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Short Paper

EVALUATION OF MASON'S FORMULA
BY USING CONNECTION MATRICES

E. FornasINI and A. LEPSCHY

Abstract, A procedure is presented for evaluating the transference of a
signal flow graph. The procedure refers to Mason’s formula and is based on a
correspondence between addenda of numerator and denominator of this formula
and suitable connection matrices.

1, Introduction.

The use of Mason’s formula for evaluating the transference connecting a
source node i to another node o of a signal flow graph, needs —as is well
known — the preliminary identification of the i-o paths and of the loops of
the graph; it is also necessary to ascertain if each loop is touching or not touch-
ing each other considered subpath, i. e. if it contains a node belonging also
to another loop or to an i-o path [1,2].

Mason’s formula, in fact, may be presented in the form:

P
Sy [Py (1—L)..(1—L)]*
1

[A—L)..0—L)I*

(1)

where P, is the transference of the k-th path from i to o;
L, is the loop transference of the %-th loop;
p is the number of different i-o paths of the graph;
g is the number of loops of the graph
and where the star # denotes that the terms (P L;... L) or (L,..LJ) containing
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transferences of touching subgraphs (loops or i-o0 path) are to be eliminated
from the expanded products.

Current literature presents some methods for evaluating i-o paths, loops
and touching conditions. For instance the ones suggested by Mariani and Tas-

sinari (1965) [3], by Bellert and Wozniacki (1968) [4] (both based on the use
of structural numbers) and by the authors of this note (1957) [5].

Here a different procedure is presented for evaluating numerator and deno-
minator terms of Mason’s formula, that seems to be suitable both for manual

and computer implementation.

2. Qutline of the procedure.

To any signal flow graph G with n nodes, as is well known, a lattice
connection (!) »xn matrix C can be associated. With reference to C, let us now
construct the set:

E= Ecill 12’: Calr E (2)

whose elements are lattice mxXn matrices that meet the following conditions:
i) Cj’gtC‘ (i. e. the elements equal to 1 in C; are equal to 1 also in C)
ii) each column and each row of C/ contains at most one element
equal to 1

iii) if the k-th row (column) of C/, ki, (k:,l:o) is zero, then the
k-th column (row) is also zero; if the i-th row is zero, the o-th column is
zero (and viceversa); the i-th column and the o-th row cannot be zero.

Each C;’ can be considered as the connection matrix of a suitable subgraph
of G. Such subgraphs are formed by isolated nodes (i. e. by nodes without
entering and outgoing arcs, corresponding to a null row-column pair of C’), by
non touching loops and selfloops and by at most one, if any, i-o path that
does not touch lcops and selfloops of the subgraph.

By neglecting isolated nodes, an 1-1 correspondence can therefore be
set up between each C}-’ matrix and each addendum of the numerator or of
the denominator of Mason’s formula.

Matrices with the i-th row and the o-th column equal to zero correspond
to subgraphs with one source (node i) and one sink (node o), i. e. to subgraphs
formed by one i-o0 path and by disjoint (nontouching) loops, if any; these ma-
trices correspond therefore to the addenda of the numerator. Similarly C;/ ma-
trices without zero rows and columns correspond (o subgraphs formed only
by nontouching loops and to the addenda of the denominator.

(ty Let L be a lattice, and LaXn be the set of nxn matrices whose elements
belong to L. The L»Xnis endowed with a lattice structure in an obvious way:
in particular, for any M, NgLnwxn

MSNc;,m,.jgnﬁ Li=1,2..n

Connection matrices are lattice matrices with elements in the boolean algebra

8.1}
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On the other hand, each element equal to 1 in C; corresponds to a
branch of the subgraph, connecting the node corresponding to the row to the
node corresponding to the column., Numerator and denominator addenda of
Mason’s formula can therefore be obtained by multiplying the transferences
of the branches corresponding to the elements equal to 1 in each'C/".

The generation of the set @ may be easily implemented by a computer
program, for instance by adopting procedures similar to the ones used for
computing the determinant of a matrix. From each row (column) of C a set
of rows (columns) can be obtained, that exhibit at most only one element equal
to 1; if the considered row of C exhibits r elements equal to 1, the generated
set is formed by r+1 elements, for it contains also a zero row. C,” matrices are
then to be formed by combining a row of the set generated by the first row
of C, a row of the set generated by the second row of C and so on; for this
combination procedure some simple rules have to he respected:

a row cannot be used that exhibit an element equal to 1 in the same position
as a previously considered row;

if the k-th row is zero, the k-th column is zero too, except for k=o;

if the h-th column is zero, the A-th row is zero too, except for A=i.

The sign to be attributed to each addendum of Mason’s formula can be
evaluated taking into account the number of loops of the corresponding
subgraph: if this number is even, the sign is positive; if it is odd the sign is
negative.

The number of the loops in the subgraph can be evaluated in many ways.
We suggest here the following:

i) Counting directly the loops. Each elements equal to 1 in C,’ corresponds
to a branch of the subgraph and allows us to go from the node corresponding
to its row to the node corresponding to the column. In such a way, the path
of the subgraph (if any) can be followed from the source (node i) to the sink
(node 0). By starting from whichever of the remaining elements equal to 1, a loop
of the subgraph can be followed till the same element is reached. In the same
way all other loops of the subgraph can be followed and their number evaluated.

i) Ordering the C;" mairices. Let us consider a matrix C/e @, corre-
sponding to a given subgraph with a certain number of nontouching loops and
a path, if any. Tc each subgraph obtained by the one considered after the
elimination of some loops, a matrix C" corresponds that satisfies C}’< C/; in
such a way the matrices of the set @ can be ordered in many sequences
C/,C/.C/ ... with C/«C/«<C/. If we consider, for instance, the matrices
corresponding to numerator addenda, in each sequence we find firstly the
matrix corresponding only to a path, then the one corresponding to the
subgraph formed by the same path and by a loop; then the one corresponding
to the path, to the previously considered loop and to another loop and so on.
Clearly if the position of C/ in an ordered sequence of «numerator » matrices
is even, the number of loops is odd and viceversa. For the « denominator »
matrices, to an even position corresponds an even number of loops.

iii) Evaluating the eigenvalues of the matrix. Let us consider the ele-
ments of C,” matrices as belonging to the complex field and rearrange a matrix
C;/ by ordering rows and columns in such a way that to directly connected
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nodes of the path (if any) and of each arbitrarily split loop correspond adjacent
rows and columns of the rearranged matrix The latter can be obtained from
c/ via a similarity transformation, performed by permutating two rows and
the corresponding columns at time. The eigenvalues of the rearranged matrix
are therefore the same of C;/. The rearranged matrix exhibits a block diagonal
structure; each block is a compamon submatrix with a,;,,=1 and with the
element at the intersection of first column and last row equal to 0 for the
path and equal to 1 for the loops; all other elements are equal to 0. The
eigenvalues of such a matrix are therefore the solutions of the equation:

2% I (M —1) = 0 )
1

where: p is the number of nodes not belonging to the loops;

h, is the number of nodes belonging to the k-th loop;

y is the number of loops of the subgraph.
The number y of the loops of the subgraph is therefore equal to the multiplicity
of the eigenvalue +1 of C;”. Such a multiplicity can be easily evaluated by com-

puting the determinant of Jf—C;": by letting 1=p+1. the lower degree of
the obtained polynomial is equal to y.

3. Conclusions.

A method has been suggested for evaluating the transference of a signal
flow graph using Mason’s formula. From the lattice connection matrix C of the
graph a set of C/ matrices is obtained that corresponds to subgraphs formed
by nontouching loops and at most by an input-output path not touching the
loops of the subgraph. There is, clearly, an one-to-one correspondence between
each C;/ and an addendum of the numerator or of the denominator of Mason’s
formula. These addenda can be computed by multiplying the transferences of
the branches that correspond to the elements equal to 1 in C/; the sign depends
on the number of loops of the subgraph and can be evaluated via suitable pro-
cedures.
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