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INTRODUCTION

investigation of "passive" p‘iysl(‘al astructu
traditional flgluc)fh‘sgnrlLaI}HOLneLrlnﬂ
Its arose [rom electrical network analysis,
‘and a lot of resulis were obtained In connection
with the well known problem of "physical realiza-
bility", Recently the introductien of system theo-
retic methods made passible seveval more steps in
the formal explanation of dissipativity and energy
concepts, In particular some papers by Willems
[1,2}, Anderson {3,4,5] and others provided dwclean
and rigorous sct up for the study of input/output
dissipativity and state model properties. In this
context the determination of energy functions of 11-
near systems has been connected with the solution
of suitable optimum least square problems.’
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These mostly theeretical results have been fol-
lowed by several applications: it will be suffi-
cient to mention here the introduction of genaral
synthesis techniques for passive m-ports, both
reciprocal and non reciprocal, on the basis of the
so calied positive real lenma.

The purpose of this ‘paper is to investigate how
the system Lheoretic concepts of controllability
and observability interply with dissipativily pro-—
perties of linear time-invariant dynamical systems
While observability implies the rather perspilcucus
consequence that any energy functicn is strictly
positive definite, the consequences of (non) con-
trollabilicy are more elusive and refer to the pos
sibility of cobtaining nan dissipative systems de-
scribed by positive real matrices.

ed vhen consida
w7

Such properties are also discuss
riny the so called "peneralized linear systems
which canstitute

natural framework for modeling
linear electrical

the

networks.

CONCEPT 0F STPATIVITY
In this =secction briefly recall from (TJ how
the concepts of sipativity ecan be iu

v oand dis
troduced in a theoretic context, The defind

Jde

ticns we give and the projercies we derive ave,
very general aund do not vefer ; way to the li
i i ve shall

1[\,' hypothesis, 1x

FORNASINI

The relations between system theoretic concepts of controllabi
crvabilicy and notions of dissipativity and
time invariant dynamical ayr

stems.

is a real valued scalar funciicn

(2.3) w:UxY=>R: (a,p)+r w(a,J) |

such that . } ?
t1 ‘ - T

(2.2) w(u(ey,y(e))] dr < = f

“choosa

ttronica

stored  encrgy

As wa shall see, the dissipativity property]

reflects very strongly en the internal structure
in-

of these systems as well as in the external

put/output map.

Defin.l [Let I be a PEJUEQP
vartant systems. A supply fune
stan product of input end outy

to by 0—9-

any fintte time intarval [L tlj’ ary inpul u

for

and inttial state x, at time .
(y denotes the output which corresponds to Xy and |

UO}' Clearly for any given I there is an infinite

set of "possible supply [unctions. From now on we E
will assuwe that a specific w has been chosen as |
supply function, and we will denote by (&,w) the|
system &L with the supply w. {

it convenient to
For instan

Needless to say, we shall find
a meaningful supply w. v
ce, when dealing with electrical networks U and Y.
denote the spaces of instaantaneous port currents
1 and port voltages v, aud w(i,v) is just

T
(2.3) w(i,v) =1iv .
which denotes the power f£lowing irte the net-
!
work. i
i
The following definition formalis the intuiti
va concept of ssipabive syst think of as a
physical structure which accepts senc work at the
dovice teminals, accunulates the work as inter-
nal o gives back (partially or totally)

the previo stored enargy.

Defin. 2

b
{witn

G
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exists a non negative
te set X

X+ R

(2.4) 8 i

such that, for any time interval [io,tlj, for any
inttial state %, and for any input u

t

1
(2.5) | wlu(®),y(£))dt 2 5(x)) - S(x,)
o
where y denotes the output which corresponds to the

input u and to the initial state x(ty) =x,. Every

Function S satisfying condition (2 5) is called an

"energj function',

When the initial state %

coincide, we write the left hand side in (2.5)

and the terminal star

te x
1
as

w(t)dt

|
|
so that (2.3) becomes

3(2.6) w(t)dt > 0 ’ _ .

| .
! Dissipativity checking constitutes in general a
very hard task. In this regard the "available sto-
rage' and the "required supply' are fundamental sta
te functions which provide some necessary and suf—

ficient conditions. As a matter of fact, they are

‘also the cornerstones of our subsequent analysis

of disgipative linear systems.
The available storagc S can be deflned for eve

ry system - independently on its dissipativity pro
pertles intuitively S (x) represents a measure of

ths maximum work the system (Z,w) can deliver to
some .external device when starting from the state

X.

Defin.3 Let (Y,w) be a dynamical system with a

‘supply function w.

The avatilable storage S, g the

map (%)
'ty
2.7) S :X+RE : i*b (:r )= sup - w(t)dt
g0+ to
tl_ZEO

The supremwn 1s evaluated along all trajectories
starting from the state Xy at time .

The following Theorem is important in two ve-
spects: first of all it shows how the available
storage is related to the dissipativity, next it
proves that the set of the energy functions
(if not empty) has a minimum element.

Theor.l [1] 4 swystem (I,w) is dissipative if and
only if its available storage is everyvhere finite

+00

(2.8) 08 <
a

In this ease the function 5, 18 an energy function

and the inequality ;

(2.9) s, <5 .

holds for any energy functiom S. .

When the state set X is reachable from some sta-
te ¥ the check of finiteness involved in Theorem 1
can be restricted to the trajectories starting from
X.
o
( )R$ denotes the sat of non necative real numters
extended with the symbol +o,

real function on the sta- " Theor.2

finity).

On some structural properties of dissipative linear dynamical systems

[1] Let the state set X 1n (Z,w) be com—
pletely reachable {rom & in X. Then (Z,w) Is disst
pative If and only zf there is a constant K euch
that

£
(2.10) inf w(t)dt > K , ¥xe X
X t
2ty
and a possible energy fw cition 1s given by
(e
1
$(x) =5, (X) +inf w(t)dt
B e

, t1%f0 |
In the sequel we shall assume that the availa-
ble storage Sa of every system (L,w) we consider
vanishes in some state x¥e X. (As long as we are |
interested in linear dissipative systems, this is
bv no means an effective restriction, siuce the
zero-state available storage is either zero or in
Hence the 1ntegtal supply the svstem needs

when startlng from x* is non negative.

. This makes the "vequired supply" we introduce
below a good candidate for energy function.

Defln 4 Let x* in X satisfy S (x*)-‘O I%e Peq¢1"‘

red supply function {from the state x"} 18 a map

(2.11) s X > RS

r/x*
defined as follows

© if % 75 not reachable from x*
) T |
Sr/Xg (x) . t-. |

inf “w(t)dt mfxzq reachable

M e from x*

t 0 ;
inf w(t)dt is evaluated along all trajecto-
x*x tg !

ries from x* to x and it exists as a real num
ber if and only if x can be reached from x*® The
way Sr/x* is related to the set of energy functions

is shown by the dissipation inequality. It provi-
des upper and lower bounds for the family of ener
gy functions which vanish at the reference state
x*,

Theor.3 (Dissipation Inequality [1]) Let (I;w)
be a dissipative dynamical system and let x* sa—
tisfy Sa(x*)==0. Then for any energy function §

whieh satisfies S(x™) =0 one has

(2.12) §,(x) £8(x) 28, «(x)

r/x
Moreover, if X is completely reachable from x%
then Sr/xa(x) e an energy function.

It is interesting to peint out that the set of
all possible energy functions of a dissipative dy
namical system (Z,w) is a convex sct. In particu-

lar, if X is reachable from x™ and if 0 <B <1, then
gsa +(1_6)Srlx“ is still an energy function.
Defin.5 Let (%,w) be a dissipative dynumical sy-—
stem, and let S be one of its energy funetions.
(L,w). 28 losasless (with respecy to S) if for any
state %, in X and any input driving L from 5 at
time ty 20 ¥ at time t, one has

ki
(2.13) w(t)dt = S(xl) - S(x0)

to

In other words, in a lossless system the increa
se of the.stored energy along any system trajecto-
ry is equal to the supply the system thb by deéscri
bing the trajectory. If the state set is connected,
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the lossless property does not depend particular

energy functicn one considers. In fact the e~
nergy function is unique as far as the energy func
tions have to vanish in x .

Theor.4 [1] Let (I,w) be a dissipative dynomical
system and assume the state set X to be connected.
If (Z,w) is lossless (with respect to the energy
function 8), ithen

i) Sa(x)= S§X}= Sr/xw(x)tjbr any x in X

ii) S(x) = 1w(t)dt=— ?'w(t)dt for eny x in X
0 xfox 0 xx¥

and for any trajectory from x" to x (fron x to x*).

?. DISSIPATIVITY IN LINEAR SYSTEMS

Consider now a linear time-invariant system
‘E=:(A,B,C,DG) of dimension n

% = Ax + Bu

= Cx + qju

(3.1)

with m inputs and m outputs, and intreduce the stan

dard supply function
T
(3.2) w=uy
i
We are now in a position to explicitly determlne
the structure of an energy function.

Lemma 1 . Let E= (A,B,C,DO) be dissipative. Then

the available storage is a non negative definite
quadratic form.

| The pronf relies on the property that a map
f an+R is a quadratic form if and only if 1)
f(Ax)-—A f(x) for any real A ii) f(x ) +f(x2) =

flzf{x1+x2) +§t(xl .2). In a linear system,sa sa-

tisfies conditions i) and 1i) whenever it is fini-
te.

In general the family of quadratic energy func-
tiens is not restricted to the available storage.
In any case, its members are strongly related to
the structure of matrices A,B,C,DO, and it is pos

-sible to characterize dissipativity directly jin
terms of these matrices. In this respect, Theorem
5 provides the fundamental facts.

Theor.5 [1,3] Let E==(A,B,C,DO) be an n-dimensio-

nal linear system. Then the following propositions
are equivalent:

o) I ig dissinmative (o)
i)  the set 5? of non negative definite” "nxn ma

trices 1 such that S(x)=1xTﬂx is an energy

. . 2
function is non empty

ii) the set 33 of wron negative definite solutions
of the inequality

DO+D(1J ¢ - By
(3.3) >0

or = Bl wACTSTR

7s non empty

iii) the set 5% of the triples (I,H,J), M 20,which

satisfy - the equations

(o)

M>0 (resp. M>0) deno-

For any square matrix M,
nositive) de

tes that M is non negative (resp.
finite.

On some structwral properties of dissipative linear dynamical systems.

A + AT = -H'H
(3.4) I8 =ct - H'g
T T
Fd'= 0, ¥ I

e non empty.
iv) Zf DO-FDg is a unit, the set &
ve definlte

of non negatt

golutions of

(3.5 m+aTn+ qm-chy @, + ) BT -c) 20
8 non eiiply. o
If D +DL 48 not an unit, the set ¥ = lim ¥
0 "0 4 he
e+04
empty: Siedenates the set of non
negative definite solutions of

(3.6) TA+ATT + (IB-C") (0, + o+ e]:m)"1

18 - not

o
@®M-c) <o

y W < b ¢ oy 9] .
The sets u{,ug,égjand & (or &', ) edincide.

Proof. o)é&i). If I is dissipative,
quadratic energy function does exist, namely S .

i)&ii). Let S(x) = 1x Hx be any quadratlc 1
energy function. Then for any x(to}E:X and for any
input u we have

by Lemma 1 a

|
i

t0+€ T |
;. u ydt:-x(t +e) ——x(t +s_} —x(t ) —-x(tG)
o |
Taklng the 11Hlt as £*0, we obtain !

7 7, DQ”'DQ; h(toﬂ .
CT-NB ~TA-ATT x(tO)J ;

Since u(to) and #(to} are arbitrary, the matrix

-BYI+C

|

Il satisfies the inequality (3.3) and bigi&;. I

|

Conversely, if I1>0 is a solution of (3.3), then

U.T d XT 'I"[‘X i
TE2aE ™ 7

Inteﬁratlon of (3.7) shows that the quadratic
form xT o% is an energy function and u’ 5p

t t
o o

ii)=riii). If 120 is a solution of (3.3),
the following factorization holds

(3.7

D +D.  C-B b
0" o i} -
T : T
c'-mp -mA-A'T| |n

because the left hand side is non negative defini-
te.

Implication 1ii)=1i) and equality 5’ 5f are
clear;

1ii) =®iv). Let now D *—DT have full rank
and let (IL,H,J) satisfy (3.4). Since the spectrumof

JITH 10T contains just’ the cigenvalues O and 1,
lm-nJ(J'1 )~LJ is non negative definite and

1.T 1z

13 ) " TH 20 H implies iv):

T

MA+ATH = -H'H < -3t Ty -

(8 11-¢)

i 4 T,-1
(7T
(MB-C™) (DO+DD)

iv)=dii). Let 120 satisfy inequality
(3.5). Then there exists a matrix N such that



FORNASINTI E.

T 2L T

HA+ATH+(HB~CT)(DG+D VTS - R

0

holds and (3.4) is proved by intreducing

ces
_ N
' [}(HB—CTQ(D a2 N%}
o* % :

: TFoasz !
- |
[FDgitb) : ¢} J

| As an easy consequence, when Ib+Dg is a unit 5;

the matri

1

J

}2 (and of course 5&) coincide.

Finally let i1) hold and let DO+Dg be singu
' o T .
lar. For any €>0, DD+DO+1m€ is full rank.and the sy

stem (A,B,C,Ib+~%]hg (which is dissipative when-

ever L is) ¢ivas a non empty set %

e of non negati
ve solutions of the ineauality o

=L

D +DT+I € ChBTH el 0
0 0 0 m o m g
; ¢’ -AT-m| | o o
5 T T
| . _
| [Po*% e I
! cT-ms -aTn-my

Plainly

G He = 5

for any €0, and{éﬁp}is an g-indexed family of sets
which monotonically decreases as €+0,. Since the
non empty set 53 is the intersection of the family

|
i = 1lin & = [1& !
E 2 €20, 2e e0 2e
|
we get from (3.8)
i = lim & = lim & =%
4 £+04 4e €50, 2e 2
This gives also the converse iv)=ii). ]

The equivalence o0)¢*iii) is usually called the
positivé real lemma [3].

It is interestineg at this point to investigate
how contrsllability and observability are related
to some simple properties of the set of non nega-
tive solutions of {(3.3). The proof of the follo-
wing Lemma is identical with that of Jemma 1.

Lemma 2 . Let I =(A,B,C,Eb) be a dissipative and

eontrollable linear system, The required supply

(from mero state) is a non negative quadratic fune

tion: -
o i

=yl T
Sr/O{X) = x x , .20

(3.9 3 .

Since non negative solutions of (3.3) biunique-
lv correspond with quadratic encrgy functions,. the
dissipation inequality leads to the following

Theor.6 Let X==(A,BGC,DO) he pative cnd con—

trollable.
of (3.3) ha:

1 the set of non necative solitions
as T.u.b.

The observability assumntion is completely equi
valent to stipulate that the origin 1s a strong mi
nimum péint of any energy function.

Theor.? lLet E=:(A,E.C,DD) be dissipative. Then 1L

On some structural properties of dissipative linear dynamical systems.

s observable éf and only if
S(x) =0=2x=20
for any energy funetion S.

Proof. Let &L be observable and assume S(xo) =0 for
‘some Xy #0. Then for any input u and any instant

t. >0 one has

12

5 t

1 1 P

f uTydt = j (uTCx+u1DOu)dt_>_0
0 K oH 0 p. e

z M 0 2 0
Hence the € indexed family of inputs

M =ECexp(At)x0 EER

|
) |
gives |
|

|

i

L
1
OS/ [UTC (exp(ATt)x +
0 0]

! t
| 4[ exp(A{t-0))Bu_(0)do) +uTD u:l dt =
! 5 £ 0

t

- 1 ' -

(3.10) s E xTexp(Ajt)CTCexp(At)x dt +
o 0 (0]

ty . t

2 T

+ € u.C (exp(A(t=0))Bu, (0))do +
0 1 0 :

T
+ ulDOu1 dt

When t. is fixed, the integrals in the right

]
hand side of (3.10) are constant terms, which we
will denote by m and n respectively. Hence

‘0 < eEm + ezn ¥e e R

This implies n2>0 and ;
m=0 =XT exp(ATt)CTCexp(At)dt b
0 0 ¢}
Consequentlt L is non ohservahle, contrary

to the assumptions. )
The converse holds too. In fact, if % # 0 is

indistinguishable from the zero state, the availa .
ble storage is zero in X+ Hence an energy fune-

tion exists which annihilates in (a2t least) two
points. E]

Finally, we shall establish a dissipativity con
dition which holds when the system (I,w) starts
from the zero initjal state, This condition is fun
damental in the dissipativity analysis of travsfer
functions.

We ewmphasize that controllability is needed in

" proving the equivalence between dissipativity and

inequality (3.11).

Theor.8 Lei E==(A;B,C,DD) be diceipative and aseu

me x(0) =0,
t; 20
. f &1 i
(3.11) u'y dt 2 0
g 0o-
Conversely, let (2.11) hold and let E be controlla
ble. Then L is dissipative.

Then for any input u and for any time

Proof. Suppose first that I is dissipative and as
sume x{0) =0, When vreplacing an input u by the
input ku (k€ R), the corresponding output y becomes
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ky. Consequently if some input u gives
T
u (t)y(t)dt = h < 0O

[-tl
o 0~

the {nput ku gives
T
ko (t)ky(t)dt =

t1
0 0~

This would imply that the available storage in
the zero state is infinite, contrary to the assump
tion of dissipativity.

2

k"h < 0

Conversely, if I is controllable and (3.11)
holds, Theorem 2 can be applied. In fact the state
space X is reachable from the zero state and

inf

ty E
f ulydt >0
0 - Q

t,20 O
Remark 1. When £ is non controllable, in general
the second part of Theorem 8 does not hold. For in
stance the electrical network of fig. 1, which in
cludes a driven generator, does not constitute a
dissipative dynamical system. Observe that (3.11)
still holds and the state space is nof completely
controllable, '

i=y

[+

(D e _de

Ci
Ve,

na
A l *;
D< b
n

R, fig.1

VYW

Remark 2. The dissipativity analysis in the Lapla-

ce transform domain is based on the result of

Theorem 8., In fact the {matrix) transfer function

of a system Z=(A,B,C,D ) is positive real if and

only if the inputs and. outputs it relates satisfy
. condition (3.11) in the time domain [3,6].

It is worthwlille to peint cut that the positive
real property of the transfer function does not
guarantee the dissipativity of ¥ if Z£ is not con-
trollable.

4. LOSSLESS LINEAR SYSTEMS

The relations we considered in Sec.3 have some
interesting particularizations when X=E(A,B‘C,DO)

is lossless with respect to some energy function S.

Lemma 3 . Let E==(A,B,C,n0) Le lossless with re-—

spzat to  an energy function S. Then L 18 lossless
with respect to the available storage S .

Proof. Assume that o and %y in X satisfy
f“(ildt = 8 k) =S 0 v e
Ho"

for some £>0.

Then, by the definition of available storage
S(Xl) "S(xo) ztlnf(s(z)—s(xl))+
X, *Z
) 1
+ inf(S(v)—S{xO)) + £

X _HV
0

On some structural properties of dissipative linear dynamical systems.

Hence
inf S(z) = dinf S(v) + €
+z
xy72 X7V
which implies the existence of some state Vo?
reachable from x such that

0!
(4.1) $(2) > S(vy) + le

for any state z reachable from Xy
Let x(-) and (') be two different trajectories
of I both starting at time t =0 from the state

x(0}=}§o. Then for any pair t;,t, with 0<t, <t,

there exists a trajectory connacting x(tl) and
R{t,).
(t,)
Consider now two trajectories of L: the first
one starts at time t=0 from XO’ meets Xl

in some state z at time t?; the second one starts

and ends

at time t=0 from X , meets v, at some time t_ and
0 0 Yo
ends!in v, at some time t >t . Suppose
1 vy
that in the time interval [tv el 7 the second tra

] 0 1
jectory

is given by a'free evolution of & (j.e.
u&)=0fm‘fED1,t JL
VN
0 1
The assumntions we madz imply
ty
(4.2) i) S(v1)=S(v0)+‘-t wdt=S(vO)
vy

ii) there exists a trzjectory comnecting z

t time t_ with t time ty, .

a ime 5 wit v1 a 1m v
Then reachability of vy from x; gives

S(vl) > S(vo) + ie

which contradicts (4.2). 0

As a consequence of Lemma 2, whenever I is loss-—
less we assuwe that it is lossless with re-~
spect to a quadratic energy function (e.g. the a-
vailable storage)

Theor.Y The following propositions are equivalent:
o) I =(A,B,C,D0} s lossless dissipative (with

respect to soime energy function)

ii) The set Y| of non negative definite nan maﬁfi
ces Il such that T <& lossless with respeet to
S(x) = }xTlx <s non empty
i) The set &, of non negative definite matrices
Il which satisfy the equation
DO + I); C —BTH
(4.3) e T =0
c'-TB  -A T-lIA
is non empty.
iil) The set 33 of non negative definite solutions
1T of the system
MA+ATT =0
(4.4) M o=c’
_ T
Q —D0 +h0

ie non empty.

Th sets.?ﬂ,ﬁg,ﬁg cotneide.
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The equivalence 0)¢>i) follows from Lemma 3 and
the remaining equivalences are proved as in Theorem

6.

Remark. By Theorem 4, 1f Z is controllable the set
5; contains exactly one matrix.

The following Theorem is the lossless counter-
part of Theorem 8.

Theor.10 If ¥ ¢s a lossless linear system, then
each closed trajectory in X satisfies

(45, wit)dt = 0
If T is econtrollable and dissipative, and if
w(t)dt = 0

hoids for any closed trajectory in X, then I s
lossless. .

Proof. The first part is eobvious. To prove the se
cond part, we resort to the connectedness of X. if
T is not lossless with respect to some energy func
tion S, along some trajectory in X the strong ine=
quality.

w(t)dt > S(Xi) - S(XO)
¢} x0+xl
Taking now a trajectory from x

holds. to x., dis-

. 1
sipativity implies
1

ts ’
st > s
J;l ;(:idt b3 S(XO) S(xl)
170 ; .
Concatenating the two trajectories one gets

b w(t)dt > 0
contrary to the assumption. 0O

Remark. Cendition (4.5) refers te the set of all
closed trajectories in X. It is easy to see that
sne could restrict (4.5) to the set of trajecto-
ries which have their erigin and their end in the
zero state. In fact, suppose ? to be a cycle which

"starts" and "ends" in X By the connectedness of

X, there is a trajectory il from O to Xy as well
as a trajectory 12 from Xy to 0. Clearly

fig.2

(4.6) é w(E)pt =0 wit)dt =0
IR, g

> -
hold, so rhat along the Y trajectory we have

w(tYdt = O
>
Y

5. DISSTEATIVITY TN GENERALIZED LINEAR SYSTEMS

it is known that the nodel of linear system we
considered in Sec. 3 in general is not sufficient
for modeling a linesr time-invariant electrical
network '{j]

On some structural properties of dissipative linear dynamical systems.

This drawback can be overcome by extending the
class of dwvnamical svstems up to include the so
called “"generalized linear systems (GLS)":

% = Ax + Bu

(5.1) d di
y =Cx L, Di ——%
ot 't

Dissipativity definitions and theorems require
some restrictions on the input admissible functions
when GLSs areconsidered. These restrictions could
be justified from an heuristic point of view:
if we pursue in adopting u'y as supply function we
should avoid the possibility of impulses in the
output function y, which would imply a non infini-
tesimal flow of energy through the system gates du
ring an infinitesimal time interval. -

Consequently when dealing with supply functions
we will restrict the set of possible inputs of
(5.1) to the d-1 times continuously differentia-
ble functions which fulfill the "initial' condi-
tions '

u(0) = u(0_) = u(0,)

' (0) = u' () = u'(,)
{(5.2)

40 1)(0) gt 1)(0H) (. 1)(0+)

In this way no impulses are included in the
output functions and the supply integral makes sen
se. The stored energy at time t=0 is assumed to
depend on the state x(0) as well as on the values
u(O_)....u(d_l)(O ), all of which determine the
behaviour of the GLS on the closed interval [0,
in the sense that the im ulse content at time zero
depends on the jumps e (0, -u ), i=
Bl e d-1

We therefore give the following Definition.

Defin.6 A4 GLS L= @A,E,C,DO,Dl,.

puts and m outputs is dissipative with respect to
the supply function w=uly if there exists a func
tion §

"Dd) with m in-

S : RN xR % o.... X R R+
i
d times -

§ ¢ (x(0.),u(0),...u’d 0 ) »

u(d—l)

P S(x(0),... 0.))

such that for avy £, 20 and any d-1 times conti-

nuously differentiable input u which satisfies con
ditions (5.2) one has
t

1 i
uTydtzS(x(tl),u(tl)...u(d 1)(t1)) -
A
d-1
- 5(x(0),u0_),...« )
Starting from its d-th derivative u{d), a func-

tion u can be reconstructed when u(0),u’(0),..
uw(d-1)(0) are known. Assuming that the input u of

the GLS L ﬁ(A,B,C,DO,Dl,...Dd) satisfies (5.2),

the standard linear system T =(r,G,H,J)

= Fz + Gv

Ne
]

y = Hz + Jv

gives the same output as the original GLS does if
we assume v{(t) = ul(d) (e) and
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T -
¢ =[poo...1] m=[np D ...0D ]

ABO .... 0 _ % (0)
00L ...0 u(0_)
(5.5) F = 2@ = ....
%
000 «vuu O u(d_l)(O_)

Therefore the supply w=uTX_of the GLS Z c.n be
viewed in the linear system I as a function ¢f the
state z and of the input v

8 RN 0

oy IO T 2
(4.6) w=z |00 ..... 0 z o+ -zT 0 v

00 (0] 0

The definition of avezilable storage extends to a
GLS din a natural way:

Defin.7 The available storage of a GLS L=
= @,&Cﬁh,%,”.qﬁaﬂﬂtm@pﬁ;ﬁmcﬁonw=uy
is the map

S :ﬁn x B % oo BT > RS :
a +

G x0),u0.),...w o)) =
L= R .
=2z(0) b sup —/ _urydt
u€g /o
£,20

where U denotes the set of d-1 times continuosly
differentiable input functions which satisfy condi
tlon (5.28). -

Following the pattern of the proofs given for
standard dynamical systems, it is easy to show
that S, is everywhere finite if and only if I is

dissipative. Moreover when I is dissipative § 1is
a

an energy function expressed by a non negative de-—
finite quadratic form:

(5.8) 5 (2) = 2" ]2[ 5

The interest of the following Lemma is.in that

it restricts to the first input derivative the de-

pendence of y on u in apy dissipative GLS.

Lemma 4 . A dissipative GLS L =(A,B,C,DO,D1,...Dd)

satisfies the following conditions:

(5.9) D2 = D3 2 e & Dd =0

Proof. Since Sa is an energy function, (5.8) gives
E
JF uTydt 2
4]
(5.10) e €
1 . u(t)
T T d- Il
2wt ). WD ] %

EErR
Lu{d_l)(t) 0

for every input u which satisfies conditions (5.2).

On some structural properties of dissipative linear dynamical systems.

Let d>1 and Dd# 0. Taking in (5.10) the limit

as € goes to zero and partitioning Il conformably
with the block partitions of F,G,etc., from (5.6)
we have

(00 .... 0
€ By wee Dy

22 (0) - TIF}2(0) 2

B0 suws O

(5.11) &
Hg41,1
D

. Bae1,2 P
>z (0) v{0)

IEEER

a+1,q+1

The above inequality has to be satisfied for e-
very choice of v(0) and z(0). Hence

Maet,1 "0 Maer 2 700> Mana, 3™ Nana 6=+
= Mgy ge1 ™ ©
and I has the following structure
§ | o
| i
|
Ty ] 0
(5.12) I = d+1 blocks
i

o 0 0 ... ©

which agrees with condition I1>0 if Dd=0.

The only alternate possibility is to assume
d=1. This implies that D =D, has diagonal posi-

d
tion in (5.12) and the resulting structure of 1l
is compatible with the assumption II>O. .

When d=1, (5.11) dimplifies as follows

o o i
(5.13) =z (0) -HF}Z(0} z_zT(ﬂ)[-z1 v(0)

¢ D M2z =Py

and we get the following conditions on the blocks
of I

Ly =T, =0
(5.14) M, =D 20
I, 20

After replacing F with its explicit formula
(5.5), we have

T, T B
"qllA - A Hll [ nll
(5.15) 20
T T
cC =B Hll D0 + D0

This shows that the relation (3.3) which c@ara&
terizes a dissipative standard linear system 1s
still a necessary dissipativity condition for a
GLS. (5.14) ard (5.15) therefore proved the neces~

sity part of the following
Theor.11 A GLS & =(A,B,C,DO,D1,...Dd) 18 diseipa~

tive 1if and only if
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i) D2=D3=...=D =0

ii) Dz 0

iii) the linear system L' =(A,B,C,DO) is dissipati
ve.

For the sufficiency part, observe that dissipativi

ty of L' is equivalent to the non negative defini-
teness of

T T
Dy*Dy  C-BT
¢F-m -m-aTn

This implies
15.]6) uTI%u + uTCx 2,XTHAX + XTHBU

for any ueR" and for any xeR", From the CLS equa
tions :

%X = Ax + Bu
y =Cx + QDU + Dlu
and from (5.16) one gets
RIS
T d T T
vy kg $(u Dlu»+% Mx)

Hence

t;- ty
1 ] 1
/ uTydt > (uT -2121 w b —2— %)
¢} . 0
and we conclude that the function §(x,u)
S(x,u) = ;];T at| T o u
: 0 Dy X
is an energy function of I. O

It is interesting to point out that, even if
n'= (A,B,C,Eb) is observable, the dissipative GLS
Z=:(A,B,C,DO,DI)'exhibits a non strictly positive
definite energy function whenever the matrix D, is
non invertible. As a-matter of fact, we should
think at

= u(0+)~u(0_)

as to a supplementary state vector, since the impul
se content of y at time t=0 depends on the jumps

of the input and input - derivatives. If Dy does not

have full rank, it is easy to check that ¥ cannot
be recovered from the output impulse content and
we could label this situation as a non oObservable
one.

Hence, provided that a reasonable extension of
observability have been introduced, Theorem 7 holds
for GLS too.

Finally, the inequality

¢ T
(5.17) ]’ u ydt 20
00~
for any input u satisfying (5.2),is still a necessa
ry (and, when E'=(A,B,C,D0) is controllable, suf-

ficient) dissipativity condition, In terms of La-
place transform (5.17) is now the time domain exact
counterpart of the positive real property of trans
fer functions in the classical Network Theory set
up, because the presence of poles at infinity is
allowed in transfer functions of GLS.

On some structural properties of dissipative linear dynamical systems.
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