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A reachability criterion for linear time-invariant
systems

ETTORE FORNASINIt and ANTONIO LEPSCHYY

A new reachability criterion is presented for linear time-invariant systems that refers
to input-state transferences. The eriterion is based on the evaluation of the rank of
a matrix formed with the coefficients of the numerator terms of such transferences.

The adopted approach and the simplicity of the proof make the suggested criterion
very interesting from a didactic point of view. The application of the ecriterion
presents also some advantages from a computational point of view, at least in some
interesting cases.

A corresponding observability criterion can easily be derived by referring to state-

output transferences.

1. Introduction

This paper deals with a reachability criterion for linear time-invariant
systems, Our approach differs from the usual one (Kalman criterion) and
seems to have interesting didactic implications.

In fact our approach makes use of the intuitive notion of reachability,
that is, to the fact that the input can modify each state vector component
independently from the other ones. The proof of the criterion is, therefore,
very simple.

We may add, also, that the use of the suggested criterion (at least in some
cases) may be more straightforward than that of the Kalman ecriterion.
Furthermore, the adopted point of view can give us more insight into the
causes of non-reachability. This approach can be useful, for instance, when
designing an identification experiment in order to evaluate beforehand if the
application of given inputs allows a complete identification of the system.
The problem is very important, especially in the field of biological and environ-
mental systems and in general when the identification experiment is dangerous
or expensive and cannot be repeated. The identifiability problem, in these
cases, has to be faced a priori, that is, when the values of the parameters to
be determined are yet unknown.

The suggested procedure can also easily yield an observability criterion.

2. OQOutline of the procedure
Let us consider a linear, time-invariant, strictly proper system, with
n-order state vector, and let

I)‘(:Ax+Bu

XT=(.’I,'1, Ly eee 'rn) (l)
lY:CX

be its equations.
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For the sake of simplicity of presentation we will refer, without loss of
generality, only to the reachability problem and to the scalar input case ; the
results can be easily extended to the observability problem and to the multi-
input case.

If the state space is not completely reachable, a non-zero, constant vector
K will exist such that

K'x=0, KT=(ky, kg ..., k,) (2)

whatever the value of state vector x at any given time t>0, if we assume
x(0)=0. Hence eqn. (2) holds also if we consider x as a time function. The
non-reachability condition can therefore be presented in terms of Laplace
transforms :

KTX(s)=0, Vs (2')

On the other hand, by transforming the first equation of (1) we have

X(s)=(I—A)1.B.U(s)=W(s). U(s) (3)
where
W (s) = (3(s), Wals), ..., TW,(s)) (4)

is the input-state transference vector. The elements of such a vector are
rational functions with the same denominator :

n—1

Wi(s)= %i- p;;sffdet (s] — A) (5)
Condition (2') can therefore be rewritten in the form
Y, Py
KT X (s) = KT ; . U(s)/det (s] — A)=0 (2")
2 P’

Equation (2”) has to hold for each U(s) and for each s: therefore K exists
if and only if the linear equation set

Y kpy=0, i=(1,2,..,7) (6)
0

exhibits a non-trivial solution.
In conclusion the complete reachability condition can be presented in the

form
rank (p;;)=n (7)
where p;; constants are defined by eqns. (3), (4) and (3).
The condition is obviously independent of the choice of the basis in the
state space, even though W(s) depends on such a choice. Let us thus
consider another basis and let

be the state vector referred to the new basis, 7' being an invertible matrix.
The new transference vector :

W (s)=X(s)/Ul(s) (9)
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meets the condition
W(s)=TW(s) (10)

Therefore if matrix (p;;) formed with the numerator coefficients of the trans-
ferences IW,(s) has rank equal to n, matrix (p;;) of the numerator coefficients
of the transferences W,(s) will also have rank equal to n.

Coefficients p;; of the numerators of transferences I¥,(s) in some cases can
be easily evaluated by starting from the structure of eqn. (1) (cf. for example
the case presented in the following section). In general one can use Mason’s
formula applied to the signal flow-graph corresponding to eqn. (1); the
procedure can be easily implemented on a computer. Alternatively, we may
write W(s) in the form

1 (My+Mis+... M, ;s 1)B

W(s):madj (sl—A). B= det (5T — 4) (11)

where the matrices M ; can be computed starting from 4 by means of the
Faddeev procedure (cf. Gantmacher : The Theory of Matrices, Chelsea, New
York, 1959, Vol. 1, p. 87). So we have

(Piji=r ... n=M;B, j=0,1..n-1 (12)

The structure of the Faddeev procedure allows us to ascertain that, for
the general case, the amount of computation necessary in order to evaluate
rank (p;;) is comparable with that required by the application of the Kalman
reachability criterion. But our procedure supplies also input-state trans-
ferences, which can be useful for the study of different problems regarding
the system’s behaviour.

3. An example
Let us consider the syvstem shown in the figure : its equations are

Ty =y

Ty =5+ MU

Ty =0, + Aoy + Ayy + (Azn + MU
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From these equations or from the graph the following transferences

i m+ns
Wi== 5
83— (y8% — AgS — Uy
2
, ms +ns
Il 9= 3 2
83— g8 —ays—ay
W an -+ a;ns + (agn + m)s?
3=

83— ay8% — a8 — a4y

can be easily obtained.
Therefore, the rank has to be evaluated of the following matrix :

m n 0

(pi)={ O m n
AN QN Agh+m

By the usual procedure on the basis of matrices

0o 1 0 0
A=]0 0 1 3 B= n
@, @y dy agn +m
the reachability matrix
0 n agn + M
Q= n aqn +m AN + ag*n + agm

agn+m AN+ AP+ agm agn A+ 2a,a5n +aym+ as®n + az*m

has to be formed.

The fact that rank (p;;) and rank @ are equal can easily be ascertained ;
the first column of @ is equal to (p.); the second column of @ is equal to
(Pya) + @3(Ps3) and the third column of @ is equal to (py,) + ag(Ps) + (@2 + a5 (Dys).

4, Concluding remarks

As has been said in the introduction, the criterion we propose is based on
the intuitive notion of reachability and its proof is very simple ; the criterion
seems therefore to be useful from a didactic point of view. On the other
hand, the example we considered allows us to ascertain that, at least in some
cases, the computation of matrix (p;;) is not so cumbersome as that of matrix
Q : as a consequence, in these cases, the functions of signal flow-graph co-
efficients, corresponding to each p;;, are simpler than those corresponding
to the elements of Q. Therefore the evaluation of the effects of coefficient
variations on the structural properties of the system is easier considering
rank (p;;) than considering rank . We may note, furthermore, that the
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system of the figure has not been built ad hoc, in order to provide an easy
application of the suggested procedure; on the contrary, its signal flow-
graph has a very ordinary structure. This suggests that the procedure can
be easily adopted for systems of higher order than that of the figure that
exhibit the same flow-graph structure ; the same considerations can be made
with reference to other simple graph structures with a companion type
matrix 4.

If the matrix A structure does not exhibit particular characteristics, the
numerators of the input-state transferences W, are to be computed, for
instance by resorting to Mason’s formula, as previously said.

The signal flow-graph corresponding to system equations is very signi-
ficant for the study of system properties ; not only for the computation of
Mason’s formula but also from a more general point of view, if the state
variables we consider have a precise physical meaning. In fact, space state
may not be completely reachable if :

(1 @) no graph paths connect the input to a state vector component ;

(1 b) the sum of the path transferences connecting the input to a state
vector component is zero ;

(2) such a sum is non-zero but it is linearly dependent on other input-
state transferences.

This classification of non-reachability causes seems to be interesting for
some problems, for instance, for the design of identification experiments, as
previously said.

Generally speaking, the problem of the reachability of a single state-vector
component (if intrinsically meaningful) can be considered as an interesting
subproblem of the state reachability, although current literature does not
emphasize it. Obviously such a subproblem can also be studied by conven-
tional methods (with reference to properties of reachability matrix ¢); the
approach adopted here, however, is connected in a more direct way to the
very nature of the question. The problem, indeed, is one of ascertaining if
situation (1) or (2) holds. In this context the distinction between situations
(La) and (1b) is also interesting. In fact in case (1 a) (if the realization
considered is physically meaningful) no action is possible on z; by the input ;
in case (1b) a different combination of parameter values can make the x;
component reachable. In the design of identification experiments, if the
graph of the experimental model corresponds to situation (1 a), the system
is not identifiable ; otherwise the experiment is worthwhile because para-
meter values are not yet known and an a priori distinction between non-
identifiability (1 b) or (2) and identifiability is impossible.



