.17)

D +DT C“BTI-E
o "o
e
implies
UTDOU +uTCx_3xTHAX +xTﬂBu (5.18)

for any ueR™ and for any x eR".
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If u, %, y are relative to the GLS .

dx du
i AX +Bu, y = Cx +D0u +D1 e

then the relations
uT(y "lel) ixl iz
T _d, 101 T
(u”

> e—_ u + Hx)
UY 23 £ 3

follow from (5.18) and imply

t D
1
S uTy df; (uT _21_ u %X:T x)

to to

t1

Nt

From this we conclude (cfr. characterization of energy functions) that

S(x,u) =% E{Turq n o u
o Dl

X

is an energy function of I.

L]
Corolll A necessary condition for dissipativeness of the (LS ¥ =(A,B,C=DO,
S ,Dd) is
t'l T .
i u'y dt >0 (5.19)
0 0~

.U(d_l)

for any input u satisfying u(0) = u'(0) = .. (0)=0. Condition

(5.19) is also sufficient if I is controllable.
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II. AN s DOMAIN ANALYSIS OF DISSIPATIVE LINEAR SYSTEMS

11.1 Bounded real and positive real matrices

In this section we briefly recall some prOperties'of the classes
of bounded real (BR) matrices and positive real (PR) matrices we will
use in the analysis of dissipative linear systems. As we shall subse -—
quently show, PR matrices characterize the input/output maps of these sy

stems as well as BR matrices characterize their scattering relationms.

Def.1 Let S(s) be an m xm matrix of rational fuunctionsof acomplexvaria

ble s, with real cpefficients (real rational matrix). S(s) is 'bounded real'if

i) all elements of S(s) are znalytic in Re(s) >0

o
ii) for Re(s) >0, I -5T(s)S(s) is non negative definite Hermitian

Condition 1i) could appear troublesome because of its lack of symmetry.
Actually this formulation is not intrinsic to BR property, as is shown

by the following

— : \ ‘
Theor,ltﬁ.il The matrix 1-575 is nonnegative definite if and only thesa

me property holds for ﬂ-*SgT.

When S(s) is B.R., its analiticity region extends to the imaginary axis.
On the other hand, when one knows that S(s)isanalytic forRe(s) >0, a B.R
test can be proved which reduces to a test relative to the imaginary a-

xis. These facts are formally stated in the following

Theor.?2 @@.{l_ég m xm real rational matrix S(s) is BR if and only if

1) all elements of S(s) are analytic in Re(s) >0

ii) ]"ér(jm)S(jw)‘iO for all real w.

Def.2 An mxm real rational matrix W(s) is positive real if

i) all elements of W(s) are analytic in Res >0

. 824 . . . . - 3
ii) for Re(s) >0, WI(s) +W(s) is non negative definite Hermitian

For testing the P.R. character of a real rational matrix W(s) we can re

sort to the following

Theor.3 DJ.!] An mxm real rational matrix W(s) is PR if and only if

i) W(s) is analytic in Re(s) >0

ii) the poles (if any)on the imaginary axis and at infinity are

simple poles, and the residue matrices_are non negativedefi

nite Hermitian
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v
iii) WT(jm) +W(jw) >0 for all real w, with jw not a pole of W(s)

Theor.&[N.II Assume the m xm real rational matrix W(s) admit an inverse

Then W(s) is P.R. if and only if so is W 1l(s).

P.R. matrices arnd B.R. m trices are closely related, as the following

theorem shows.

Thegr,S[N.l, F.i] Let W(s) be a P.R., matrix. Then 1 +W(s) has an inver—

se, and the matrix

S(s) = (1-W(s)) (D +W(s)) % (5.1)

is B.R.

On the other hand, let S(s) be a B.R. matrix and assume that

1 +S(s) has an inverse. Then the matrix

_l—
W(s) = [@ +S(si1 [_ *S(sij (5.2)

is P.R.

As a consequence, if matrices S(s) and W(s) are real rational and

relation (5.1) or relation (5.2) holds, then S(s) is B.R. if and

only if W(s) is P.R.

We end with a specialization of the B.R. and P.R. matrices, we will e-

xploit when dealing with lossless linear systems.

Def.3 An mxm matrix S(s) is lossless bounded real (LBR) if

i) S(s) is B.R.
"
T11) 1 —ST(jm)S(jm) = 0 for all real w

Theor.6An m xm real rational matrix S(s) is LBR if and only if

i) S(s) is_analytic in Re(s) >0
ii) 1-8T(-s)s(s) = 0

Def.4 An mxm matrix W(s) is lossless positive real (LPR) if
i) W(s) is P.R.
ii) ﬁT(jw) +W(jw) =0 for all real w such that jw is not a pole
of W(s).
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Theor.7An m xm real rational matrix W(s) is LPR if and only if

i) all poles of W(s) are pure imaginary (”) and the residue ma-

trices are non negativedefinite Hermitian

FE)  Wil-a) €Wla) = O

Coroll.l Under the hypothesis of Theorem 5, S(s) 1s LBR if and only ifW(s)
is LPR.

(") for this purpose, the point at infinity is considered pure imaginary
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II.2 The scattering matrix

The concepts we introduce here in a purely formal way have an interesting
physical counterpart in electrical network' theory.

However, since our aim is to give some definitions and to derive some ab-
stract results we will need in the investigation of dissipative linear sy
stems, we do not give a concrete interpretation to the notion of scatte =

ring matrix, and we refer to [E.i] for its physical meaning.

Let T be a dynamical system with m inputs and m outputs, and consider the

following wvectors

(u+y) (incident wave)
(2.1)

ral—= pol=

(u-y) (reflected wave)

The supply function of I

T T T
wWEuy = V.V, —V_V
11 T T
is represented as the difference between the square norm of the incident
wave and the square norm of the reflected wave.
If ¢ is a (generalized) linear system and the initial conditions are zero

the relation between the L-transforms of u and y can be expressed by the

transfer matrix W(s):

Y(s) = W(s)U(s) (2.2)

Under the same assumptions, one could expect that a completely similar re
lation holds, when the Laplace transforms Vi(s) and Vr(s) of v; and v, re
spectively are considered. As a matter of fact if the matrix 1 +W(s) ad-

mits an inverse,the "scattering matrix"

S(s) = (1-W(s)) (L +W(s) * (2.3)

allows us to write
Vr(s) = S(s)Vi(s)

The following theorem introduces a class of transfer matrices which ad-

mit associated scattering matrices.
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Theor.1l Let W(s) =Dls +D0 +C(sI—A)_1B be the transfer matrix of a given

GLS I =(A,B,C,D_,D;). Then

i) if W(s) is P.R., I admits a BR scattering matrix

ii) if I admits a B.R. scattering matrix, W(s) is P.R.

The proof is a trivial consequence of sec.l, Theorem 4. ]

The possibility of resorting to scattering matrices in the analysis of
dissipative linear systems is the cornerstone of the next sections.

This is a consequence of the following

Theor.2Let § = (A,B,C,DO...Dd) be a GLS with m outputs and m outputs.

If the inequality

t
! 1 u(t)Ty(t)dt‘iO
0 0~

holds for any t; >0 and any input ue% such that u(0) =u'(0)=..

= u(d"l)(O) = 0, then I admits a scattering matrix S(s).

proof. Since (2.2) gives the relation between scattering matrix and
transfer matrix, S(s) is well defined if and only if 1+W(s) is an in-
vertible matrix. If 1+W(s) does not admit an inverse, there is acolumn
vector U(s) # O, whose elements are real rational functions, which sa-

tisfies
(W(s) +1DU(s) =0 (2.4)

Is it no restriction to suppose that

lim sdU(s) = 0
s>

Then u(t) aﬁfl(U(s)} is zerc for t =0 as well as its first d-1 deriva-—

tives. We therefore have

W(s)U(s) = -U(s)
_ (2.5)

y(t) =% Lis)) = & Hus)) = —ult)

Since u is not the zero input, an instant t; >0 can be choosen in such

a way that

tl T tl T
i u'y dt = J u (—u)dt <0
0

0 0~

contrary to the assumption. ]
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IT1.3 Dissipativity conditions in the s—domain

In this section our primary concern will be with the conditions the
dissipativity assumption imposes on the transfer matrices of a linear sy-
stem I = (A,B,C,Do). The key result is well known, and says that scattering
matrix of 7 has to be B.R. Some related results are also quoted; in parti-
cular sufficient conditions for dissipativity, based on the controllabili-
ty assumption, are proved. It should be clear that the extension to GLSs is
devoid of essential difficulties.

Let now I = (A,B,C,D,) accept complex valued input functions and gi
ve out complex valued output function. The underlying assumption is that
Rey and Imy correspond respectively to the real inputs Reu and Im u, for ze
ro initial state.

Lemmas 1 and 2 constitute the bridge for connecting real input and

complex input results. Their proofs are quite simple and will be omitted .

Lemmal Suppose that for any real input u we have

t1 T
S ou(t)y(t)dt >0 3.1)
0 0~

Then for any complex valued input u

£
Re [ © WL (£)y(t)dt >0 (3.2)
0 0+

and conversely.

Lemma 2 Suppose that for any complex valued input u we have

t
1 ®
Re [ ‘ﬁT(t)y(t)dtio (3.3)
0 0~

Then the incident and the reflected waves satisfy

tl 5 "
U V -
s (vi vi-—vz vr)dt_ao (3.4)
0

0~

and conversely.

Theor.lLet £ = (A,B,C,DO) be dissipative. Then its scattering matrix S(s)

is B.R.

Proof. Dissipativity implies

tl T
S <uTy> dt >0
0 0~
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which guarantees the existence of S(s). The theorem splits in two propo

sitions:

i) S(s) analytic for Re(s) >0

J
11) ]l"’ST(S)S(S) is nennegative definite hermitian for Re(s) >0

We first prove the assertion about analyticity. By lemma 2

t
1 v
i \f?Tv —VTV dt >0 t. =0
0 i1 i 1~

0 -
holds for amy incident wave v.. If v, is in (Lzﬂ ,@O)m (") one gets

@ > [ vTvldt>J’ v
0 g 0

Tv dt >0 (3.5)

rr

O -

showing that v, belongs to the same space. Now the L-transforms of the
: 7 2 . : a

functions in L°N%, are analytic for Re(s) >0 and there exist functions

in L2

]:N. 1] Y. From

ﬂ_@o whose L-transform has no zeros in Re(s) >0 (see for instance

Vr(s) = S(s)Vi(s) (3.6)

the (j,k) entry of S(s) is given by

[S(S)ij = i:vr(s)J' [Vi(s):l (3.7)

) k[\zi(s)]In =0, h#k

Then poiunt 1) is proved when considering [Vi (S):|k devoid of zeros  for
Re(s) > 0.

We now come to the assertion concerning non negative definiteness of
1 —ST(S)S(S) for Re(s) »0. The proof resorts to a family of complex va-
lued inputs.

. m e
Let s, = o, tiw s O >0, and let ze€ . The complex incident wave

. N By LG5 |
vi(t) z e 1'[1:0,_[:[ (3.8)
(where W[O,T_| denotes the unitary rectangular impulse with support[{),ﬂ)

has the L-transform

() 12 denotes the space of square 1ntegrable functions andg the space
of regular functions whose support is included in [O +o2) |
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Vi) =S8, (3.9)

so that the L-transform of the reflected wave (I is in the zero state at

time zero) is

o SoT _ 78T
et =
S —
(s)z eqaas
o

Vr(s) (3.10)
Let us apply the residue formula to obtain ¥ (V’(s)) First observe that
v, (s) is analytic in Re(s—s ) >0, so that we get vp(t) by integrating a-
long a stright line in Re(s—so) =05

C_-!-ch:) i

/ V.(s)e "ds (3.11)
c—jo

=L

Vr(t) - 21]

For t <t (3.11) splits as follows

ctjeo _ e+ o _
v (B § S8z stsgige L, " 8z s(tT) g (5 15
s—s 2m] . 5-s
c—jw o c—jo o

Now consider a circle centered in (c,0) and denote by ?i and ?2 its semi
circles in Re(s—c) >0 and Re(s-c) <O respectively. As the radium r cf the

circle goes to infinity, one gets

ims

.r

X
poles of S(s) sggizj'

\,\4 |
*x

\.

2> K
T2
S B
[ 582 V50 (3.13)
Yl o
S (e
g Sz 5% ge o (3.14)
v o
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In fact if £ is a function continuous for |s| >R, and we assume that

iim f(s) = 0

|5}

denoting by o the semicircle of radius r >R centered in (0,0) and contai

ned in Re(s)>0 the integral J f(s)e Sds goes to zero as T *« [C.l],

Ch
An easy application of residue method and formula (3.13) to the furction
{S(s)z/s—sc}es(t—T) give:
c+i® 5(s)z _s(t-1) s(s)z s(t=1)
0=17 ——r— e ds +[ ——=— e ds =
C""D‘J S"'SO = S—SO
d i f3.05)
ctje _
- S(s)z es(t T)ds -0
. s-8
c=je )

This shows that the second integral in (3.12) is zero. For evaluating  the
first integral, we apply the residue method and formula (3.14) to the func

tiomn: {S(s)z/s—so} eSt—SOT.

c+jo

v (t)= 1_ f S(s)z est—sons+ 1. f S(s)z est—sordS _
T 2] o SREN 2y 3 sT8,
2 (3.16)
c+jm _ -
=21' r S(s)z est 50T ds =ERes(S(s)z est sor)
7] . s8-8 N 8=g
c—j® ) o
where the sum is taken over all poles of‘{S(s)z/s*sO}eSt_SOT contained in
Re s <c. Let us split this sum as follows
Vr(t) = S(so)z esﬂ(t—T) +e S0t 3 Kiz e (3.17)
si%so

where Ki(i #0) denote the residue of S(s)/(s—so) in the pole s; #so. Sin-

ce Re s ;< Res, for every 1 # 0, (3.17) implies

Tvr VT
O0<f v v, -—vvdt=
— i i
0]
T

VT 2R - t iy -
=7 Hue esg (t T)dt s gTST(s Y$(s )z eZReso(t T)dt N
) o
0 0
T VT S . VTV g
P oa 2Res ( 3 ZTK?K-Z e(sl+sj)t r 3 ZTK‘§S(SO)Z e(so-i-sl)t %
0 i3#0 ] 1£0
b
YTIT :

¢ 12180 s )k e (So*s) by qp (3.18)



As T becomes large, third integral in (3.18) goes to zero, whence
Tr

2 VT
0 < lim Jf v.v. —v. v dt =
— 11 rr

T+ (O

o v T 1 -
s Ui BE0l —ST(SO)S(SO))Z ¥ oResy(t=1) |

T+
. -2Res T
. NT g 1-e o
= limz (1 -S (s )S(s ))z ——— " =
T oo o] o 2=Reso
VT O o1
= (1 -8 (SO)S(SO))Z TRG—S;

‘ . . i VT y A T
Since z is chosen arbitrary in Gm, 1-5 (SO)S(SO) 1s nonnegative definite

hermitian. O

Theor.2Let the scattering matrix S(s) of &= (A,B,C,DO) be B.R. Then

T 3
g vgvi—vT
0

0=

v_dt >0, ¥v., ¥1 >0.
il A i -

proof. Recall that

2

(1) the Fourier transform of an L“ function is an L2 function [_T.l]

(ii) the product of an L2 function and a bounded locally integrable

function is an L2 function
(iii) S(s) is analytic and bounded for any purely imaginary s.

Clearly, if v. belongs to L2, then S(jw}Vi(jw) =V1_(jw) is in L2, when
ce v_ ELZ. Since L? functions satisfy Parseval equality
ot 1 7 oT 2
£ ffdt=ﬁf F(f) Ff)dw fel (3.20)
; 2 ;G .
assuming v. eL”, 'vl.(t) =0 ¥t <0, the integral of the supply is expres

sed in the F-transform domain

P UT T 1 T ovr VT .
E)r (vivi —vrvr)dt = 5 {m Vi(Jm)(l“S (Jw)S(Jm))Vi(Jm)dm >0
(3.21)

The last inequality is a consequence at the B.R. property of S(s):

v v
v (1 =87 (30)5 Gw))v >0 vv e €8
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Observe now that for any T >0 the value of
T
J i
J v?v.-—vTv dt
O 1.k g il o
O~
does not depend on the behaviour of vi(o) for o >T. An incident wave Vi

with support in (O,T] is an element of 1%. We conclude that

+oo T

T o JT VT VT P
- S T s s i
0</f vV Vrvrdt +/ vrvrd, <f ViV vrvrdt (3.22)

¢} O T O+ 0 0 1
As an immediate corollary from Theorem 2,

Covoll.1Let ¥ = (A,B,C,DO) be completely controilable and assume I admi ts

a B.R. scattering matrix. Then T is dissipative. 0

Summarizing the results above, we can say that dissipativity implies the
existence of a BR scattering matrix, whereas a BR scattering matrix re-

quires the controllability extra condition in ensuring dissipativity.

In section 1 we stated that a PR transfer function and the existence of
a BR scattering matrix are equivalent facts. This allows us to easily re
formulate. Thms 1, 2 and Coroll. 1 in terms of transfer matrices. Theo —

rem 3 is a classic result in passivity theory.

Theor.3Let L = (A,B,C,DO) (z = (A,B,C,DD,...Dd)) be a completely control
lable LS (GLS). Then the following propositions are equivalent:

i) v is dissipative

ii) W(s) is P.R.

iii) I admits a BR scattering matrix 0

I1f the controllability assumption deces not hold the implications are as
follows: (i) = (ii) & (iii). In other words matrices W(s) and 5(s), which
characterize the input/output map, are unsuitable for testing dissipati-
vity. When dealing with minimal realizations, the dissipativity condi —

tions can be restated as follows:

Theor.4 Let L = (A,B,C,DO) be a minimal realization of its transfer ma-

trix W(s). Then I is dissipative if and only if the following con

ditions simultaneously hold:
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(i) Re A (A) <O

(ii) the purely imaginary poles of W(s) are simple poles and the

residue matrices are nonnegative definite Hermitian

(11i1) Wl (Jw) +W(jw) >0 for all real w, w1th jw not a pole of W(s).
=2t as. real =2=.9 .po.e el
J

IT.4 s—domain lossless dissigativitz conditions

The purpose of this section is the introduction of LBR and LPR matrices in
the dissipativity analysis. As we shall show, LBR and LPR matrices play
the same role in lossless linear Systems as BR and PR matrices in general

dissipative linear systems.

Theor.l Assume an LS I to be lossless dissipative. Then its diffusion ma-

trix S(s) is LBR.

proof. Assume that an incident wave v; induces a cyclic trajectory in the
State space whose origin at t =0 and end at t =t; are both the zero sta —

te. If v;(t) =0 for t >ty, Parseval theorem and Theorem 5 in II.1 imply

O=¢w(t)dt=_;m(§Tv —%Tv )dt=~l- ;m§T('m)(1—§T('m)S('m))V (Jw)dw
B X S LR J875 R30IV, (1

0-0 0+ 4.1

Now, for any z in €% and any w in R there exists an incident wave v. with
support in [b tlJ which gives this kind of trajectory and satisfies the

F-transform condition

- v, (38) = 2 (4.2)

Ve =
Suppose the matrix 1 -§ (jw)S(jw) is different from zero. By (4.2) there
exists an incident wave v; Whose F-transform gives
(jw)

v
VT
1

1 —SJT(_jE)S(jJJ)]Vi (jw) 30

Hence the integral (4.1) cannot be 28ro, a contradiction. The LBR proper-

ty of S(s) follows from BR property and

i
1 -8 (jw)S(juw) =0 0]
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By resorting to the results we proved in II.1 and II.3 we obtain direc~

tly theorem 2.

Theor.2 Let Z = (A,B,C,DO) (r = (A,B,C,D,,D }) be a completely controlla

ble LS (GLS). Then the following propositions are equivalent:

i) ¥ is lossless dissipative

ii) W(s) isLPR

iii) the scattering matrix S(s) exists and 1s LBR
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IIT ALGEBRAIC STRUCTURE OF DISSIPATIVE LINEAR SYSTEMS

The results we quoted in chapter II restrict the class of transfer matri
ces which are realizable by dissipative (G)LS to the class of PR matri-
ces. Moreover any controllable realization of these matrices is a dissi-
pative system. This gives a rather satisfactory picture of the connec—
tions between the input/output behaviour and the "internal” dissipativi-
ty constraint.

The next chapter is devoted to examining closely several questions con —
nected with the structure of system matrices A, B, C, DO and their rela-
tionship with energy functions. We shall confine ocurselves tostandard 1i

near systems: the extensions to GLS are quite obvious.

IIT.1 Positive real lemma and dissipation function

In section 3 of ch.l we derived a linear matrix inequality which must be
fulfilled by the A, B, Gy D0 matrices of a dissipative linear system.
This condition can be restated in a different form, involving aquadratic

matrix inequality.

Theorem 1 gives a complete picture of the situation.

(o) I is dissipative

(1) the set of matrices

H
!
367 o

is not empty
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ii) the set 55 of nonnegative definite solutions of the inequa-

lity
D +D. c -BIK]
7 . >0 (1.1)
C" -KB -AK-KA

is not empty

iii) the set 3% of the triples (I,H,J}, N >0 which satisfy the

equalities
-u'H

¢t -nly (1.2)

7Ty =p +p7
o] Q

HA-+ATH
B

]

is not empty

iv) if Dy +D§ is a unit, the set 52 of nonnegative definite so-

lutions of

-1
ko +ATK + (kB -c') (D +D))  (B'K-C) <0 (1.3)

is not empty; if D, +DE is not a unit, the set(92= lim :ﬂZE
) . er0F
is not empty. 5Za denotes the set of nonnegative definitesg

lutions of

T

K +4"K + (KB-C') (D_+D+e1 ) (B'K-C) <0 (1.4)

The sets <, S, S and S (ord’) coincide.
B 1 2 4 4 e

5 3 4

proof. The equivalence of (o) with (i) and (ii) and the equality $€= 5%
have been proven in Ch. 1. Assume now I >0 is a solution of (1.1). The

following factorization holds

~ T T
D, +D] c-B'm JT. ~
cl-nB  -mA-A"M Ll

—

because the left hand side is nonnegative definite and this gives the
implication ii)=1iii). Implication iii)=ii) is trivial, and bg =5§ fol
. . 2 :
lows immediately. Let now DO+DO have full rank and (II,H,J), I >0 sati —
TJ)“IJT

sfy (1.3). Since the spectrum of J(J only constains the elgenva-
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lues O and 1, ﬂm—J{JTJ)_lJT is nonnegative definite and

wrtn " Te <u'n

implies (iv):
na+a™n = -6 <=0 3T 7 = - am-ch 0 +0)) T BT 1-¢

Conversely, let Il >0 satisfy inequality (1.4). Then there exists a matrix

N such that

A +ATT + (]‘[B—CT) (DO+D§)_1(BTH-—C) = N

holds. (1.3) is proven by introducing the matrices

jand
1l

i -1/2 !
1 L—(HB—CT)(DOH)E) i ENT] (1.6)

J

— /21 7
L(D0+D§) ) OJ (1.7)

T . P .
As an easy consequence, when D_+D_ is a unit, the sets 5Es 5% and 32 co
incide.
Finally assume 1ii) hold and let DU+D§ does not have full rank. For any
7 ; . : € : .
€>0, D_+D_ +Eﬂm is full rank, so the system (A,B,C,DO +5 1) (which is
digsipative whenever I is) gives a ncn empty set{928 of nonnegative solu

tions of the inequality

D +DL 4 1 c-8Tk (et o] D +D.  c-BK ]
Q o] m m e] 8]
0 ..<_ = + 9
T -xs -ATkxal | o o |cT-k8 -aTk-kA
Planly
5 = =
Uég 5ﬂe 5%5 (1.8]

for any ¢ >0, andf/?zE is an e-indexed family of sets which monotonically

decreases as E‘*O+.

Since the non empty set %, is the intersection of the family

Fo= lim S, = [ ¥ (1.9)
2 s 2e c~0 2g

we get from (1.8)



A E, . A ¢
S = im &, = lim 'fég :.52 = /3
& £
e=0F e+0¥
This gives zlso the converse (iv)=(iii).

The equivalence (o)+»(iii) is usually called the Positive Real Lemma [A.1].
k)
As we showed above, the matrix Il in any solution (II,H,J) of the P.R. leuma

is assoclated to an energy function

=]
IRC b

8(x) % x

of the system. It is matural to ask whether we can attach some significa —

tion to H and J matrices. To this purpose, define

1
d(x,u) é% Ju +Hx = % (Ju +HX}T(Ju +Hx) (1.10)
and observe that
T a T I

x) +d{x,u) (1,11)

o 1
o S n b
PR

wiu,y) = uy = —— (%

along the solutions of the system equation x =Ax +Bu. Hence d{x,u)dt repre

sencs the

[

rreversibly dissipated part of the supply w(u,y)dt the systemre

store as internal enmergy. We

(1.12)

by {1.3), Moreover, if 0 satisfies (1.3) as an equality, then (1.12) too

(98]

15 satisfied as an eq ity and along the trajectory which correspond to

the Lnput supply completely changes in internal energy. As 1t should be

ju

clear, this do not imply a lossless properity. In fact the lossless condi-

d(u,x)dt = 0 (1.13)

should hold along all system trajectories.
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Let us denote by r xm and r xn the dimensions of the matrices J and H re
spectively. Actually there is no upper bound on the integer r, whereas a
lower bound is implicit in the rank of the (1.5) left hand side. We will
consider again this problem: here we confine ourselves to a simple re —
mark. If D, +D£ is full rank then r >m, and the bound m is attained if
and only if Il satisfies (l.4) as an equality.

1

We conclude this section by outlinig some interesting relations which con
nect dissipativity, controllability, observability and the spectrum of

the A matrix,

i) The A matrix of a dissipative linear observable system I = (A,B,C,D,)
is simply stable (in the sense that all elements in exp At are boun-
ded as t-—»+%), More generally, simple internal stability is implied

by the existence of a positive definite solution of the P.R. lemma .

i3) In some dissipative (even if controllable) linear systems there are
eigenvalues of the A matrix with positive real part. It is guffi —
cient to consider a controllable but not observable realization of

a P.R. matrix W(s), in its Kalman canonical observability from

A, o TBET - 1 |
5, = “ 11 1\1 ;E’ 01’ Do!
ik‘Zl A5 | 1Ba | .

There is no constraint on the spectrum of Ay,.

iii) Assume the system I = (A,B,C,DD) is dissipative and the matrix
R=D +DL is full rank.
o o
- if 7 admits a positive definite energy function,ﬁ==A-BR"lC issim -

ply stable
- if woreover § 1s controllable and/or observable,A is asymptotical-

ly stable.

iv) If ¢ = (A, B,C, DO) admits some definite positive energy function, e
ven its dual system is dissipative. In particular the dual system

of an observable dissipative linear system is dissipative.
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IIT.2 Limit solutions of the P.R. lemma

Several equivalent dissipativity conditions have been proven in sec. 1,
which relate the non negative definite solutions of matrix inequalities
to the possible energy functions of a systems I = (A,B,C,D ) Our purpo-

se now is to single out explicitely the minimal and the max1malsolut1on

of (1.1) (Sd and Sr ” respectively) under the hypothesis thaty is dissipative.

AVATILABLE STORAGE
As it is known, the available storage is a quadratic non negative defi-
nite function

t1
L

Sa(®) = ~inf s uly ar = o Sy (2.1)
u 0 X -
t1.30

The matrix Hd is the minimal non negative definite solution of (1.1) (or
(1.2)). Assuming R.=DO +D£ to be full rank, 3 is even the minimal non

neg. solution of (1.3) inequality
KA +AK + (KB-¢)R-1(8Tk~C) <0

Whe want to show that Hd is the minimal non negative solution of the as

sociated equation
KA + A%+ (kB-c R L (8Tk-c) = o Xy
Observe that (2.2) can be arranged as
1T Ti=T

K(A-BR 1C) + (a-BR o)k +kBR 18Tk + TR C=0 (2.3)

This clearly shows that (2.2) is a Riccati algebraic equation.

Theor.lAssume I = (4,B8,C,D ) be dlSSlpatlve and R = D +D be full rank.
e lile. st Taflic

For any Kl’ 0 <K1 <Hd the solution TN(t, KI’O) of the d1f£§55ptial

e ——

Riccati equation

L = ATk -xk& +xer" 18Tk - §
dt (2.4)
A=a-BRI¢c, =-clrlc
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converges to - I, when t »-=:

lim H(t,-Kl,O) = -l

t -

proof. First introduce the following function h: X xR, ~R:

, S T
h(x tl) = inf (/S 2u’y dt -x (tl)Kix(tl)) (2.5)

o]
u (o] XO;‘

The inequality chain

1 7 T
J 2uy dt -x (tl)le(tl) >
0 %7 B
. o} (2.6)
l. T T T
é’ 2;1 z dt - x (tl)l'[dx(tl) > XOdeo
o

is an immediate consequence of our choice of K;, and shows that h(xo,tl)

is bounded from below by -—xg Ifdxo for any tq >0.

From the Sy definition, given ¢ >0, there exists TE such that whenever

tl >T and the input is suitably chosen we have

t

S 2uTy dt <—XT]'[ X +e
0 o = o do
o]
and consequently
t .
i LT T i i
—xondxo ié ZE i dt=-x (tl)le(tl) i_xondxo“x (tl)le(tl) +e

m (o}
< -xII.X +¢
- o do

Taking the limit as ty >+ in
T T
—xoﬁdxo f_h(xo,tl) i—xoﬂdxo +e
then

. T
lim h(xo,tl) = —xOdeo (2.7)
t 4o

1
Next substitute y = Cx *D u in (2.5). Thus we reduce to the optimal con
trol problem

£y

T T R C u
h(x ,t.) = inf [ u X] dt (2.8)
o'"1 4 D
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As 1t is known, problem (2.8) is equivalent to the following standard

t1 — -
inf s ETle o Y lde . (2.9)
a0 o -c'rlc| |x

(A~BR 10)x +B & = Ax +Bu

form:

From (2.6) we get that problem (2.9} admits a finite solution for any

I >0. Therefore the solution H(t i’t ) of the Riccati equation (2.4)

exists for any interval fO,tll, and we can express h(xo,tl) in the form

T
h(xo,tl) = XOH(O,-Kl,tl)x (2.10)
Finally we observe that

—XTH X (2.11)

lim x H(O Kl’ 1) e I

t,++o

1

holds for any ¥,€ X. This implies our conclusion

(2.12)

0

lim 71(0, Kl,t ) = 1lim (¢, Kl,O) = -

t 1-—)» +oo to—w

d

Coroﬂ.lnd is the minimal nonnegative definite solution on_of the _algebraic

Riccati equation (2.2). )

This is proven by 1ntrodu01ng n(e, Kl,O) in (2.4) and taking the limits

as t =>-w,

‘Remark. A trlple of matrlces which satisfies the P.R. lemma iseasily ob

tained from Hd This requlres only to factorize R

T3 =r |,  Jeg™® (2.13)

and construct H as follows

H = (JT)—l(BTHd—C) (2.14)

If D, +Dg is not full rank, the My matrix is no longer directly deri-

ved from an algebraic Riccati equation.

Denote by D the matrix D +%
£ o 2

ge of the dissipative linear system I = (A,B,C,DC).S

I, € >0, and by Sd . the available stora-

is a non nega-
d,e &



e 5w

tive quadratic form

T
Sqe(®) =7 x T, % | (4 153

g

and 1 is derived from a Riccati equation, because of the full rank

d,e
of DE. Now, for any €9 >Eq >0 we have

1 g t1 o
Sd(:x) =sup - / u (Cx#D u)dt >sup -/ u (x+D_,u)dt =
u o ~u 1
0 X - 0 X >
t1_>_0 tliO
tl T
=5 (x )y »>sup - / u (CxtD_u)dt = S (x)
d,el — up 0 €9 d,eg
! G o
tlio
so that Sd E(x) is increasing (for x fixed) as e decreases. Since
Sd E(x) is bounded from above by Sd(x), a matrix I >0 exists which sa
3
tisfies
54 >lim S, (x) = lim % By = % x Ix (2.17)
0% o€ g~0t ?

If astrict inequality holds in (2.17), the strict inequality

.
-/ u (Cx+Dou)dt> lim S (x)

0 esp* B€
x>

would also hold for some u and some El >0. Hence an interval (O,:S:| would

exist and a positif k such that

tq i
=/ u (Cx+D wdt>S

(x)+k
0 X =

d,

for any e in (0,6]. Take € >0 small enough to get

tlT

u % udt <k e <8
We have
t] .
-/ u (Cx+D u)dt >8 (x)
E d,e
0 X+

whence
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t]_ T
sup -/ u (Cx+D u)dt >SS (x) ,
£ d,e
u 0 X
t1 >0

a contradiction. This gives the equality

Sd(x) = % XTde = 1lim % XTH X (2.18)
e~>0t

so that Hd is computable (at least in principle) as

= 1lim II

Il
e~0t it

d

We have therefore proved the following.

Theor.2 Assume I = (A,B,C,DO) be dissipative and R.=D0+Dg be singular.

For any €>0, denote by S4,. the available storage of the sys —

tem 7. = (A,B,C, Do +% I). Then the available storage of I is
given by

S, = 1lim § (2.19)

g0+ DoE
Remark. Theorem 2 is important essentially from a theoretic point of
view. In fact in electric network synthesis the so called Foster pream
ble always allows to deal with PR matrix transfer functions which ful

fill the condition R >0.

REQUIRED SUPPLY

Assume the dissipative system I = (A,B,C,DO) to be controllable. Then
the required supply (from zero state) is finite everywhere, and a non

negative definite matrix Il exists such that

XTHIX (2.20)

Bl =

Sr(X) =

Our purpose here is to show that I satisfies (1.3) as an equality

and represents the limit behaviour of a suitable solution of (2.4).

We associate first with the system I = (A,B,C,DO) the functional

, X ) )
X(u, %)= - i 1(UTXTJ R o} H - +XT(to)Kox(to) -
e - o0 Ql|x
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The integration is taken along the state space trajectories which end

in Xy Under the assumption R >0, the differential Riccati equation

1

K = -ATK -KA -Q +KBR 'B'K (2.22)

with the initial condition K(to) =KO will be the tool we shall use

in maximizing the functional y.

Lemmal If equation (2.23) admits an integral cutrve H(t,ko,to) on the

time interval [t ,t;], then

T
sup X(u,xl) = Xln(tl’Ko’to)Xl (2.24)

Conversely, let the upper bound of ¥ exist finite for any tj in

[to,T:l. Then there exists an integral curve of (2.23) on thesa-

me interval, with initial condition K,

The proof relies on the subtraction of

i T &
t 0 B u t
N : !
0= s [ux"] g [aE-xnx (2.25)
t LB -Q+mBR "B||x t

(o] o

from (2.22), which gives

5 T e
-l -1.T
t, —x, |IB NBR B Ij|x

T
X(u,xl) dt +X1H(t1,K0,tO) X =

-1.T

t
-1.T T
B IIx) dt+x1]'[(t1,1(0,t0)x1

3 T

-/ (u+R "B Ix) R(u+R
t X
o} 1

For the details one can refer to the analogous minimization problem in

least squares theory [B.l] O

Theon3 Let L = (A,B,C,DD) be dissipative and controllable and let

R=1D, +Dg be non singular. Assume that the Riccati equation

2 o ATk =%l g «xml BR

A-a-rIc, §=-c®1l

has to be solved with initial condition K(0) =—K0 for some ma —

trix K, >T.. Then the solution H(t,-—KG,O) exists for any t > O,

and
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lim —-]T(t,*KO,O) = —Hr (2.27)
t++

proof. Let g: X xR, R be the following map:

t1 T T 5
g(xl,tl) = sup(~f 2u'y dt-x (O)KOX(O)) (2.28)
u 0 +X1

Since S, is an energy function, the choice of K, implies

ZUTYdt‘X(O)THrX(O)_i—KT

-5 2u'y dt-x(0) TR x(0) <-f )
(8] ')'Xl

0 +xl ]

L tl 1I (2.29)
: i

Hence g(xl’tl) is bounded from aBowe by —X{erl, for any tllio.
From the definition of required supply, given e >0, there exists TE
such that if = >TE and u is properly chosen then
t
1
- ZuTy dt >—xTH X
- 1
0 '*Xl

g =

1

Hence

t
i
-XTH x, >=f 2uTy dt —XT(O)KOX(O) 3—x$ﬂrx

—g
1I"r71 0 0 ¥, 1

Since in

T T

X 0% 28(xt) 2% T %) —¢
€ >0 is arbitrary, then

: T
lim g(xl,tl) = —xlﬂrxl (2.30)
£, oo
1
Rewrite (2.28) in the following more suitable from:
e RO v T
g(x,,t;) = sup (=S [u X dt-x" (0)K _x(0))
1 1 G 0 (0]

o -c'rle| |x

% = (4=BR “C)x +Bu = A% +Bun

Since the above upper bound is finite for any t; >0, the integral cur

ve through the point K(0) = -K, of the differential equation

K = -A'K -KA - +KBR 1BK

exists for any ty >0. Furthermore it results

T
g(xl,tl) = xlﬂ(tl,-KO,O)x1 (2.31)



= Jibi

Finally, taking the limit on both sides of (2.31) we have

_E _ . T _ o
Xlnrxl = lim xlﬂ(tl, KO,O)xl (2:32)
t. 4o
1
thereby proving the thorem =

CoroHJ2Hris the maximum non negative definite solution of the algebraic

Ricecati equation (2.22)

Remark. The computation of g and I in general cannot be done direc =
tly from limits (2.12) and (2.32). The alternate way, i.e. the solution
of algebraic equation (2.2) is based on numerical techniques. If proper

ly tuned, these techniques converge to Hd or to Hr.

III.3 Non real-reduced matrices and dissipative realizations

In this section we specialize our study to an interésting subclass of
PR matrices, the so-called non real reduced matrices.

When a (dissipative) minimal realization is consideréd the inputs cor —
responding to the available storage and the réquired supply are obtai —
ned in closed form, and the énergy functions sét satisfies an intere-
sting "gap" property.

As it is well known, a P,R. matrix W(s) fulfills the condition
v S
W(jw) +W (-jw) >0 (3.1)

for all real y such that ju is not a pole of W(s). As a matter of fact
it is easy to show that matrix (3.1) definition can be continuously ex-
tended to the imaginary poles of W(s) and to the point at infinity.

This in turn implies the following boundedness condition (see e.g. EF.l])

Theor.1If W(s) is a P.R. matrix then there exists a real k >0, such that

0 <W(jw) +W (-jw) <k i (3.2)

for all real uw.

]

In general the left hand inequality (3.2) does not holds as strong ine-
quality for all real w: in other words, det[ﬁ(s)+WT("sij possibly wva

nishes in some points along the imaginary axis (the point at infinityis
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considered an imaginary point). We want to exclude P.R. matrices W(s)

which exhibit the above mentioned behaviour. We therefore have the fol
lowing.

Def.l A P.R. matrix W(s) is nen real reduced if

W(iw) +W (=jw) >0 (3.3)

holds for all real w, including the infinity point.

Remark i) (3.3) implies that D, +D£ is non singular ii) W(s) is non

real reduced iff W"l(s) is non real reduced,

Remark In same sense non real-reduced matrices are completely opposite
to LPR matrices. This comes not only from relation (3.3), when compa —
red with W(jw) +WT(—jw) = 0 in the LPR, but also from the structure of
the enérgy functions set. As we shall see, minimal realizations onnon-
—real reduced matrices exhibit a positive definite difference N _-T.

This strongly contrasts with lossless minimal realizations, which have
a uniqué energy function. It is interesting to point out that non real
reduced matrices generalize the class of non minimal P.R. functionms,

which constitute the starting point of the Foster preamble in mnetwork

synthesis.

Non real reduced matrices satisfy a lower bound condition which comple
tes, in some sense, the more general upper bound condition we stated in

Theorem 2.

Theor.2 Let W(s) be a P.R. non real reduced matrix. Then there exists a

real constant h >0 such that

Vp
W(iw) +W () >h 1

holds for all real w, including the infinity point ]

Consider now a dissipative controllable system L = (A,B,C,DO) and assu
T < .
me DD +Do = R to be non singular. Denote by Hd and Hr the minimum and

the maximum non negative solutions of the Riccati equation

kA +ATK + (KB-cHR T @B K -0) = 0 (3.5)

and by A, and Ar the following matrices

d
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n

154 _BR 1C +BR—lBTﬂd (3.6)

1

e

A-BR C +BR—1BTHr (3.7)

Theorem 3 and 4 commect the spectra of A; and A_ with the "gap"

ATl = Hr-—Hd and with the non-real reduced property.

Theor.3 Let (A,B,C,Do) be controllable and dissipative and let R be full

rank. Then the following facts are equivalent

i) ATl >0
ii) Re A (A ) >0
iii) Re A (Ap) <0

proof. i) »ii) and i) =+ iii)

Since Hd and Hr satisfy (3.5), we get

A;fi AT +ATA, = ~amBR 1BTAT
AT s +sma_ = amBRIBT anm
Ir r

whence
(AH)_IAg +Ad(AH)_1 = -Br 18T
(AH)—lAr]L; +Ar(AH)_1 - pr gt

The controllability of the pair (A,B) imply the observability of

{Ag,R_l/z BT) and (A?, R_I/ZBT). Thus Lyapunov lemma applies to (3.10,11)
ii) »1i) and iii) =1).

Suppose Re A(Ad) <0. Then the equation

T -1,T
AdX +XAd = -BR B (3.12)

admits an unique solution:

+oo

K f exp(Adt)BR_lBTexp(Agt)dt >0 (3.13)
0
: -1
Letting T =K ~, we have,
TA. +ATT =-mBR 'BTn, 10 (3.14)

d d
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If we are able show that I = I, +Il is a solution of equation (3.5),

d
we can conclude that AIl is positive definite, since Hr_zﬁ >14. Inde-
ed (3.14) can be written

= T = = -1, = _
(T~ )Ay +A(T -1;) = (I -T4)BR "B (I ~1,)

and consequently

= -1 = 1T -1 ~1.1
I(A-BR "C) +IIBR BHd+(A-BR c) H+HdBR BT - TAq Adnd

- TR LBTT -1 dBRhlBTH q +TBR 18Ty L dBR“lBTﬁ

Now Il is a solution of (3.5) if Hd satisfies

it -1.T T -1, _
“HdAd *Ade +HdBR B Hd CR C=20 (3.15)
Since (3.15) holds if and only if Hd is a solution of (3.5),implica =
tion ii) i) is proved. Implication iii) +1) requires an exactly simi-

lar reasoning. O

Theor.4 Let I = (A,B,C,DO) be controllable and dissipative and letR >0.

If AT =Hr —Hd is positive definite, then W(s) =DO +C(SI—A)—1B

is non real reduced. On the other hand, if W(s) is non real re-

duced, all its minimal realizations exhibit a positive definite

gap All.

proof. First suppose L to be dissipative and controllable and let

ATl >0. If some @y exists such that

rank(WT(-jmo) +W(Gu)) <m

then a vector v = [a1+j81,...um+jBHJT #0 in €™ also exists which sati

G E@‘T(-jmo) +w(jw0)} "

We define the function GT(m}

sfies

sin (W-w,)T N sin(m+w0)T)

G W = = (w *mO)T (w +mO)T
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GT(m) is the Fourier transform of the L2 function (°)

gI.(t) = (Cosmot)ﬂ[—-T,ﬂ (t)

Suppose the first column of B is different from O (this is not a restric

tive assumption), and let

(u1+j81)e32m/wo

UT(jw) = (o:2+j82) GT(w) (3.16)

oyt
Hence UT(j w) is the Fourier transform of the complex signal

[Cay+ie D gp (t+2m/u,)]

u (t) = (ay*iBy)ep (t) (3.17)

...................

_(Otrn+j Bm) iy (t) il
When applying the complex input (3.17) to the system I, the corresponding
output is constituted by L2 functions, and Parseval theorem implies
+0 s
VT 1 vT .. T . i
Re [ uT(t)y(t)dt % f UT(JUJ) (W (=jw) +W(Jw))UT(Jw)dw (3.18)
_.T__m_o 0~ -
2T
In some instant T, —T—mO/ZTT <1 <=T, the system I reaches a non-zero sta

te x #0, as it is easy to show. We therefore have

iy & T E

v
Re J uT(t)y(t)dt=f .. Re uT(t)Rey(t)dt+ f Em%(t)ﬁ.my(t)dt
-T--2 0 +x ) 0 +Re x -T=-2 0 +Imx
2m o 2m 0 27 0
)i i g T (3.19)
< (Re XE) —zr' (Re x ) + (Im Xg) _zr_ (im x)) = x_ __2_r X,

On the other hand

(") TT[_T T:[ (t) denotes the unit rectangular impulse on the time inter—
val [-—T,T:] :
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+co Il
vT T d
lRe{ uT(t)y(t)dt B e By

X
o]

is granted by the definition of available storage.

Then we obtain the inequality

n_-I oo
s

1 yT
2 o-iz;-_ u

2G0) (' (=) +W(iw))U(Gw)de (3.20)

If the parameter T diverges, the x, state is constantly reached in the ti

me interval [}T"wo/2ﬂ,~fj, so that (3.20) holds for any T >m0/2w.

Now, when T goes to infinity, UT(jm) converges to an impulse distribu —

tion:

C!.I-l-jsl
L)

U_(ju) = (6(w~wo) +d(w+m0))

.ul'ﬂ+‘] B.m‘“

P v . ; s ’
and the integral (3.20) converges to vT(WT(—JmO)+W(}wO))v = 0. This gi-
ves a contradiction. .

The full rank of W(0) +WT(O) is identical identically proved: the on-
ly difference is that gT(t) has to be selected in a different way, that
is =

gp(t) W[—T,T:] ().
Suppose now W(s) be P.R. non real reduced, and assume I = (A,B,C,DO) to

be a minimal (hence dissipative) realization of W(s). Then there are two

positive constant wvalues h and k such that

0 <hl_ <W(jw) +W (~ju) <k}_

i _—
and available storage XT - X and required xT —% x supply are both posi

tive definite quadratic forms.

Assume the input u drives I from the zero state at time zero tosome sta

te x # 0 at time T. We have

T +oo

I VT
0<x' Fx<f uyde =70 UG @G0 +0 (ju)UGw)ds <
0 0 -+>x =
k R T

;U GeUGede = § 5 ule de
=0 0
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whence

T

IS uTu dt >k 1XTHrX (3.21)
0 0-x

Introduce next the system T o= (A,B,C,DO —%-Im). % is still minimal and

dissipative, and the corresponding available storage XT(ﬁd/Z)X and re-

quired supply x:(ﬁr/Z)x:still are positive definite quadratic forms.

Thus the supply integral of I decomposes in the supply integral of ¢ and
in the term we considered in (3.21).
T T T

/o uydt=J uT§dt+1%f wlu dt
0 0-x 0 0-x 0 0-»x

In the inequality

T i _ 1
[ ouly dtsx —;-x-Fhk 1T - x [3.22)

0 0-»x

we take the g.l.b. aleong all trajectories from O to x. From positive de

finiteness of I we get

I T ﬁ _+ I _

ook = B F 0 G5B FHE T gl -5 g (3.23)
2 -~ 2 2 2

u, T 0 0-»x

On the other hand ﬁduind' In fact for any x we have

i T Wy T
XT f; x = sup(—/ uTy dt) =sup(-S uTy dt —% S ulu dt) <
T,u 0 x> T,u O x> 0 biad
T o\ I (3.24)
< sup(=f uTy dt) = xT ~§—X
T,u 0 x>
Hence the inequality chain
Mg net M -

Lzg*—g 2 hg2ly

implies I —Hd >0, and this concludes the proof. [

Recall that the dissipation function d(x,u) associated with an energy

function S(x) = XT g x satisfies
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2

L R @T-o)x
R

d(x,u) = 3

along the trajectories of the equation ¥ = Ax +Bu.

If the input u is obtained from the state x in the feedback form

u = Rﬁl(BTH—C)X, then

t t

1 1

S ow(t)dt = [ d(x,u)dt +xT g x
t

t X X > X
o o 71 X5 ¥

t1
X

1t
-
[N R ]

t

o]

and the state of I evolves along the solution of the following linear

differential equation

i

% = (a+3R 1BTn -8R TO)x C O (3.25)

Suppose now L fulfill the condition ANl = m.=-T4>0, so that ReA(Ar)>O
and ReA(Ad) <g by theorem 3. The solution of

x = Agx (3,26)

is infinitesimal as t -+, whereas the solution of
.:A .
X X (3:27)
is infinitesimal as t »-=, whatever the initial state may be.
We therefore have the following

Theor.5Assume that the controllable dissipative system Z = (A,B,C,DO)

satisfy the condition AN >0. Then for any initial state x, at

time t =t  the input ug =R71(BTHd-C) x extracts the available

storage on the time interwval Lto,+m).

Assume that x(t) is the solution of the equation (3.27) with

the initial condition x(to) =x_. Then the inputs uin)=Rfl(BTHr—C)x

give trajectories from the state x(to—n) to the state x, onthe

time intervals [to‘n, toj respectively,and S (x ) is the limit

value of the corresponding sequences of supplies:

tn (n)T
S (x) = 1lim [ u 'y dt
r o T
n >+w t -n x(t -n)-x
o o o}

III.4. P.R. lemma and lossless linear systems

Conditions of sec. 1 specialize very simply when I = (A,B,C,DO) is a

lossless system.
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Theor.lLet Z = (A,B,C,Do). The following propositions are equivalent:

o) ¢ is lossless dissipative
i) The set of non negative definite matrices Il which satisfy
the equality
t1 Er
J w(t)dt = xT g x
t t
o o

is not empty

ii) The set of non negative definite solutions of the equa-

tion
D +Dg C - BK|
. r | =0 (4.1)
C™ —KB -A"K-KA
is not empty.

iii) The set of non negative definite matrices Il which satisfy

the following equations

]TA—AT]'[ =0
B = T (4.2)
0O =D +DT
(o] (8]

is not empty.

The sets'5i, &, and 5% are equal,

The proof is quite similar with that of the corresponding statement in

sec, 1. J

[

Remark. If I is a controllable lossless system, then 5?(55,5@) con —

tains only one solution.

It is natural to ask whether the solution of (4.2) requires a less se-
vere computational task than solving a Riccati equation. The answer is

positive,as stated by the following theorem.

Theor.2Let I = (A,B,C,DO) be lossless and controllable, The unique non

negative definite solution of (4.2) is linearly obtained from

the system matrices.

proof. The matrix Il satisfies the relations
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= C
TAB = -ATTB = -ATCT (4.3)
1428 = -aTnaB = (aH)2cT

? 9 s % 800 L0 B EEES TS e

HAH—IB = (_1)[1_1 (AT)H_ICT

Let # denote the controllability matrix and 0 the matrix

0 = "CT|—ATCT

L (_l)n—l(AT)n—lch

then

14 =0 (4.4)

so that the unique solution Il is easily derived as

1

m =G Torr™)” (4.5)

Remark. If I is a controllable linear system and dissipativity and

lossless property are a priori not known, apossible check for testing

these properties consists in

i) constructing 1T from (3.5)
ii1)  wverifying 1f 1 i1s non negative definite

iii) werifing if D +Dg is the zero matrix

III.5 Spectral factorization

Topics we will here briefly consider have several important extensions
and consequences (e.g. in filtering theory). We will confine ourselves
to sketch in what sense the P.R. lemma can be interpreted as an "alge-
braic' counterpart of the spectral factorization in the s domain. Our
main purpose is to showhow a very wide class of problems can be analy

zed' and eventually solved with the techniques we discussed above.

Recall that the dissipativity of a linear system I = (A,B,C,Dy) 1s e-
quivalent to the existence of a quadratic non negative function S: XR,

which fulfills the following inequality



S(x%,) -8(x,) = x 3 X <[ uL(Cx +D ulde (5.1)
1 2 2 ~ 3

In sec. 1 we considered a set of propesitions equivalent to {(5.1). It should
be clear that, under the controllability hypothesis, this set includes zlso
the proposition '"W(s) is a P.R. matrix". As a mattér of fact, the spectral
factorization of the matrix W(s) +WT(*S) could be anothér possible element.
However, we prefere to derive this equivalencé in connection with an exten~
ded notion of dissipativity, which do not requiré the non negative definite
ness of S. This will allow us a more completé picture of several facts con-

nected with the concept of "system energy".

|_3

Def.l1 Let § = (A,B,C,DO) and le_p_w=u
T I

y be the supply function of I. A gqua-

1

T @ s )
¥ (I =17} is a "signed energy" if,

dratic function S: X +R: x-+x s ig

b

for any pair of states x, and Xy

|

[ Tw dt‘iS(xl) —S(xo) (5.2)
tO xo“+x

Theor.1The following propositions are eguivalent

i) I has asigned energy function

ii) There exists a symmetric soluticn of the matrix inequality

+DT CI—BTK
o o

T 20 (5.3)
cT-KB -A'K-KaA

iii) There exists a triple of matrices (II,H,J), @I = II" which gati-

sfies the generalized P.R. lemma

A +ATI'[ = -—HTH

I
(B
IP—J
jas]
[
—
w
=~
h—

1B
JTJ = D +DT

The proof follows the pattern of the analogous statement in sec. 1. ]

]
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Theor.2 Let & = (A,B,C,DO) admit a signed energy function and let
W(s) = D_+C(sI-A)"'B. Then

i) W(iw) +WT(“jw) is non negative definite for any real w such that
jw is not a pole of W(s).

ii) There exists a real rational matrix P(s) which is a "spectral fag
tor" of W(s) +WT(—S):

W ig) +Wis) % Si=s) (8) (5.5)

If £ is controllable, each one of i) and ii) conditions guarantees

that ¢ has a signed energy function.

proof. If ¥ admits a signed energy function S, then there exists a solution

I of (5.3). Hence for any real w

D +D. c-Bln
o (8] io
T -8 (~jul-AT)T + M (jul-a)

implies WT(—jw) +W(jw) >0. To see this it is sufficient to multiply the ine

quality above by [ﬂlBT(—jm]—AT)_1| on the left and by

1

(j 1-a)" 1B

on the right.

Next consider the following form of (5.3):

D_ +DE c-3'n Ik I} H:[
T T g | T (5.6)
C*-TIB (-sI-A")m+(sq-A) | |

If one multiplies (5.6) by

E BT(~s1—AT)—1]

on the left and by

T

;(s]*A)—lﬁi

on the right, one gets
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_ T ~
WT(—S) +W(s) = [f +H(~s3—A) 13] [i +H(s1-A) 131

This shows that
P(s) =J +H(s]1—A)_lB (5.7)

is a spectral factor.

Conversely, let W"T(—jm) +W(jw) be non negative definite for any real w
and let I be controllable. Consider an input u with support on the time
interval [O, tlj and assume that thé corresponding trajéctory in X sati
sfies x(0) = x(t;) = 0. The corresponding integral supply is non negati
ve:

£y
;7 w(t)dt =0 (5.8)
0 0-+0

In fact u and y are both 5* functions, so Parseval theorem applies:

t +eo o
1 VT . .
/ w(t)dt I uTydt = o s UT(Ju)Y(Jw)dw =
0o 0-=0 e T s
oo _
1V P VP, .
R DD +WT(JUJ)IU(Jw)dm 50

-0

It

1
b

As a consequence of (5.8), the function S defined by

t
1
S{x) = inf S = w(r)dt (5..9)
Ut 0-x
t.>t
I~"0

is finite for any x and corresponds to the required supply in the theo-

]

ry of standard dissipative systems. In fact, assuming S(x) —© for so-

me x in X, for any trajectory Yy from x to the zero state, we could find

. >
a trajectory Y, from the zero state to x such that

I, w(t)dt <J, w(t)dt
¥y Y1

This would imply

e, w(t)dt <0
Y172

contrary to (5.8).
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Note that the S function we defined in (5.9) is a quadratic function on
X, not necessarily non negative definite (whenever it is, & is dissipati

ve). Since the existence of a spectral factor ¥(s) implies
T, . . T, . . V. .
W (mjw) +W(w) = 9 (-jw)P(w) =@ (Gu)P(Gw) >0

clearly ii)=>i), so that our proof will be complete when showing that §
is a signed energy function. This i1s a direct consequence of the follo-
wing relations chain
ty ti ty
J T ow(t)dt =inf f w(t)dt + J ~ w(t)dt -inf Sw(t)dt >

t X +x u 0 —+x t > A u 0—+rx
0 [o) 1 o 0 o 1 e}

> inf fw(t)dt ~inf fw(t)dt = S(xl) -S(x )
= o
u 0 +xl u 0 +xo

Remark 1. Parseval theorem application in Theorem 2 dces not extend to

the more general situation ftl g(t)dt >0, ifThis would prove that dissi
>

pativity does not require anéaiticity of W(s) in Re(s) >Q£7. To be more
precise, if the [O,tllinterval contains the support of u and x(ty) is
different from zero, in general the support of y is EJ,+w). Since Parse
val theorem holds in L’ spaces, we have to introduce an extra hypothe —
sis on the analitieity of W(s) in Re s >0, which guarantees that yis in
L2.

Remark 2. It is easy to show that if ¥ is controllable and satisfies

(5.8) for any cyclic trajectory which crosses the zero state then

I+w(t)dtio (5.10)
Y
holds for every cyclic trajectory in X.
Condition (5.10) is summarized in the following proposition: "I is dis-
sipative along any cyclic trajectory'. Dissipativity along cyclic tra —
jectories does not imply dissipativity. For instance, the minimal realiza

tion £ = (1,-1,-1,0) of

5~=1

W(s) = (5.11)

is dissipative along any cyclical trajectory, because of the inequality

W(jw) +W (=jw) =
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However ¢ is not dissipative. This can be derived from non-PR property
of W(s), or more directly from dissipativity definition. In fact  the

zero state response to a unit step function is given by (1-et)5_1(t)so

that the integral supply is

t E .
Jow(t)dt = S (l-e")dt = t —e"+1 (5.12)
0 0~ 0

As t goes to infinity (5.12) is negative.

It is interesting to remark that (5.11) is the impedance of the elec-
tric circuit in fig. 1, which includes a négativé inductor. One could
show that electrical linear networks including positive resistances and
positivé and/or negative inductors and/or capacitors fulfill condition

(5.10).

=1 R=1 Fig. 1

=
I

Remark 3. Relation

v
o= 1 U Gw) (0 Gu) WG UG0de,  uel
o]

‘_‘
e
e
o
[ d
1]

holding in dissipative systems, and relation

t o
1 7 VT .. . NT,, ) ;
! uydtz—z—%f 0% Gu) (0 (GGw) +W () U () du
o 0=+ 0 0

holding in systems which exhibit a signed energy function, both givein
the w domain a representation of the amount of work dome by the input
u.

It is rather intuitive to consider

e U7 () (07 () +W (G U(Gw) = ‘4—_ P(G)U ()
Vi

as the"spectral density" of such a work. The spectral factorization
theorem means that spectral density can be derived ima 'rational way"

from the input.
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Theorem 2 contains implicitly an interesting result we tray to display

Def.2 Let M(s) be a real rational mxm matrix. M(s) is parahermitian if

M(s) = ML(-s).

Coroll.1A m xm real rational matrix M(s) has a spectral factor if and on-

ly if M(s) is parahermitian and non negative definite on the ima-

ginary axis.

proof. Let M(s) admit a spectral factor® (s)
T
M(s) =P (-s)¥(s)

Then
ML (=5) = BT (=s)P(s) = M(s)
. T, ., , VT | .
M(jw) =¢ (-j)PGw) = ¢ GJu)@(jw) >0

Conversely let M(s) be parahermitian and M(jw) be nonnegative definite for

any real w. Then M(s)/2 4 W(s) satisfies

Wksd +5 0-s) = His) (5.13)

whence

W(jw) +WT(-3'UJ) = M(jw) >0

for any real w. This implies that M(s) admits a spectral factor. In fact
if W(x) # «, every controllable realization of W(s) has a signed energy
function, by Theorem 2. If W(s) has a pole at s = =, then for some posi-
tivé v the matrix ﬁ(s) = M(s)shav is proper, parahermitian and nonnegati
ve definite on the imaginary axis. Denoting by v{s) a spectral factorof

M(s), the matrix (s) = W(s)szv is a spectral factor of M(s). [
P mxm . # .
Def. 3 A matrix U(s) eR(s) is paraunitary if

1= ul (-s)U(s) (5.14)

One checks that:

i) U(s) is analytic on the imaginary axis, including the point s =
ii1) 1f M(s) is parahermitian, so is U(s)M(s)
iii) 1f M(s) and M_l(s) are analytic in Res >0, then U(s) 1s a constant

orthogonal matrix.
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Theorem 2 and Corollary 1 introduce to a wide class of problems, someti-

mes quite difficult.

The pole symmetry of parahermitian matrices suggests the first question.
It concernes the existence of spectral factors whose poles belong to the
half-plane Res »0 or to the half-plane Res< O. When the spectral factor
is required to be analytic as well as its inverse in Re s >0, this pro —
blem represents a critical point in the solution of the Wiener- Hopf e-

quation.

Strictly related to the first question are the natural questions on the
uniqueness of spectral factors which satisfy certain requirements and the

effective construction of the spectral factors.

Finally, if M(s) is obtained as
't
M(s) = W(s) +W (-s) (5.15)

and W(s) can be realized by a system I =(A,B,C,Do) which has a signed e-
nergy function, then the solution of (5.4) givés also a spectral factor.
This partially answers the question on the relationships betwéénspectral
factors of M(s) and réalizations of W(s). As a mattér of fact, amoré com
plete answér could be obtained since the spectral factorization is equi
valent (under suitable assumptions) to the solution of (5.4). In other
words the construction of signed energy functions for is equivalent  to

the construction of cyclic dissipative realizations.

In next section we will consider these problems in detail. However, our
exposition will be restricted to situations which allow us to use the

techniques we introduced in the previous sections.

ITI.6 Spectral factors structure

The structure of the spectral factors of a parahermitian matrix M(s)

which satisfies the extra condition M(jw) >0 for all real w has been in-

vestigated by Youla.

Theor.lfYOULA] Let M(s) eR(s)me be parshermitian. Assume that the nor-

mal rank of M(s) is r <m and that M(jw) is non negative definite

for all real w. Then there exists a spectral factor Qb(s)gR(s}rxm

which satisfies the following
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i) Wo(s) is analytic in Re(s) >0

i1) Woﬁsj has full rank r at every point in Re(s) >0.

?O(s) is _uniquely determined up a left multiplication by an arbi

trary orthogonal.,r xr matrix.

Spectral factors ¥;(s) eR(s)T™ which satisfy only hypothesis 1)

are given by the formula

‘Pl(S) = U(S)TO(S)

as U(s) runs over the set of r xr paraunitary matrices which are

analytic in Re s >0.

proof. Assume first that a spectral factor Wo(s) which satisfies 1) and

ii) does esist, and suppose ¥1(s) is another spectral factor which sati

sfies 1):

M(s) = ¥.(=s)¥_(s) = ¥](=s)¥, (s) (6.1)

o o 1 1

The matrix WO(S)?E(S) is invertible on R(s), and the matrix

U(s) = ¥ ()Y (s) (¥ (s)v (s)) ]
fulfills the condition

(W(s)y _(s) =¥, (s))¥. (s) = O

o 1 )

Since the R(s) rank of ¥§(s) is r, we get

U(s)y, (s) = v, (s) (6.2)
From (6.1) one proves that U(s) is paraunitary: UT(—S)U(S) = lr. Since

Wo(s) ¥O(s) has rank r everywhere in Re s >0, its inverse is analytic in

Re s »0. This shows analiticity of U(s) in Re s >0.

If wl{s) is full rank om Re s >0, then U(s) is full rank too. Hence U(s)
is an orthogonal matrix, and the second part of the theorem is proved .
The complete proof of the first part is very long and is based on Smith
MeMillan canonical form. Assuming M(s) to be analytic along the imagini
ry axis and not singular at s = =, then a matrix W(s) exists which ful-

fills the relations
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MEEY = i) AW fes)

lim W(s) = D0
5o (6.3)

D +DT >0
0 o

Let T = (A,B,C,DO) be a minimal realization of W(s). Then the eigenva —
lues of A are in Re s >0, and dissipativity of I implies the existence
of a matrix Hd >0 such that the triple (Hd,(JT)-l(BTHd—C),J) considered
in sec. 2 is a solution of the P.R. lemma. A spectral factor of M(s) is

given by

- -1
7+ @D -0y (s1-) B (6.4)
Clearly (6.4) is amalytic in Re s >0, and its inverse

JHl-—R_I(BTHd—C)(51~A+BR—1BTH 3R Toyst

d (6'5a

is also analytic in the same region, by the structure of the spectrumof
.
Ad—A BR

Henceﬁﬂg(s) is given by (6.4). ]

G +BR_1BTHd we will derive in the next lemma 1.

T T
Lerma 1 [ANDERSON] Let I = (A,B,C,D,) be dissipative and let D_+D_ =R be

positive definite. Then the spectrum of

&, = A-BR IC +BR_lBTnd (6.6)

belongs to Re(s) <O.

proof. Recall first that "Hd has been obtained from the solution II(t,0,

0) of the equation
K = —(A—BR'IC)TK-—K(A—Baflc) +xBR 18Uk +cTR1c

K(0) = 0 R 1)

taking the limit
lim 1m(t,0,0)

t »—=

It is easy to verify that 7 (t,0,0) decreases at t decreases since
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BN T
inf / 2u"y dt = x " N(t,0,0)x
u t X >

is decreasing too (for every x).

Il being the solution of the algebraic Riccati equation (2.2), L(t) zHd+

+1(t,0,0) is a solution of

i=—{?—mdﬂm{%%
(6.8)

L(0) = I

on the interval (—m,Oj. Observe next that L(t) is positive definite in
some left neighborhood 7 of t = 0. Then in‘ﬁ;N(t) =L_1(t) satisfies the

linear differential equation

N = AN +NA§ +BR BT
=4 (6.9)
N =
(0) I 4

Now the solution of (6.9) exists in all points of the interval (—m,OJ 5

so that, by the continuity of L(t) and N(t) the relation
L(e)N{t) = 1 (6.10)

extends from 7 to (—m,Oj. Since L(t) decreases as t decreases, and

lim L{t) = 0, the positive definiteness of L{t) and of N(t) extends to
o

(_W,O]. Clearly the maximum eigenvalue of L(t) is infinitesimal as t-+-w

and the minimum eigenvalue of N{(t) goes to infinity as t +-«,

Hence for any vec” we get

. v
lim VTN(t)V = 4o (6.11)
t >~
Finally, assume that Ag has an eigenvalue ) with ReX >0. Denoting by v

an eigenvector, the function

wlE) = o (R w (6.12)

satisfies the following differential equation

v ; L
a8 . (A+2)n +%TBR 1BTV = ZRe A n +cost
dt

vT -1 (6.13)
n(Q) = v ]Td v >0
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The solution of (6.13) is infinitesimal as t +-=, contradictory (6.11).

This proves the lemma. J

Coroﬂ.l[YOULA] Let M(s) eR(s)mXm satisfy the hypothesies of Theorem 1

and be analytic on the imaginary axis. Then the analiticity of

Wb(s) extends to the imaginary axis.

Moreover, if rank(M(jw)) = r for any real w, then rank V¥, (s) = r

in any point on Re s >0

proof. (in the case when W(s) is invertible). Imn (6.3) W(s) can be choo
sen P.R. and regular on the imeginary axis. This implies that the spec-
tral factor (6.4) we get from a minimal realization is analytic on

Re(s) >0. If rank M(jw) = m for any real w, then W(s) in non real-redu-
ced, so that its minimal realizations satisfy the condition Re A(Ad) <0.

Hence the rank of Wo(s) is m on Re(s) >0. ]

Corcll.2Let M(s) ER(s)mxm satisfy the hypothesies of Coroll.l and let

Wi = Wled S5 C-a)

with W(s) P.R. and analytic along the imaginary axis. Then

i) the spectral factor wo(s) of M(s) and the matrix W(s) exhi-

bit the same McMillan degree.

ii) there exist minimal realizations of wo(s) and W(s) having com

mon matrices A and B.

proof. The well known properties of McMillan degree give
s|M@s) | = 8]¢T(-s)v (s)]| <8]¥i(=s)| +6]¥ _(s)] = 28|¥_(s)| (6.14)
; e o = o o} 0 :

On the other hand the set of poles of W{(s) and WT(-S) are disjoint S0

that
s|Ms) | = 8|W(s)| +8[W (=) = 28[W(s)| (6.15)
Assuming M(»~) to be invertible (6.4) gives a realization of Wo(s) which

exhibits the same A and B matrices as a suitable minimal realization of

W(s) does.
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Hence 6|W(s)| i§|%0(s)|, and (6.14) proves both 1) and 1i).
We omit the proof in the case M(®) is not invertible. One could refer

to [4.1], pg. 249. O

Remark 1. In sec. III.5, theorem Z, we showed that if I = (A,B,C,DO)
satisfies the generalized P.R. lemma then any solution (II,H,J) of the
lemma gives a spectral factor of W(s) +WT(-S). We annonced that - to
some extent — the converse holds too: in fact, under suitable assump-
tions, the knowledge of spectral factors provides solutions of the PR
lemma, as we will prove below.

Assume Ly = (AEB,C,DO) to be a minimal realization of a PR matrixW(s)
and let % 5 = {(F,C,H,J) be a minimal realization of the spectral fac-
tor ?O{s) we considered in theorem 1.

Decompose I, as the direct sum of two subsystems I_ =(A“,BW,C“,DO)and

W
Iy =(AI’BI’CI’O)’ EI is a lossless systems which realizes the imagina
ry poles of W(s), whereas I_  is a dissipative realization of the re-
maining poles of W(s). Since the transfer matrix W_(s) of I_ sati=

sfies the condition

W_(s) +WL(=8) = ¥o(=3)¥ (s)

by Corollary 2 there exists a minimal realization of %O(s) having A_
and B_ as first two matrices. Such a realization Z'O ={(A_,B_,H',J) is
unigque, and is determined by E%B$ A_and B_, in the sense that these
matrices uniquely determine the change of basis from &?o to Z'WO.
The linear equation in the unknown matrix K

T ;
KA +A'K = -H' H' (6.15)

has a unique solution II_ >0, which can be introduced in the factoriza

tion of W(s) +WT(“S)=

1B_ +BE(—sﬂ~AE)_1H‘T +

wTs) v o) = a%7 +3TH (s1-8)"
+ BT (-s1-aD) T (n_(s1-a_) + (-s1-AT)T) (s3-a_) " 'B_ - (6.16)

r _‘“1 -’
= fa s (@Tm et ) (s1-a) s BT (-s1-a0) "L (n_B_+nIT)

By equating (6.16) with



- BE =
1.T

W (=) +7(s) = (D_+D0) +C_(si-a) T+ (-s3-a) Tic!

one gets the triple (II_,H',J) which satisfies the following relations

TA +AT = -H'H

nB =ch-u'ly (6.17)
D +DT = JTJ

(o] Q

Since from sec. 4 we obtain easily a matrix HI which satisfies

T
NA.+A T =0
I'I
L1 (6.18)
I.B. = Co
B = 61

n_ 0] |
we conclude that the triple 5 E;'_ é], J!{ is a solution of the PR
0 i g
I:

lemma with respect to

A 0 B_ l:
oo,
5 b ] g 3
0 A BI I 0

I

which realizes W(s).

Clearly if an existence proof and/or a construction technique of wo(a) A5
re available which do not depend on the PR lemma, thein the above remark
provides a .proof of the PR lemma and/or a construction technique of
its solutions which does not debendon the Riccati equation. A careful di-

scussion of these problems can be found in [A.1] ore in [Y.lj.

Remark 2. Let I = (A,B,C,D ) be a dissipative realization of W(s), and
let (1m,H,J) be a solution of the PR lemma with respect to I. The number r
of the rows in H and in J matrices is also the number of the rows in the
spectral factor u{s) = J +H(SI—A)“lB of the matrix W(s) +WT(—S). Since the

rank of Y(s) cannot be less than the rank of W(s) +WT(—S), one gets
T A
r > rank(W (-s) +W(s)) = »p (6.19)

On the other hand, the factor WO(S) in Theorem 1 has r rows, and remark 1

above shows that the solution of the PR lemma one gets from a minimal rea
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lization I and from the corresponding wb(s) exhibits p-rows H and J ma
trices. We therefore have that every minimal realization of W(s) maps
inte a solution of the PR lemma in which the number of rows in H and J
matrices attains the l.b.p. Denoting by T3 the available storage  ma-

trix in [ = (A?B,C,DO), one could also prove that

r . i
’D D5 c-Bn T
p =1 . = rank i e e 4 i
n T .. T |
- = -A
IC MdB HdA ﬂqi

It is interesting to recall that p is the minimal number of resistor nee

ded in the synthesis of the impedance matrix W(s).
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